
MARCO ISLAND NUTRIENT SOURCE EVALUATION PROJECT

Final Report – September 2021

Prepared For:

City of Marco Island Public Works 50 Bald Eagle Drive Marco Island, FL 34145 239-389-5000

Prepared By:

Environmental Research & Design, Inc. 3419 Trentwood Blvd., Suite 102 Belle Isle (Orlando), FL 32812-4864 407-855-9465

EXECUTIVE SUMMARY

Introduction

The City of Marco Island is a 15.6 mi² area located in southern Collier County about 20 miles south of Naples and is the largest Barrier Island within southwest Florida's Ten Thousand Islands. Major development activities on Marco Island were initiated in the early 1960s which included dredging of the extensive canal system. Currently, the City has over 100 miles of internal and external waterways which are used extensively by residents and visitors for a variety of recreational activities.

In recent years, citizens have become concerned about declining water quality, both visually and chemically, in the extensive canal and waterway system which is an integral part of the City and provides direct access to off-shore waters for many residents. Marco Island has been listed by the Florida Department of Environmental Protection (FDEP) as impaired for nutrients (nitrogen) based upon annual geometric mean total nitrogen concentrations exceeding 0.30 mg/l during 2017 and 2018. The FDEP priority for TMDL development for Marco Island is "medium" which means that TMDL development is likely 5-10 years away. Off-shore areas southeast of Marco Island are also listed as impaired for total nitrogen, as well as total phosphorus and fecal coliform, due to exceedances of the applicable criteria for these parameters in recent years.

Current Study

During October 2019, the City issued a Request for Proposal (RFP #19-033: Consulting Services for Nutrient Source Evaluation and Assessment) which solicited proposals from qualified consultants to evaluate nutrient sources and provide recommendations for water quality improvement. ERD was selected by the City, and a Scope of Work and project schedule were developed and approved by the City Commission. Work efforts were initiated on this project by ERD during April 2020.

A field monitoring program was conducted by ERD from April-November 2020 to identify ambient water quality characteristics and collect hydrologic and water quality data for use in developing hydrologic and nutrient budgets for the waterways. A detailed evaluation of sediment characteristics in Marco Island waterways was also conducted which included physical and chemical characterization of surficial sediments and evaluation of internal nutrient recycling. This study collected 600 individual samples of rainfall, runoff, groundwater seepage, and sediment nutrient release, with more than 5,300 individual lab analyses and more than 4,200 field measurements to identify nutrient sources.

Historical Water Quality Characteristics

Marco Island Waterways

Limited water quality monitoring has been conducted within the Marco Island waterways since approximately 2001. At that time, the City chose 12 monitoring locations which were spatially distributed over the island to include primary waterways and drainage basin areas with monitoring frequencies ranging from monthly, to bi-monthly, to quarterly. A more intensive bi-monthly water quality monitoring program was initiated in 2007, and in 2015, two additional sites were added and sampling was changed to a monthly collection interval at all 12 sites. These efforts have generated a large amount of good quality data.

Overall, water quality characteristics in Marco Island waterways have been relatively consistent at most sites from 2015-2020, although statistically significant increases in values over time have been observed for total nitrogen, chlorophyll-a, and Secchi disk depth at the Barfield Bridge site; for total nitrogen and total phosphorus at the Collier Bridge site; and for total nitrogen at the McIlvaine site. Overall, mean total nitrogen concentrations in Marco Island waterways from 2015-2020 have been moderate to elevated in value, with virtually all measurements exceeding the water quality criterion of 300 μ g/l.

Annual mean total phosphorus concentrations in Marco Island waterways have been low to moderate in value, with concentrations at 11 of the 14 monitoring sites less than or equal to the applicable criterion of 46 μ g/l for total phosphorus. Exceedances of the criterion for both total nitrogen and total phosphorus have been consistently observed at the Landmark and Swallow monitoring sites, each of which is located in upstream portions of a relatively stagnant canal system.

Enterococci counts at a majority of the Marco Island monitoring sites are well below the FDEP criterion for this parameter of 35 cfu/100 ml. However, substantial exceedances of the Enterococci standard have been observed at the Olde Marco and Swallow monitoring sites, suggesting possible sewage impacts at these sites. The Olde Marco district has a privately owned and operated collection system. Sewage from Old Marco Lane North is collected by North Marco Utilities and pumped to the City wastewater facility for treatment.

Off-Site Waters

In addition to the historical monitoring conducted by the City of Marco Island (discussed in the previous section), a large amount of historical monitoring data has been collected by other agencies, such as Collier County, the South Florida Water Management District (SFWMD), FDEP, and the Florida Department of Health (FDOH) in off-island waters although multiple monitoring sites have also been included within the Marco Island waterways.

From 2015-2020, off-shore sites surrounding Marco Island exhibited annual geometric mean (AGM) values for total nitrogen which exceeded the NNC of 300 μ g/l during 28 of the 30 annual periods of data available at SFWMD and FDEP monitoring sites. Exceedances of the NNC for total phosphorus were observed during 9 of the 27 annual periods (33%), with exceedances of the NNC for chlorophyll-a during 3 of the 27 annual periods. Exceedances in Enterococci counts have also been observed on the northwest shoreline of the island, particularly in recent years.

Off-shore areas provide the baseline water quality for Marco Island waterways and reflect water quality characteristics which would be present if no additional inputs occurred from Marco Island. Marco Island can, and does, add to existing concentrations but cannot reduce nutrient levels below the existing elevated levels. NNC criteria cannot be met in Marco Island waterways until the baseline water quality meets NNC.

Current Water Quality Characteristics

A monthly surface water quality monitoring program was conducted in Marco Island waterways and off-shore waters by ERD from April-September 2020 at 17 fixed monitoring locations. The surface water monitoring sites were selected to provide general information on ambient water quality characteristics, evaluate horizontal and vertical water quality variability, and assist in identifying potential significant loading sources. Six separate monitoring events were conducted at each of the 17 sites.

Water quality monitoring conducted by ERD indicated a well mixed water column at all on- and off-shore monitoring sites within the top 4-5 m of the water column. However, areas deeper than 4-5 m, particularly in upstream portions of the canals, were characterized by anaerobic conditions with large increases in conductivity near the water-sediment interface. These conditions suggest poor circulation and relatively stagnant conditions in upstream areas. Chemical characteristics of surface water samples collected by ERD are similar to long-term historical values measured in Marco Island waterways. Waterway samples suggest an enrichment in concentrations for nutrients and chlorophyll-a, compared with off-shore waters, which increases with increasing distance upstream within the waterways. No significant differences were observed in water quality characteristics between incoming and outgoing tidal events, although concentrations of nutrients and chlorophyll-a were often higher under outgoing tidal conditions.

Watershed Characteristics

A delineation of contributing drainage basin areas for Marco Island was conducted by ERD as part of this project. The main island is divided into 5 sections, referred to as Sub-basins 1-5, which are bisected in an east-west direction by San Marco Road and in a north-south direction by Bald Eagle Drive and S. Heathwood Drive, although the north-south separation is not as definitive as the east-west separation. The northeast section is further sub-divided into areas which discharge to Factory Bay and areas which discharge to Marco Bay. Each of the 5 sub-basins discharges through the respective canal systems to open tidal water. Sub-basin 1 discharges to Collier Bay and Marco Bay. Sub-basin 2 discharges to Factory Bay and ultimately to Marco Bay, with Sub-basin 3 discharging to East Marco Bay, Sub-basin 4 discharging to Caxambas Bay, and Sub-basin 5 discharging to Roberts Bay and ultimately to Caxambas Bay.

Under current conditions, the Marco Island drainage basin is dominated primarily by medium-density residential, multi-family residential, commercial, recreational, and highway land uses. In addition to the developed land use categories listed previously, the drainage basin also includes open spaces, forests, wetlands, and fresh and saltwater ponds. Soils within the drainage basin are well-drained with a rapid infiltration rate.

Stormwater

Marco Island has constructed an extensive stormsewer system to collect and discharge runoff generated during rain events. Most stormsewer systems are relatively short in length and discharge surface runoff into the nearest canal system or open water. Overall, the Marco Island stormsewer system has 1,864 stormsewer inlets with 1,324 of the current inlets (71%) retrofitted with inlet filters manufactured by Suntree which are designed to remove leaves, litter, and solid debris. The inlets are periodically cleaned and serviced by City personnel.

Currently, Marco Island has 393 stormsewer outfalls, with the vast majority discharging to the canal system. Only one of the outfalls discharges directly to the Gulf of Mexico, with 7 outfalls discharging to Barfield Bay, 10 outfalls discharging to Roberts Bay, 2 outfalls discharging to Caxambas Bay, and 5 outfalls discharging to Collier Bay. Most areas use a system of grassed swales to convey surface runoff, and a large portion of the generated runoff volume infiltrates into groundwater. Most of the larger developments have stormwater treatment systems consisting of dry ponds, but treatment systems are not present in residential areas.

Sewage Disposal

Currently, disposal of sanitary sewage on Marco Island occurs almost exclusively using a central sewer collection system. According to the Water and Sewer Department (W&SD), only approximately 20-21 on-site treatment systems remain on the island, and the remaining systems will be phased out by 2024.

Collected raw sewage is transported through an extensive network of underground sewer mains to a sewage treatment facility located south of Factory Bay near the intersection of E. Elkcam and Windward Drive, referred to as the Marco Island Reclaimed Water Production Facility (RWPF). The facility provides treatment for wastewater generated on Marco Island along with portions of the Isles of Capri and Goodland. The average daily sewage inflow to the plant from 2011-2020 has been 2.20 MGD compared with a capacity of 4.92 MGD.

Reuse Irrigation

Virtually all sewage treated at the Marco Island wastewater treatment plant becomes reuse irrigation and, according to the W&SD, the demand often exceeds the availability. During these conditions, raw water from the City's primary drinking water source is used to augment the reuse system either directly or indirectly. Reuse irrigation is applied to 229.99 acres of area golf courses at a rate of 0.56 inch/week and to 398.96 acres of public access areas, both on and off island, at a rate of 0.88 inch/week. Reuse irrigation contains concentrations of total nitrogen which are an order of magnitude higher in concentration than adjacent waterways and concentrations of total phosphorus which are 2 orders of magnitude higher.

Hydrologic Inputs

Average annual hydrologic budgets were developed for the waterways associated with Sub-basins 1-5 which include inputs from direct precipitation, stormwater runoff, irrigation, and groundwater seepage. Hydrologic losses are calculated for evaporation and outflow to adjacent tidal waterbodies.

The largest annual hydrologic input to the 5 waterways is groundwater seepage which contributes 60-72% of the total annual hydrologic inputs. Direct precipitation is the second most significant hydrologic input in Sub-basins 1, 2, 4, and 5, with irrigation (consisting of both reuse and potable sources) comprising the second most significant inflow in Sub-basin 3. Inputs of stormwater runoff are minimal in terms of the annual hydrologic budgets, contributing only 4-7% of the annual volumetric inflows. Hydraulic residence times in the waterways are relatively long, ranging from 5-11 months.

Nutrient Inputs

Marco Island waterways receive nutrient inputs from a variety of sources which include bulk precipitation, stormwater runoff, irrigation, shallow groundwater seepage, and internal recycling. Chemical characteristics of bulk precipitation, stormwater runoff, reuse irrigation, and groundwater seepage, along with inputs from internal recycling, were measured by ERD during the period from April-November 2020, and information from each of these sources is used to generate annual average nutrient budgets for total nitrogen and total phosphorus for the waterbodies in the 5 sub-basin areas.

Measured concentrations of nutrients in bulk precipitation were low in value and similar to samples collected in other coastal areas in South Florida. Five automated stormwater monitoring sites were installed in multiple different land uses and in areas with and without reuse irrigation, and a total of 60 stormwater and baseflow samples were collected. Concentrations of total nitrogen were highest in areas with extensive reuse irrigation and residential areas with a high level of landscape maintenance. Reuse samples were characterized by elevated concentrations of both total nitrogen and total phosphorus. Groundwater seepage contained moderate to high concentrations of total nitrogen and total phosphorus, with a large volumetric influx. Sediment release experiments indicated large release of nutrients from waterway sediments under both aerobic and anaerobic conditions.

Nitrogen Loadings

The most significant annual mass loadings of total nitrogen to Marco Island waterbodies originates from sediment nutrient release which contributes 61-77% of the annual nitrogen loadings, depending upon sub-basin. The second most significant nitrogen loading to Marco Island waterbodies is groundwater seepage which contributes 15-30% of the estimated annual loadings. Combined together, sediment nutrient release and groundwater seepage contribute approximately 90% or more of the annual nitrogen loads for most sub-basins.

Annual mass loadings of total nitrogen from stormwater runoff to Marco Island waterbodies are low in comparison to other sources, contributing only 3-9% of the annual nitrogen inputs. The smallest annual contribution of total nitrogen originates from bulk precipitation which contributes 1.4-3.9% of the annual nitrogen loadings, depending upon the particular sub-basin. Areal nitrogen loadings to the 5 waterbodies range from 9.3-25.8 g N/m²-yr which are somewhat higher than relatively undisturbed estuary systems.

Phosphorus Loading

On an average annual basis, the most significant loadings of total phosphorus to Marco Island waterbodies originates from sediment nutrient release which contributes 42-72% of the annual phosphorus loadings, depending upon sub-basin area. Groundwater seepage is the second most significant loading source for phosphorus in Sub-basins 1, 2, 3, and 4, contributing 18-42% of the annual phosphorus loading to adjacent waterbodies. However, for Sub-basin 5 waterways, stormwater runoff is the second most significant loading source, contributing 24% of the annual phosphorus loading to this waterway.

Stormwater runoff is the third most significant phosphorus source to Sub-basins 1, 2, 3, and 4, contributing 7-13% of the annual phosphorus loadings. Groundwater seepage is the third most significant phosphorus loading to Sub-basin 5. Phosphorus loadings to Marco Island waterbodies from bulk precipitation are relatively minimal, contributing only 2-4% of the annual average phosphorus inputs.

Stable Isotope Analyses

Analyses of stable isotopes of Oxygen (O) and Nitrogen (N) were conducted on 235 samples of bulk precipitation, runoff, reuse irrigation, golf course pond, and groundwater seepage. The isotopic data make a strong case for landscaping and reuse irrigation activities as the dominant sources of nitrogen in groundwater seepage inflows to Marco Island waterways. Nitrogen inputs to runoff and baseflow appear to be impacted by a variety of sources, including rainfall, fertilizer, and reuse activities, although the isotope data suggest that landscaping activities may be a more significant source to runoff than reuse irrigation, while reuse appears to impact baseflow characteristics.

Water Quality Management Philosophy

Marco Island is surrounded by multiple bays and channels which receive inflows from large wetland areas located west of US 41, and these inflows are often colored and contain elevated nutrient concentrations. When these inflows combine with tidal waters, the resulting water quality characteristics represent baseline water quality in off-shore areas surrounding Marco Island. This water moves into and out of the extensive canal system with each tidal cycle and creates baseline minimum water quality in the island waterways. When the tidal water enters the waterway canals, nutrient concentrations are enhanced by watershed inputs from precipitation, runoff, irrigation water, and groundwater seepage. It would be virtually impossible to improve waterway quality to levels less than present in the off-island inflows, and the baseline conditions cannot be improved without significant regional projects to improve the characteristics of upland inflows to the off-shore waters.

Both Marco Island waterways and off-shore waters are currently listed as Impaired Waters by FDEP, with Marco Island waterways listed as impaired for nitrogen and off-shore water listed as impaired for nitrogen, phosphorus, and fecal coliform bacteria. Since the baseline water entering the waterways is already impaired, Marco Island waterways will continue to be impaired until the impairment is addressed in the off-shore waters. Even if Marco Island eliminated all inputs of water and nutrients to area waterways, the water quality impairment within the waterways would remain since the incoming water is already impaired. Both historical and current monitoring efforts indicate an enrichment in nutrients within the waterways compared with off-shore waters, and the water quality management options discussed in this report are designed to reduce the enrichment processes to prevent further degradation of inflows after entering the canal systems.

Recommended Management Options

Nutrient loadings to Marco Island waterways originate from a variety of sources, including sediment nutrient recycling, groundwater seepage, stormwater runoff, reuse irrigation, and bulk precipitation. A discussion of each of these inputs is provided in this report. A summary of recommended management options is given below with details provided in the main report.

Internal Recycling

The largest annual nutrient loading to the waterways originates from internal recycling. Given the large cost for sediment removal and lack of research on effects of alum and other sediment treatments in marine environments, the only feasible management option is to improve water quality within the waterways to the extent possible by reducing nutrient loadings from other sources and create a well-mixed and aerobic water column in all areas. Sediment nutrient release occurs at a faster rate when lower portions of the water column become anaerobic, and this release can be minimized, but not eliminated, by maintaining aerobic conditions throughout the water column in all areas.

Stormwater Management

Direct stormwater runoff contributes a small portion of the annual loadings to waterways since virtually all runoff is infiltrated into groundwater through the highly permeable soils. Options were discussed for installation of swale blocks to increase runoff retention, and installation of a denitrification bed beneath existing swales which should be implemented during routine maintenance activities. Continuation of the existing system of inlet filter systems is also recommended.

The City currently relies on water management criteria implemented by SFWMD for construction of stormwater management facilities for development. However, SFWMD provides an exemption from stormwater criteria for single-family homes, and most homes on the island have no stormwater treatment. It is recommended that the City consider adding stormwater management requirements for future homes or re-development. Proven LID systems such as rain gardens can be easily incorporated into the landscape and not recognizable as a stormwater treatment system. Some systems also incorporate a filter media to improve removal of nutrients.

Seepage Inflows

Nutrient loadings from groundwater seepage constitute the second largest source of nitrogen to the waterways and reflect the combined inputs from direct rainfall, infiltrated runoff, irrigation water, and excess fertilizer applications. An option is presented for a denitrification wall to intercept the seepage and convert soluble nitrogen to a gaseous form. The denitrification option should be implemented to existing seawalls during replacement or repair projects, and incorporated into seawalls for all new development.

Reuse Irrigation

Reuse irrigation is currently being applied at rates which exceed the ability of turfgrasses to provide uptake of the water and nutrients, and results in a large amount of the reuse leaching past the root zone into groundwater. The volume of currently applied reuse irrigation which exceeds the evapotranspiration requirements of the vegetation is 12% (526 million gallons/yr or 1.44 MGD) of the total annual seepage volume entering waterways and a much larger percentage of the annual mass loading due to the much higher nutrient concentrations compared with other inputs. The average daily reuse application from 2011-2020 is 1.84 MGD, so 78% (1.44 MGD/1.84 MGD) of the applied reuse irrigation passes through the soil and enters groundwater with little change in concentration. The geomean total nitrogen reuse nitrogen concentration from 2012-2021 is 8.72 mg/l. Even if a 50% reduction in concentration is achieved during movement through groundwater, the additional nitrogen loading from excess reuse is 8,312 kg/yr which is 40% of the total annual nitrogen loading from groundwater in all sub-basins combined.

Alternative methods of reuse disposal should be evaluated, and reuse should be applied only as needed to meet evapotranspiration requirements. If reuse were applied only as needed, the groundwater nitrogen impacts would be substantially reduced, resulting in a visible improvement in waterway water quality.

The reuse irrigation system should also be inspected routinely to identify areas of overspray or broken irrigation heads. An educational program should be developed to inform residents about nutrient loadings in reuse and potential water quality impacts from excessive use.

Reuse irrigation is also used on the golf course, but the water is stored in a surface pond prior to application. Nutrient reduction occurs within the pond which reduces the nutrient loading to concentrations similar to urban runoff in other parts of Florida which reduces potential groundwater impacts. However, at the irrigation rates indicated by annual reuse summary forms provided to FDEP, the irrigation rates also exceed evapotranspiration requirements, although not to the extent observed by reuse application in other public areas, and irrigation reduction should be considered to match evapotranspiration requirements.. Nutrient loadings from reuse irrigation should be considered in fertilizer applications.

Canal Recirculation

Both historical and current data collected by ERD indicate areas of dead-end canals with poor water quality resulting from lack of tidal flushing. These areas are easily identified on aerial photographs. General options are provided for improving recirculation by interconnecting canal sections on the north and south sides of San Marco Rd. Existing culverts, if present, should be located and cleaned, and the results should be monitored. If the culverts do not exist or do not provide sufficient recirculation, then additional culverts should be installed. A hydraulic study is recommended to identify optimum locations for additional interconnections.

Street Sweeping

Street sweeping is a low-cost alternative for reducing pollutants entrained in runoff. A limited street sweeping program is currently conducted by the City by a private contractor, with sweeping conducted only in intersections and along Collier Blvd. The City has approved purchase of a regenerative air sweeper in the 2022 budget, and the City should use this to increase sweeping to all roadways in Marco Island.

Fertilizer Ordinance

The Fertilizer Ordinance adopted in 2016 appears to contain many of the necessary elements to minimize water quality impacts from fertilizer applications, and fines are proposed for violations of the Ordinance. However, there are currently no personnel assigned to monitor infractions. Enhanced enforcement of this Ordinance is recommended, with repeat offenders losing the right to perform services on the island. The City should develop a voluntary educational program with local fertilizer retailers to inform residents of the fertilizer summer ban.

Public Education

Public education is a powerful and often ignored tool to inform residents about the link between watershed activities and water pollution in the waterways. Most people will alter behavior if they understand the consequences of unintended actions. Opportunities, such as pamphlets, billing inserts, billboards, and public meetings, should be used to educate residents.

Stormwater Utility

The City currently has no dedicated funding source for water quality improvement projects other than general revenues. Adoption of a Stormwater Utility is recommended to provide additional funding sources. A Stormwater Utility is often required by FDEP or local governments to qualify for certain funding grants, and the cost of the Utility could easily be recovered several times over through these grants.

Regulatory Impacts of Impairment

Marco Island waterways have been designated as Impaired by FDEP, and implementation of a TMDL will be initiated within the next 5-10 years. However, FDEP has developed an alternative assessment category, designated as 4e, which allows the responsible entity to conduct an independent evaluation of nutrient sources and management options. ERD recommends that the City pursue this designation to maintain control of the restoration process.

Water Quality Monitoring

The current monthly water quality monitoring program in the Marco Island waterways generates a large amount of useful data and should be continued. Water quality data will become even more important in the future as water quality improvement projects are initiated. The City should engage a qualified water quality consultant to review data and provide annual reviews and updates. Recommendations are provided for enhancing the existing program.

Good News

Multiple options are discussed in this section for reducing nutrient loadings to Marco Island waterways. The field evaluations indicated that groundwater seepage is a large source of loading to surface waters, and reuse irrigation and landscaping activities are the primary loading sources to groundwater. Landscaping activities can be modified at low cost through aggressive educational programs. Reuse impacts can be minimized through low to moderate cost options such as off-island customers and alternative disposal methods such as aquifer recharge which already exists. Modification of impacts from reuse and landscaping is capable of providing measurable improvements in water quality at low costs to the City, and ERD recommends that these issues take priority in management activities.

Management Options Summary

A summary of recommended water quality management options for Marco Island is given in Table ES-1. It is recommended that the management options be implemented as funding sources and opportunities become available.

TABLE ES-1

RECOMMENDED MANAGEMENT OPTIONS FOR MARCO ISLAND

RECOMMENDATION	COST (\$)
Sediment removal is prohibitively expensive; most feasible option is to reduce the rate of nutrient release by improving water quality by managing other sources to maintain aerobic conditions in waterways	189,820,000
a. Install shallow swale blocks in swales to increase retention of runoff	\$300/swale block
b. Install denitrification beds beneath existing swales during maintenance or regrading projects.	8,400/100 ft for media
c. Continue current inlet filter system to assist in removing solids and debris from waterways	Included in current program
d. Consider stormwater management requirements for single-family homes such as rain gardens	Low
Install denitrification beds adjacent to seawalls during repair or replacement; add to new seawalls during construction	27,000 per 100 ft of seawall
a. Evaluate alternative methods for reuse disposal which do not increase loadings to groundwater or surface water	
b. Conduct routine inspection and repair of the reuse irrigation system to prevent areas of overspray	Unknown
c. Provide an educational program to inform residents about nutrients contained in reuse irrigation and potential water quality impacts	
a. Evaluate potential reduction in irrigation rates	III a a se o A
b. Reduce fertilizer applications to account for nutrients in irrigation	Unknown/Low
a. Locate and clean existing interconnecting culverts, if present	Unknown/High
b. Conduct a hydraulic study to identify optimum areas for interconnecting culverts to increase recirculation	
c. Install additional culverts, as necessary	
City to purchase regenerative air sweeper in 2022; increase sweeping to all City streets.	Low
a. Assist retailers with educational signage regarding summer season ban	
b. Increase enforcement and revoke license from repeat offenders	Low
c. Modify ordinance to require consideration of nutrients in reuse	
a. Conduct public education program to inform residents of link between personal activities and water pollution	Low
b. Conduct a dedicated educational program regarding responsible fertilizer use.	Low
Adopt a Stormwater Utility to provide a dedicated funding source for water quality improvement projects	Unknown/Low
The City should submit documentation for a 4e designation which would allow the City to control the process rather than FDEP	Low
 a. The City should continue the current monthly monitoring program to provide documentation on water quality improvements; improvements are recommended to enhance the existing program b. Contract with a qualified water quality consultant to conduct annual reviews of data and trends and provide guidance on implementation of water quality improvement 	Low
	Sediment removal is prohibitively expensive; most feasible option is to reduce the rate of nutrient release by improving water quality by managing other sources to maintain aerobic conditions in waterways a. Install shallow swale blocks in swales to increase retention of runoff b. Install denitrification beds beneath existing swales during maintenance or regrading projects. c. Continue current inlet filter system to assist in removing solids and debris from waterways d. Consider stormwater management requirements for single-family homes such as rain gardens Install denitrification beds adjacent to seawalls during repair or replacement; add to new seawalls during construction a. Evaluate alternative methods for reuse disposal which do not increase loadings to groundwater or surface water b. Conduct routine inspection and repair of the reuse irrigation system to prevent areas of overspray c. Provide an educational program to inform residents about nutrients contained in reuse irrigation and potential water quality impacts a. Evaluate potential reduction in irrigation rates b. Reduce fertilizer applications to account for nutrients in irrigation a. Locate and clean existing interconnecting culverts, if present b. Conduct a hydraulic study to identify optimum areas for interconnecting culverts to increase recirculation c. Install additional culverts, as necessary City to purchase regenerative air sweeper in 2022; increase sweeping to all City streets. a. Assist retailers with educational signage regarding summer season ban b. Increase enforcement and revoke license from repeat offenders c. Modify ordinance to require consideration of nutrients in reuse a. Conduct public education program to inform residents of link between personal activities and water pollution b. Conduct a dedicated educational program regarding responsible fertilizer use. Adopt a Stormwater Utility to provide a dedicated funding source for water quality improvement projects The City should submit documentation for a 4e desig

TABLE OF CONTENTS

Sect	tion			Page
	Table of Contents			TOC-1 LF-1
	List of Figures			
	List of Tables			LT-1
List	of Abb	reviation	s and Units of Measure	LA-1
1.	INT	RODUC	ΓΙΟΝ	1-1
	1.1		al Description	1-1
	1.2	-	ed Waters Designation	1-3
	1.3		us Water Quality Studies	1-3
	1.4	Work l	Efforts Performed by ERD	1-4
2.	WAT	TER QU	VALITY CRITERIA AND CHARACTERISTICS	2-1
	2.1	Regula	ntory Water Quality Criteria	2-1
		2.1.1	Water Quality Criteria	2-1
		2.1.2	Impaired Waters	2-3
	2.2		ical Water Quality Characteristics	2-4
		2.2.1	Marco Island Waterways	2-4
			2.2.1.1 Data Availability	2-4
			2.2.1.2 Data Analysis	2-5
			2.2.1.3 Data Summary	2-9
			2.2.1.4 Total Nitrogen	2-9
			2.2.1.5 Total Phosphorus	2-12
			2.2.1.6 Chlorophyll-a	2-12
			2.2.1.7 Secchi Disk Depth	2-15
			2.2.1.8 Enterococci	2-15
			2.2.1.9 Trend Analyses 2.2.1.10 Statistical Comparison of Sites	2-15 2-19
			2.2.1.10 Statistical Comparison of Sites	2-19 2-21
		2.2.2	2.2.1.11 Summary Off-Island Waterways	2-21
		2.2.2	2.2.2.1 Data Availability	2-23
			2.2.2.2 Data Analysis	2-23 2-28
			2.2.2.3 Impacts from Off-Island Communities	2-28 2-34
			2.2.2.4 Summary	2-34
	2.3	Curren	at Water Quality Characteristics	2-35 2-35
	2.5	2.3.1	Monitoring Activities	2-35 2-35
		2.3.1	Field Profiles	2-33 2-37
		2.2.2	2.3.2.1 Off-Island Monitoring Sites	2-38
			2.3.2.2 On-Island Waterways Monitoring Sites	2-38

Sect	tion		Page
	2.4	 2.3.3 Chemical Characteristics 2.3.3.1 Impacts of Tidal Events 2.3.3.2 Comparison of Water Quality Characteristics 2.3.3.3 Summary Sediment Characteristics 2.4.1 Sampling Techniques 2.4.2 Sediment Characterization and Speciation Techniques 2.4.3 Sediment Characteristics 2.4.3.1 Visual Characteristics 2.4.3.2 General Sediment Characteristics 2.4.3.3 Phosphorus Speciation 2.4.3.4 Comparison of Sediment Characteristics 2.4.3.5 Summary 	2-42 2-42 2-45 2-49 2-49 2-51 2-53 2-53 2-56 2-59 2-60
3.	СНА	RACTERISTICS OF THE MARCO ISLAND DRAINAGE BASIN	3-1
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Watershed Characteristics Land Use in the Marco Island Drainage Basin Area Waterways Soil Characteristics Stormsewer System Topography Sewage Disposal Reuse Irrigation Stormwater Treatment Hydrologic Characteristics 3.10.1 Impervious Areas 3.10.2 Directly Connected Impervious Percentages 3.10.3 Curve Numbers 3.10.4 Summary	3-1 3-3 3-4 3-8 3-10 3-13 3-17 3-25 3-25 3-27 3-27 3-27 3-29
4.	HYD	ROLOGIC INPUTS AND LOSSES	4-1
	4.1	Hydrologic Inputs 4.1.1 Direct Precipitation 4.1.1.1 Rainfall Events During the Field Monitoring Program 4.1.1.2 Historical Rainfall Characteristics 4.1.1.2.1 Annual Hydrologic Inputs 4.1.2 Stormwater Runoff 4.1.2.1 Computational Methods 4.1.2.2 Modeled Runoff Volumes TOC-2	4-2 4-2 4-8 4-8 4-9 4-9

Sect	ion		Page
		4.1.3 Irrigation Inputs	4-15
		4.1.4 Shallow Groundwater Seepage	4-17
		4.1.4.1 Seepage Meter Construction and Locations	4-17
		4.1.4.2 Seepage Meter Monitoring	4-19
		4.1.4.3 Seepage Inflow	4-19
	4.2	Hydrologic Losses	4-23
		4.2.1 Evaporation Losses	4-24
		4.2.2 System Discharges	4-25
	4.3	Hydrologic Budget	4-26
		4.3.1 Hydrologic Inputs	4-26
		4.3.2 Hydrologic Losses	4-28
	4.4	Water Residence Time	4-30
5.	NUT	TRIENT INPUTS AND LOSSES	5-1
	5.1	Characteristics of Nutrient Inputs	5-2
		5.1.1 Bulk Precipitation	5-2
		5.1.1.1 Chemical Characteristics	5-2
		5.1.1.2 Mass Loadings	5-7
		5.1.2 Stormwater Loadings	5-7
		5.1.2.1 Monitoring Sites	5-7
		5.1.2.1.1 Site MI-1	5-9
		5.1.2.1.2 Site MI-2	5-12
		5.1.2.1.3 Site MI-3	5-12
		5.1.2.1.4 Site MI-4	5-12
		5.1.2.1.5 Site MI-5	5-16
		5.1.2.1.6 Reuse Monitoring Site	5-18
		5.1.2.1.7 Land Use and Hydrologic Characteristics of	
		Monitored Stormwater Basins	5-18
		5.1.2.2 Field and Laboratory Methods	5-20
		5.1.2.3 Characteristics of Monitored Runoff and Reuse Samples	5-21
		5.1.2.4 Selection of Runoff Characterization Data	5-31
		5.1.2.5 Runoff Loadings	5-33
		5.1.3 Groundwater Seepage	5-34
		5.1.3.1 Chemical Characteristics of Seepage Inflows	5-34
		5.1.3.2 Mass Loadings from Seepage Inflows	5-37
		5.1.4 Internal Recycling	5-37
		5.1.4.1 Field and Laboratory Procedures	5-38
	<i>5</i> 2	5.1.4.2 Calculation of Mass Release	5-42
	5.2	Annual Nutrient Budgets	5-46
		5.2.1 Nitrogen Loadings	5-46
		5.2.2 Phosphorus Loadings	5-48
		5.2.3 Comparison with Other Marine Systems	5-49

Sect	ion		Page
6.		TOPE ANALYSIS OF INPUTS TO MARCO ISLAND TERWAYS	6-1
	WA	IERWAIS	0-1
	6.1	Introduction	6-1
	6.2	Theory of Measurement	6-3
	6.3	Analysis	6-5
	6.4	Results	6-6
		6.4.1 Bulk Precipitation	6-6
		6.4.2 Reuse Irrigation and Reuse Pond	6-7
		6.4.3 Runoff Samples	6-9
		6.4.4 Groundwater Seepage	6-10
	6.5	Summary	6-11
7.	EVA	LUATION OF WATER QUALITY IMPROVEMENT OPTIONS	7-1
	7.1	Management Philosophy	7-1
	7.1	7.1.1 Water Quality Dynamics and Limitations	7-1 7-1
		7.1.2 Significance of Nutrient Sources	7-1
		7.1.2.1 Sediment Nutrient Recycling	7-4
		7.1.2.1 Sediment Nutrient Recycling 7.1.2.2 Groundwater Seepage	7-4
		7.1.2.2 Groundwater Scepage 7.1.2.3 Stormwater Runoff	7- 4 7-5
		7.1.2.4 Reuse Irrigation	7-5
		7.1.2.5 General Management Options	7-6
	7.2	Reduction of Loadings from Internal Recycling	7-6
		7.2.1 Sediment Dredging	7-7
		7.2.1.1 Dredging Materials	7-7
		7.2.1.2 Containment Area Requirements	7-8
		7.2.1.3 Dredging Costs	7-9
		7.2.1.4 Summary	7-10
	7.3	Stormwater Management	7-10
		7.3.1 Nutrient Management	7-11
		7.3.1.1 Swale Blocks	7-12
		7.3.1.2 Denitrification Bed	7-13
		7.3.1.3 Summary and Recommendations	7-15
		7.3.2 Inlet Systems	7-15
		7.3.2.1 Summary and Recommendations	7-17
		7.3.3 Stormwater Management	7-18
		7.3.3.1 Recommendations	7-19
	7.4	Seepage Management	7-19
		7.4.1 Management Options	7-19
		7.4.2 Summary and Recommendations	7-21

 7.5 Reuse Irrigation 7.5.1 Overview of Issues 7.5.2 Groundwater Impacts 7.5.3 Impacts to Fertilizer Requirements 7.5.4 Maintenance and Application Issues for Reuse Irrigation 7.5.5 Golf Course Irrigation 7.5.6 Summary and Recommendations 7.6 Improved Recirculation 7.6.1 Existing Conditions and Issues 7.6.2 Recirculation Options 7.6.3 Recommendations 7.7 Landscape Activities 7.7.1 Existing Conditions and Issues 7.7.2 Fertilizer Ordinance 7.7.3 Citizen Reporting 	7-21
 7.5.1 Overview of Issues 7.5.2 Groundwater Impacts 7.5.3 Impacts to Fertilizer Requirements 7.5.4 Maintenance and Application Issues for Reuse Irrigation 7.5.5 Golf Course Irrigation 7.5.6 Summary and Recommendations 7.6 Improved Recirculation 7.6.1 Existing Conditions and Issues 7.6.2 Recirculation Options 7.6.3 Recommendations 7.7 Landscape Activities 7.7.1 Existing Conditions and Issues 7.7.2 Fertilizer Ordinance 7.7.3 Citizen Reporting 	
 7.5.2 Groundwater Impacts 7.5.3 Impacts to Fertilizer Requirements 7.5.4 Maintenance and Application Issues for Reuse Irrigation 7.5.5 Golf Course Irrigation 7.5.6 Summary and Recommendations 7.6 Improved Recirculation 7.6.1 Existing Conditions and Issues 7.6.2 Recirculation Options 7.6.3 Recommendations 7.7 Landscape Activities 7.7.1 Existing Conditions and Issues 7.7.2 Fertilizer Ordinance 7.7.3 Citizen Reporting 	7-21
 7.5.3 Impacts to Fertilizer Requirements 7.5.4 Maintenance and Application Issues for Reuse Irrigation 7.5.5 Golf Course Irrigation 7.5.6 Summary and Recommendations 7.6 Improved Recirculation 7.6.1 Existing Conditions and Issues 7.6.2 Recirculation Options 7.6.3 Recommendations 7.7 Landscape Activities 7.7.1 Existing Conditions and Issues 7.7.2 Fertilizer Ordinance 7.7.3 Citizen Reporting 	
 7.5.4 Maintenance and Application Issues for Reuse Irrigation 7.5.5 Golf Course Irrigation 7.5.6 Summary and Recommendations 7.6 Improved Recirculation 7.6.1 Existing Conditions and Issues 7.6.2 Recirculation Options 7.6.3 Recommendations 7.7 Landscape Activities 7.7.1 Existing Conditions and Issues 7.7.2 Fertilizer Ordinance 7.7.3 Citizen Reporting 	7-22
7.5.5 Golf Course Irrigation 7.5.6 Summary and Recommendations 7.6 Improved Recirculation 7.6.1 Existing Conditions and Issues 7.6.2 Recirculation Options 7.6.3 Recommendations 7.7 Landscape Activities 7.7.1 Existing Conditions and Issues 7.7.2 Fertilizer Ordinance 7.7.3 Citizen Reporting	7-23
7.5.6 Summary and Recommendations The improved Recirculation 7.6.1 Existing Conditions and Issues 7.6.2 Recirculation Options 7.6.3 Recommendations 7.7 Landscape Activities 7.7.1 Existing Conditions and Issues 7.7.2 Fertilizer Ordinance 7.7.3 Citizen Reporting	7-25
 7.6 Improved Recirculation 7.6.1 Existing Conditions and Issues 7.6.2 Recirculation Options 7.6.3 Recommendations 7.7 Landscape Activities 7.7.1 Existing Conditions and Issues 7.7.2 Fertilizer Ordinance 7.7.3 Citizen Reporting 	7-27
 7.6.1 Existing Conditions and Issues 7.6.2 Recirculation Options 7.6.3 Recommendations 7.7 Landscape Activities 7.7.1 Existing Conditions and Issues 7.7.2 Fertilizer Ordinance 7.7.3 Citizen Reporting 	7-30
 7.6.2 Recirculation Options 7.6.3 Recommendations 7.7 Landscape Activities 7.7.1 Existing Conditions and Issues 7.7.2 Fertilizer Ordinance 7.7.3 Citizen Reporting 	7-31
7.6.3 Recommendations 7.7 Landscape Activities 7.7.1 Existing Conditions and Issues 7.7.2 Fertilizer Ordinance 7.7.3 Citizen Reporting	7-31
 7.7 Landscape Activities 7.7.1 Existing Conditions and Issues 7.7.2 Fertilizer Ordinance 7.7.3 Citizen Reporting 	7-32
 7.7.1 Existing Conditions and Issues 7.7.2 Fertilizer Ordinance 7.7.3 Citizen Reporting 	7-36
7.7.2 Fertilizer Ordinance7.7.3 Citizen Reporting	7-37
7.7.3 Citizen Reporting	7-37
	7-37
7.7.4 Decommendations	7-40
7.7.4 Recommendations	7-40
7.8 Non-Structural Techniques	7-40
7.8.1 Street Sweeping	7-41
7.8.1.1 Introduction	7-41
7.8.1.2 Current City Program	7-43
7.8.1.3 Recommendations	7-44
7.8.2 Public Education	7-44
7.8.2.1 Recommendations	7-45
7.8.3 Stormwater Utility	7-45
7.8.4 Water Quality Monitoring Program	7-45
7.9 Regulatory Issues	7-47
7.10 Summary of Recommended Management Options	7-47
7.10 Sammary of Recommended Management Options	, 1,
8. REFERENCES	8-1

Appendices

- A. Historical Water Quality Data for Marco Island and Off-Shore Waterbodies
 - A-1 Historical Water Quality Data for Marco Island Monitoring Sites
 - A-2 Mean Annual Values for Marco Island Monitoring Sites
 - A-3 Temporal Plots and Regression Analyses for Marco Island Historical Monitoring Data
 - A-4 Box and Whisker Plots for Historical Marco Island Water Quality Data by Site
 - A-5 Historical Water Quality Data for Off-Shore Waterbodies
 - A-6 Characteristics of Reuse Irrigation Produced by Marco Island
- B. Results of Surface Water Quality Monitoring Conducted in Marco Island Waterways from April-September 2020
 - B-1 Vertical Field Profiles
 - B-2 Characteristics of Surface Water Samples
- C. Photographs of Sediment Core Samples Collected in Marco Island Waterways
- D. Hydrologic Modeling Used to Calculate Runoff Volumes for Marco Island Sub-basins 1-5
- E. Characteristics of Shallow Groundwater Seepage Collected in Marco Island from April-November 2020
 - E-1 Field Measurements of Seepage Inflow Volumes
 - E-2 Chemical Characteristics of Collected Seepage Samples
- F. Characteristics of Monitored Inputs to Marco Island Waterways from May-October 2020
 - F-1 Bulk Precipitation
 - F-2 Stormwater Runoff
 - F-3 Reuse Irrigation
 - F-4 Reuse Pond on Golf Course
- G. Results of Benthic Sediment Release Experiments
 - G-1 Lab Analyses Conducted During Sediment Release Experiments
 - G-2 Sediment Nutrient Release Plots
- H. Results of Stable Isotope Analyses Conducted on Marco Island Samples
 - H-1 Laboratory Documentation
 - H-2 Sample Results
- I. Marco Island Fertilizer Ordinance

LIST OF FIGURES

Figure	e Number / Title	Page
1-1	Location Map for Marco Island	1-1
1-2	Local Vicinity Map for Marco Island	1-2
2-1	WBIDs in the Vicinity of Marco Island	2-3
2-2	Locations of Historical Marco Island Water Quality Monitoring Sites	2-8
2-3	Mean Annual Total Nitrogen Concentrations in Marco Island Waterways from 2015-2020	2-10
2-4	Mean Annual Total Phosphorus Concentrations in Marco Island Waterways from 2015-2020	2-13
2-5	Mean Annual Chlorophyll-a Concentrations in Marco Island Waterways from 2015-2020	2-14
2-6	Mean Annual Secchi Disk Depths in Marco Island Waterways from 2015-2020	2-16
2-7	Mean Annual Enterococci Counts in Marco Island Waterways from 2015-2020	2-17
2-8	Statistical Comparison of Concentrations of Total Nitrogen and Total Phosphorus Measured in Marco Island Waterways from 2015-2020	2-20
2-9	Statistical Comparison of Concentrations of Chlorophyll-a and Secchi Disk Depth Measured in Marco Island Waterways from 2015-2020	2-22
2-10	Statistical Comparison of Concentrations of Enterococcus Counts in Marco Island Waterways from 2015-2020	2-23
2-11	Overview of Historical Water Quality Monitoring Sites by Other Agencies	2-24
2-12	Expanded View of Off-Island Monitoring Sites North of Marco Island Near Isles of Capri	2-25
2-13	Statistical Comparison of Measured Values of Total Nitrogen and Total Phosphorus at On- and Off-Island Waterways from 2015-2020	2-31
2-14	Statistical Comparison of Measured Values of Chlorophyll-a and Secchi Disk Depth at On- and Off-Island Waterways from 2015-2020	2-32

Figur	re Number / Title	Page
2-15	Statistical Comparison of Measured Enterococci Counts at On- and Off-Island Waterways from 2015-2020	2-34
2-16	Surface Water Monitoring Sites Used by ERD	2-36
2-17	Vertical Field Profiles Collected in Marco Island at Site MI-3	2-39
2-18	Vertical Field Profiles Collected in Marco Island at Site MI-9	2-40
2-19	Vertical Field Profiles Collected in Marco Island at Site MI-11	2-41
2-20	Locations of Sediment Core Monitoring Sites	2-50
2-21	Schematic of Chang and Jackson Speciation Procedure for Evaluating Soil Phosphorus Bonding	2-52
3-1	Overview of the Marco Island Drainage Basin Area	3-2
3-2	Current (June 2020) Land Use in the Marco Island Drainage Basin	3-5
3-3	Locations of Marco Island Seawalls	3-7
3-4	Hydrologic Soil Groups (HSG) in the Marco Island Drainage Basin	3-9
3-5	City of Marco Island Stormsewer System	3-11
3-6	Topographic Map of the Marco Island Drainage Basin	3-12
3-7	Limited Range Topographic Map for Marco Island	3-14
3-8	Photo of the City of Marco Island Wastewater Treatment Facility	3-15
3-9	Schematic of the City of Marco Island Wastewater Treatment Process	3-16
3-10	Active and Potential Areas for Reuse Irrigation on Marco Island	3-18
3-11	Temporal Variability in Marco Island Reuse Water Characteristics from 2012-2021	3-23
3-12	Stormwater Treatment Areas in the Marco Island Drainage Basin	3-26

Figur	e Number / Title	Page
3-13	Examples of Delineated Impervious Areas for Residential Parcels	3-28
4-1	Conceptual Schematic of Evaluated Hydrologic Inputs and Losses to Marco Island Waterways	4-1
4-2	Marco Island Hydrologic Instrumentation	4-3
4-3	Graphical Comparison of Field Measured and "Normal" Rainfall from May- November 2020	4-7
4-4	Rear Yard French Drains	4-13
4-5	Typical Seepage Meter Installation	4-18
4-6	Seepage Meters Being Prepared for Installation	4-18
4-7	Locations of Marco Island Seepage Monitoring Sites	4-20
4-8	Graphical Comparisons of Annual Hydrologic Inputs to the Marco Island Waterways	4-27
4-9	Graphical Comparisons of Annual Hydrologic Losses from the Marco Island Waterways	4-29
5-1	Conceptual Schematic of Evaluated Nutrient Inputs and Losses for Marco Island Waterways	5-1
5-2	Statistical Comparison of Measured Values for pH, Conductivity, Alkalinity, Color, Turbidity, and TSS in Bulk Precipitation Samples Collected at Marco Island from May-November 2020	5-3
5-3	Statistical Comparison of Measured Values for Nitrogen Species in Bulk Precipitation Samples Collected at Marco Island from May-November 2020	5-4
5-4	Statistical Comparison of Measured Values for Phosphorus Species in Bulk Precipitation Samples Collected at Marco Island from May-November 2020	5-6
5-5	Locations of Stormwater Monitoring Sites	5-8
5-6	Overview of the Drainage Basin Areas for Monitoring Sites MI-1 and MI-3	5-10

Figur	e Number / Title	Page
5-7	Photograph of Stormwater Monitoring Site MI-1	5-11
5-8	Overview of the Drainage Basin Area for Monitoring Site MI-2	5-13
5-9	Photograph of Stormwater Monitoring Site MI-2	5-14
5-10	Photograph of Stormwater Monitoring Site MI-3	5-14
5-11	Overview of the Drainage Basin Area for Monitoring Site MI-4	5-15
5-12	Photograph of Stormwater Monitoring Site MI-4	5-16
5-13	Overview of the Drainage Basin Area for Monitoring Site MI-5	5-17
5-14	Photograph of Stormwater Monitoring Site MI-5	5-18
5-15	Photograph of the Reuse Monitoring Site	5-19
5-16	Statistical Summary of Measured Values for pH, Alkalinity, and Conductivity in Baseflow, Runoff, and Reuse Samples Collected at Marco Island Monitoring Sites from May-October 2020	5-23
5-17	Statistical Summary of Measured Values for Turbidity, Color, and TSS in Baseflow, Runoff, and Reuse Samples Collected at Marco Island Monitoring Sites from May-October 2020	5-24
5-18	Statistical Summary of Measured Values for Ammonia, NOx, and Dissolved Organic Nitrogen in Baseflow, Runoff, and Reuse Samples Collected at Marco Island Monitoring Sites from May-October 2020	5-26
5-19	Statistical Summary of Measured Values for Particulate Nitrogen and Total Nitrogen in Baseflow, Runoff, and Reuse Samples Collected at Marco Island Monitoring Sites from May-October 2020	5-28
5-20	Statistical Summary of Measured Values for SRP and Dissolved Organic Phosphorus in Baseflow, Runoff, and Reuse Samples Collected at Marco Island Monitoring Sites from May-October 2020	5-29
5-21	Statistical Summary of Measured Values for Particulate Phosphorus and Total Phosphorus in Baseflow, Runoff, and Reuse Samples Collected at Marco Island Monitoring Sites from May-October 2020	5-30

Figur	re Number / Title	Page
5-22	Large Core Sample Sites for Measurement of Internal Recycling in Marco Marco Island Waterways	5-39
5-23	Schematic of Sediment Incubation Apparatus	5-41
5-24	Schematic of Sediment Core Incubation System	5-41
5-25	Graphical Comparison of Nitrogen Sources for the Five Marco Island Sub-basin Waterways	5-47
5-26	Graphical Comparison of Phosphorus Sources for the Five Marco Island Sub-basin Waterways	5-50
6-1	Separation of Isotopes by Gas Isotope-Ratio Mass Spectrometry	6-3
6-2	Relationships Between $\delta^{15}N$ and $\delta^{18}O$ for Bulk Precipitation Samples Collected at Marco Island	6-7
6-3	Relationships Between $\delta^{15}N$ and $\delta^{18}O$ for Reuse Irrigation and Reuse Pond Samples Collected at Marco Island	6-8
6-4	Relationships Between $\delta^{15}N$ and $\delta^{18}O$ for Stormwater and Baseflow Samples Collected at Marco Island	6-10
6-5	Relationships Between $\delta^{15}N$ and $\delta^{18}O$ for Groundwater Seepage Samples Collected at Marco Island	6-12
7-1	Photographs of Observed Water Quality Issues	7-3
7-2	Typical Gassed Swale Systems Used at Marco Island	7-11
7-3	Example of a Typical Swale Block	7-12
7-4	Schematic of Denitrification Process	7-13
7-5	Example of Denitrification Bed Incorporated into Existing Swales	7-14
7-6	Schematic of Inlet Filter System Installed at Marco Island	7-16
7-7	Solids Collected from Inlet Baskets by City Personnel	7-17

Figure Number / Title		
7-8	Typical Rain Garden Layout	7-18
7-9	Photographs of Rain Gardens	7-19
7-10	Example of Denitrification Bed Incorporated into Seawalls	7-20
7-11	Reuse Water Applications	7-26
7-12	Proposed Area Options for Recirculation Improvements	7-32
7-13	Proposed Location for Site 1 Interconnection	7-33
7-14	Proposed Location for Site 2 Interconnection	7-33
7-15	Proposed Location for Site 3 Interconnection	7-34
7-16	Proposed Location for Sites 4 and 5 Interconnection	7-35
7-17	Proposed Location for Site 6 Interconnection	7-35

LIST OF TABLES

Table	Table Number / Title	
2-1	Numeric Nutrient Criteria for Marco Island	2-2
2-2	Verified Water Quality Impairments for Marco Island and Adjacent Waterbodies	2-4
2-3	Summary of Historical Water Quality Data for Island Monitoring Sites	2-6
2-4	Overall Mean Values for Historical Marco Island Monitoring Sites from 2015-2020	2-11
2-5	Trendline Slopes and Level of Significance for Marco Island Monitoring Sites From 2015-2020	2-18
2-6	Summary of Historical Water Quality Data for Off-Island Monitoring Sites	2-26
2-7	Annual Geometric Mean Values for Water Quality Data in Waterbodies Adjacent to Marco Island from 2015-2020	2-29
2-8	Historical Enterococci Data for Waterbodies Adjacent to Marco Island	2-33
2-9	Analytical Methods and Detection Limits for Field and Laboratory Analyses Conducted by Environmental Research & Design, Inc.	2-37
2-10	Summary of Vertical Profile Data Collected at Marco Island from April-September 2020	2-43
2-11	Water Quality Characteristics of Off-Island Surface Water Samples Collected During Incoming and Outgoing Tidal Conditions from April-September 2020	2-44
2-12	Water Quality Characteristics of Island Waterway Surface Water Samples Collected During Incoming and Outgoing Tidal Conditions from April-September 2020	2-46
2-13	Geometric Mean Water Quality Characteristics of Surface Water Samples Collected at Off-Island Sites from April-September 2020	2-47
2-14	Geometric Mean Water Quality Characteristics of Surface Water Samples Collected at Island Waterway Sites from April-September 2020	2-48
2-15	Analytical Methods for Sediment Analyses	2-51

Table Number / Title Pag		
2-16	Visual Characteristics of Sediment Core Samples Collected in Marco Island Waterways on April 29 and May 25, 2020	2-55
2-17	General Characteristics of Sediment Core Samples Collected in Marco Island During 2020	2-56
2-18	Phosphorus Speciation in Sediment Core Samples Collected at Marco Island During April and May 2020	2-57
2-19	Comparison of Sediment Characteristics by Sub-basin and Off-Island Areas	2-59
3-1	Sub-basin Areas Discharging to Marco Island	3-3
3-2	Current (June 2020) Land Use Characteristics in the Marco Island Watershed	3-6
3-3	Surface Areas of Canals and Waterways in the Primary Marco Island Sub-basins	3-6
3-4	Characteristics of SCS Hydrologic Soil Group Classifications	3-8
3-5	Hydrologic Soil Groups in the Marco Island Watershed	3-10
3-6	Summary of Average Daily Inflow Rates for the Marco Island and Marco Shores WWTPs from 2011-2020	3-15
3-7	Summary of Reclaimed Water and Supplied Water Consumption by Reuse Customers	3-17
3-8	Summary of Reuse Water Application and Disposal for the Marco Island WWTP from 2011-2020	3-19
3-9	Marco Island Reclaimed Water Storage Facility Inventory	3-20
3-10	Summary of Major Reuse Water Users for the Marco Island and Marco Shores WWTPs from 2011-2020 (>0.1 MGD)	3-20
3-11	Summary of Reported Reuse Irrigation Areas and Volumes for the Marco Island and Marco Shores WWTPs from 2011-2020	3-21
3-12	Reuse Application Rates for Golf Course and Public Access Areas from 2015-2020	3-21

Table Number / Title P		Page
3-13	Summary Statistics for Marco Island Reuse Irrigation from 2012-2021	3-24
3-14	Annual Geometric Mean Values for Marco Island Reuse Irrigation from 2012-2021	3-24
3-15	Hydrologic Characteristics of the Marco Island Drainage Basin	3-30
4-1	Measured Rainfall at the Marco Island Monitoring Site from May 1-November 30, 2020	4-4
4-2	Comparison of Field Measured Rainfall and "Normal" Rainfall from May- November 2020	4-7
4-3	Summary of Mean Monthly Rainfall at the Marco Island Meteorological Site (USC00085359) from 1991-2020	4-8
4-4	Mean Monthly Precipitation Inputs to Marco Island Waterways	4-9
4-5	Estimated Volumetric Removal Efficiencies for Wetlands and Stormwater Management Systems in the Marco Island Drainage Basins	4-12
4-6	Summary of Generated and Delivered Runoff Volumes for Marco Island Sub-Basin Areas	4-14
4-7	Pervious and Impervious Areas in Sub-basins with and without Reuse Irrigation	4-16
4-8	Annual Reuse and Non-Reuse Irrigation Volumes by Sub-basin	4-16
4-9	Field Measured Hydrologic Inputs to Marco Island Waterways from Groundwater Seepage from May-November 2020	4-22
4-10	Mean Seepage Values by Sub-basin	4-22
4-11	Hydrologic Balance for Seepage Inflows to Marco Island Waterways	4-23
4-12	Mean Monthly Lake Evaporation at the Tamiami Trail Station Site	4-24
4-13	Mean Monthly and Annual Evaporation Losses from Marco Island Waterways	4-25
4-14	Mean Annual Hydrologic Inputs to Marco Island Sub-basins 1-5	4-26

Table	Table Number / Title P		
4-15	Mean Annual Hydrologic Losses from Marco Island Sub-basins 1-5	4-28	
4-16	Mean Annual Residence Times in Marco Island Waterways	4-30	
5-1	Summary Statistics for Bulk Precipitation Samples Collected at Marco Island from May-November 2020	5-5	
5-2	Annual Nutrient Loadings to Marco Island Waterways from Bulk Precipitation	5-7	
5-3	Summary of Marco Island Stormwater Monitoring Sites	5-9	
5-4	Summary of Land Use Characteristics in the Monitored Stormwater Basins	5-19	
5-5	Hydrologic Characteristics of the Monitored Stormwater Basins	5-20	
5-6	Geometric Mean Values for Stormwater and Reuse Samples Collected at Marco Island from June-October 2020	5-21	
5-7	Summary of Geomean Values for Stormwater Monitoring Sites	5-32	
5-8	Calculated Annual and Areal Loadings of Total Nitrogen and Total Phosphorus From Sub-basin Areas to Marco Island Waterways	5-33	
5-9	Geometric Mean Characteristics of Seepage Inflows at Marco Island from April-November 2020	5-34	
5-10	Mean Seepage Characteristics by Sub-basin	5-36	
5-11	Mean Seepage Characteristics in Areas with and without Reuse Irrigation	5-36	
5-12	Calculated Annual Seepage Loading to Marco Island Waterways	5-37	
5-13	Measured Experimental Sediment Release Rates at Marco Island	5-43	
5-14	Measured Experimental Sediment Release Rates at Marco Island by Sub-basin	5-44	
5-15	Calculated Annual Sediment Release of Total Nitrogen and Total Phosphorus in Marco Island Waterways	5-46	
5-16	Estimated Annual Mass Loadings of Total Nitrogen to Marco Island Waterbodies	5-48	

Table Number / Title		Page
5-17	Estimated Annual Mass Loadings of Total Phosphorus to Marco Island Waterbodies	5-49
5-18	Summary of Annual Areal Total Nitrogen Loading Rates for Estuarine and Coastal Systems	5-51
6-1	Typical Values and Ranges for $\delta^{15}N$ and $\delta^{18}O$ from Various Sources of Nitrogen Loading	6-2
6-2	Summary of Isotope Analyses Conducted on Marco Island Samples	6-5
6-3	Summary Statistics for Isotope Analyses Conducted on Bulk Precipitation Samples	6-6
6-4	Summary Statistics for Isotope Analyses Conducted on Reuse Irrigation and Reuse Pond Samples	6-8
6-5	Summary Statistics for Isotope Analyses Conducted on Runoff/Baseflow Samples	6-9
6-6	Summary Statistics for Isotope Analyses Conducted on Groundwater Seepage Samples	6-11
7-1	Geometric Mean Concentrations at Off-Shore Monitoring Sites from April-September 2020	7-2
7-2	Comparison of Geomean Total Nitrogen Concentrations in Significant Seepage Sources	7-6
7-3	Summary of Dredging Design Assumptions and Containment Area Requirements for Marco Island	7-9
7-4	Estimated Costs for Hydraulic Dredging of Marco Island Sediments	7-10
7-5	Analysis of Nutrient Load Reductions by the Inlet Basket Systems	7-17
7-6	Hydrologic Budget for Marco Island Turfgrass	7-22
7-7	Annual Mass of Nitrogen and Phosphorus Supplied by Marco Island Reuse Irrigation Applied at Various Weekly Rates	7-24

Table	Table Number / Title	
7-8	Recommended Annual Fertilizer Application Rates for South Florida Turfgrasses	7-24
7-9	Percentage of Annual St. Augustine Grass Fertilization Requirements Supplied by Marco Island Reuse Irrigation	7-25
7-10	Impacts from Overspray of Marco Island Reuse Irrigation	7-26
7-11	Comparison of Geomean Characteristics of Reuse and Golf Course Pond Water Used for Irrigation	7-27
7-12	Recommended Annual Fertilizer Application Rates for Bermudagrass in South Florida	7-29
7-13	Percentage of Annual Bermudagrass Fertilization Requirements Supplied by Golf Course Reuse Irrigation	7-29
7-14	Hydrologic Budget for Golf Course Bermudagrass	7-30
7-15	Estimated Costs for Horizontal Directional Drilling for Canal Interconnections	7-36
7-16	Efficiencies of Mechanical (Broom) and Vacuum-Assisted Sweepers	7-42
7-17	Results of Street Sweeper Efficiency Experiments with a Pelican Series P Mechanical Sweeper and a Johnston 605 Series Vacuum Sweeper, by Particle Size	7-43
7-18	Recommended Management Options for Marco Island	7-50

LIST OF ABBREVIATIONS AND UNITS OF MEASURE

The following abbreviations, acronyms, units of measure, and symbols are used in this report:

ABBREVIATION	MEANING
AGM	Annual Geometric Mean
BAM	Biologically Activated Media
BMAP	Basin Management Action plan
BMP	Best Management Practice
City	City of Marco Island
CN	Hydrologic Curve Number
CTS	Clay, Tire Crumb, and Sand
CWA	Clean Water Act
DCIA	Directly Connected Impervious Area
DIN	Dissolved Inorganic Nitrogen
ERD	Environmental Research & Design, Inc.
ET	Evapotranspiration
FAC	Florida Administrative Code
FDACS	Florida Department of Agriculture and Consumer Services
FDEP	Florida Department of Environmental Protection
FDOH	Florida Department of Health
FLUCCS	Florida Land Use Cover and Classification System
FS	Florida Statute
FSA	Florida Stormwater Association
GIS	Geographic Information System
HDD	Horizontal Directional Drilling
HDPE	High-Density Polyethylene
HDR	High-Density Residential
HSG	Hydrologic Soil Group
IFAS	Institute of Food and Agricultural Sciences
LCFAC	Limited Commercial Fertilizer Applicator Certification
LID	Low Impact Development
LIDAR	Laser Imaging, Detection, and Ranging
MDR	Medium-Density Residential
MGD	Million Gallons per Day
NAVD88	North American Vertical Datum of 1988
NH ₄	Ammonia
NNC	Numeric Nutrient Criteria
NO _x	Nitrite + Nitrate
NO ₂	Nitrite
NO ₃	Nitrate
0	Oxygen
ORP %	Oxidation Reduction Potential
	Percent Probability Value
p-value PUD	Planned Urban Development
PVC	Planned Orban Development Poly Vinyl Chloride (as in pipes)
RFP	Request for Proposal
RIB	Rapid Infiltration Basin
KID	Kapiu iiiiiuauoii Dasiii

LIST OF ABBREVIATIONS AND UNITS OF MEASURE -- CONTINUED

ABBREVIATION	MEANING
ROW	Right-of-Way
RWPF	Reclaimed Water Production Facility
SCS	Soil Conservation Service
SIF	Stable Isotope Facility at University of California-Davis
SRP	Soluble Reactive Phosphorus
STORET	Florida Storage and Retrieval Database
SFWMD	South Florida Water Management District
TKN	Total Kjeldahl Nitrogen
TN	Total Nitrogen
TP	Total Phosphorus
TSS	Total Suspended Solids
TMDL	Total Maximum Daily Loads
US EPA	U.S. Environmental Protection Agency
USGS	U.S. Geological Survey
WBID	Water Body Identification Number
WIN	Watershed Information Network
WWTP	Wastewater Treatment Plant
W&SD	Water and Sewer Department

Units of Measurement

UNIT	MEANING
ac	Acre
ac-ft	Acre-Feet
ac-ft/yr	Acre-Feet per Year
cfu	Colony Forming Units
cfs	Cubic Feet per Second
cm	Centimeter
ft, ft ² , or ft ³	Foot/Feet, Square Feet, or Cubic Feet
gal/yr	Gallons per Year
in/hr	Inches per Hour
l or L	Liter
lbs	Pounds
lbs/yr	Pounds per Year
in/wk	Inches per Week
$m, m^2, or m^3$	Meter, Square Meter, or Cubic Meter
MGD	Million Gallons per Day
mg/l	Milligrams per Liter
μg/l	Micrograms per Liter
μmho/cm	Micromoh per Centimeter
mi	Miles
NTU	Nephlometric Turbidity Units
%	Percent
% by wt.	Percent by Weight
Pt-Co	Platinum Cobalt Unit
s.u.	Standard Unit (measure of pH)
yd, yd ² , or yd ³	Yard, Square Yard, or Cubic Yard

SECTION 1

INTRODUCTION

1.1 General Description

This report provides a summary of work efforts performed by Environmental Research & Design, Inc. (ERD) for the City of Marco Island (City) to evaluate historical and current water quality characteristics, develop hydrologic and nutrient budgets, and a water quality management plan for Marco Island waterways. The City of Marco Island is a 15.6 mi² area located in southern Collier County about 20 miles south of Naples, and is the largest Barrier Island within southwest Florida's Ten Thousand Islands. A location map for Marco Island is given on Figure 1-1, with a local vicinity map given on Figure 1-2.

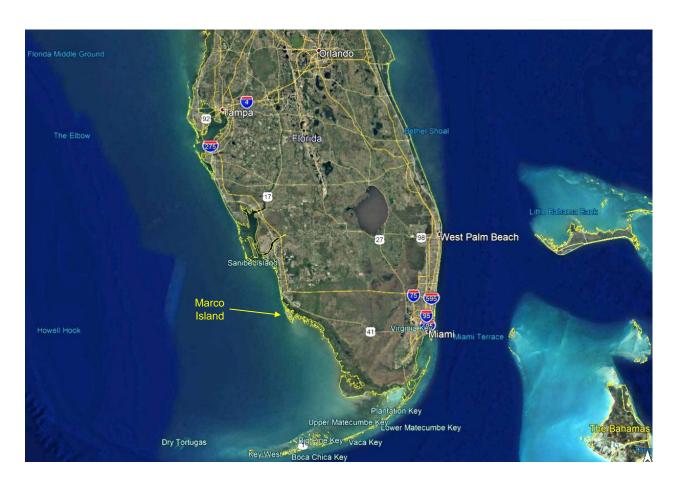


Figure 1-1. Location Map for Marco Island

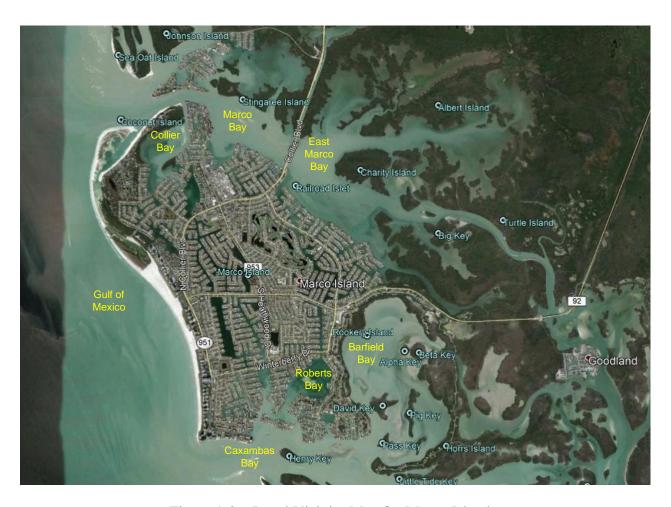


Figure 1-2. Local Vicinity Map for Marco Island.

Major development activities on Marco Island were initiated in the early 1960s which included dredging of the extensive canal system. Currently, the City has over 100 miles of internal and external waterways which are used extensively by residents and visitors for a variety of recreational activities. The current population of Marco Island is approximately 18,000 people, although there is a large seasonal variability, with the largest numbers during the mild fall and winter seasons.

As indicated on Figure 1-2, most of the island is currently developed with only a few vacant residential lots remaining. Most of the island, with the exception of the primary commercial corridors, uses a grassed swale system for runoff conveyance, and formal stormwater treatment systems are limited primarily to commercial and multi-family properties. Virtually all areas within the City have a central sewer system for collection and disposal of sanitary wastes with treated wastewater used for reuse irrigation.

In recent years, citizens have become concerned about declining water quality, both visually and chemically, in the extensive canal and waterway system which is an integral part of the City and provides direct access to off-shore waters for many residents. Routine monitoring of on-island and off-shore waters was initiated in 2004 to document current conditions and provide a database to document changes in water quality over time. Multiple efforts have been undertaken to reduce loadings to the waterways, including regulations for landscaping and fertilizer use and structural controls such as inlet inserts designed to capture suspended solids.

1.2 Impaired Waters Designation

Section 303(d) of the Clean Water Act (CWA) requires states to submit lists of surface waterbodies that do not meet applicable water quality standards. These waterbodies are defined as "impaired waters" and Total Maximum Daily Loads (TMDLs) must be established for these waters on a prioritized schedule. The Florida Department of Environmental Protection (FDEP) and the US EPA have established a series of guidelines to identify impaired waters which may require the establishment of TMDLs. Waterbodies within the State of Florida have been divided into five separate groups for planning purposes, with Marco Island and adjacent off-shore waters located in the Southwest Coast Planning Unit of the Everglades West Coast Basin in Group 1.

During November 2019, the revised and re-adopted Verified List of impaired waterbodies for the Everglades West Coast Basin was released by FDEP and included Marco Island and areas southeast of the Island which include Barfield Bay and Caxambas Bay. The 2019 Verified List indicates that Marco Island (WBID 3278O) is listed as impaired for nutrients (nitrogen) based upon annual geometric mean total nitrogen concentrations exceeding 0.30 mg/l during 2017 and 2018. Total nitrogen was stated to be the limiting nutrient within the waterways. The FDEP priority for TMDL development for Marco Island is "medium" which means that TMDL development is likely 5-10 years away. Areas southeast of Marco Island (WBID 3278P) are listed as impaired for total nitrogen, total phosphorus, and fecal coliform due to exceedances of the applicable criteria for these parameters in recent years.

1.3 Previous Water Quality Studies

Multiple studies and evaluations of water quality data for Marco Island have been conducted since 2004 when data collection was initiated. Annual reports and water quality summaries have been conducted by the Waterways Committee which generally address compliance with water quality standards or compare water quality in island and off- shore areas, and this information is available on the City website.

During February 2019, a report was issued by Turrell, Hall, and Associates, Inc. (Turrell) of Naples which contained a discussion and analysis of water quality data collected from 2015-2018. This report provided a comparison of current and historical water quality at the island monitoring sites and discussed Numeric Nutrient Criteria (NNC) and applicability to Marco Island. The study also provided a brief discussion of potential nutrient sources to the island waterways and general methods to reduce non-point source pollution from runoff.

1.4 Work Efforts Performed by ERD

During October 2019, the City issued a Request for Proposal for RFP #19-033 (Consulting Services for Nutrient Source Evaluation and Assessment) which solicited proposals from qualified consultants to evaluate nutrient sources and provide recommendations for water quality improvement. ERD was selected by the City, and a Scope of Work and project schedule were developed and approved by the City Commission. Work efforts were initiated on this project by ERD during April 2020. The primary objectives of this project are to evaluate current and historical water quality characteristics of Marco Island waterways and off-shore waters; and to conduct a 6-month monitoring program to document water quality of surface water, runoff, bulk precipitation, groundwater seepage, and reuse irrigation, along with sediments and sediment nutrient release. The collected information was used to develop hydrologic and nutrient loadings for identified inputs to surface waters and develop recommendations for water quality improvement.

A field monitoring program was conducted by ERD from April-November 2020 to identify ambient water quality characteristics and collect hydrologic and water quality data for use in developing hydrologic and nutrient budgets for the waterways. The hydrologic budget includes estimated inputs from precipitation, stormwater runoff, irrigation inputs, and groundwater seepage. The nutrient budget includes inputs from bulk precipitation, stormwater runoff, irrigation inputs, groundwater seepage, and internal recycling. A detailed evaluation of sediment characteristics in Marco Island waterways was also conducted which included physical and chemical characterization of surficial sediments and evaluation of internal nutrient recycling.

Although detailed evaluations of hydrologic and nutrient budgets are common in freshwater lakes, similar studies for coastal waterways are relatively rare. Some Florida studies have been conducted to evaluate individual components of hydrologic and nutrient budgets in estuaries or coastal areas, but ERD is not aware of any previous coastal waterway study which incorporates all of the components evaluated in this study.

This report has been divided into 8 separate sections for presentation of the work efforts performed by ERD. Section 1 contains an introduction to the report and provides a general overview of the work efforts performed by ERD. Historical and current water quality characteristics of Marco Island and off-shore waters are discussed in Section 2, including sediment characteristics, historical and current water quality, and water quality criteria. A discussion of the drainage basin area is given in Section 3, and the hydrologic budget is presented in Section 4. A nutrient budget, which includes inputs from total nitrogen, and total phosphorus, is given in Section 5. The results of stable isotope analyses conducted on runoff, bulk precipitation, reuse, and seepage samples are presented in Section 6. A discussion of water quality management and improvement options is given in Section 7, with cited references listed in Section 8. Appendices are also attached which contain technical data and analyses used to support the information contained within the report.

SECTION 2

WATER QUALITY CRITERIA AND CHARACTERISTICS

This section provides a discussion of historical and current water quality characteristics within the Marco Island waterways and adjacent off-shore waterbodies. This information is used as part of an overall assessment to identify potential driving forces which impact water quality in Marco Island and off-shore waters. A discussion of current regulatory water quality criteria for Marco Island waterways is followed by an analysis of historical water quality data for Marco Island and off-shore waterbodies. A discussion of ambient water quality monitoring conducted by ERD specifically for this project is also included, along with a discussion of monitored sediment characteristics.

2.1 Regulatory Water Quality Criteria

2.1.1 Water Quality Criteria

Regulation of water quality criteria within the State of Florida is directed by the Florida Department of Environmental Protection (FDEP). Specific surface water quality standards are outlined in Chapter 62-302 of the Florida Administrative Code (FAC) in the document titled "Surface Water Quality Standards". This document outlines surface water quality criteria for waterbodies throughout the State of Florida. The document was originally implemented in 1979 and is updated on a periodic basis as additional water quality criteria are approved.

For purposes of assigning and implementing water quality criteria, surface waters in the State of Florida have been divided into 5 separate classifications according to designated uses as follows:

Class I: Potable water supplies

Class I-Treated: Treated potable water supplies

Class II: Shellfish propagation or harvesting

Class III: Fish consumption; recreation, propagation, and maintenance of a healthy well-

balanced population of fish and wildlife

Class III-Limited: Fish consumption; recreation or limited recreation; and/or propagation and

maintenance of a limited population of fish and wildlife

Class IV: Agricultural water supplies

Class V: Navigation, utility, and industrial use

The classifications listed are arranged in order of the degree of protection required for the stated surface waters, with Class I waters generally having the most stringent water quality criteria and Class V the least. Surface waters on Marco Island and adjacent off-shore waterbodies are considered to be Class II waters which are used for shellfish propagation or harvesting and have some of the most stringent water quality criteria.

Numeric and narrative surface water quality criteria for each of the 5 classifications are outlined in Chapter 62-302.530 FAC titled "Surface Water Quality Criteria". This section essentially consists of a table which summarizes applicable water quality criteria for each of the 5 classifications for a wide variety of general parameters, metals, organic parameters, and microbiological parameters. Although this table includes more than 100 individual parameters, only a few are commonly monitored in surface waters in the vicinity of Marco Island. The most significant parameters in this table which impact Marco Island waterbodies are dissolved oxygen and Enterococci bacteria.

Numeric Nutrient Criteria (NNC) for Florida waterbodies are outlined in Chapter 62-302.532 FAC titled "Estuary-Specific Nutrient Interpretations of the Narrative Nutrient Criteria". Water quality criteria are provided for total phosphorus, total nitrogen, and chlorophyll-a based upon the location of the estuary. The Marco Island area is listed under the heading of Rookery Bay/Marco Island, and applicable NNC are summarized in Table 2-1. These criteria are compared with annual geometric mean values for data collected during an individual calendar year to evaluate water quality compliance. Annual Geometric Mean (AGM) calculations must include at least 4 temporarily independent samples per year, collected at least 1 week apart, with at least 1 sample collected between May 1-September 30 and at least 1 sample collected during the remaining months of the calendar year. Annual geometric mean values shall not exceed the NNC outlined in Table 2-1 more than once during 3-year period.

TABLE 2-1
NUMERIC NUTRIENT CRITERIA FOR MARCO ISLAND

PARAMETER	UNITS	CRITERIA
Total Phosphorus	μg/l	46
Total Nitrogen	μg/l	300
Chlorophyll-a	μg/l	4.9

The criteria listed in Table 2-1 were developed by FDEP using the "reference site" approach which identifies a similar area with little or no human impact and uses water quality characteristics in the reference area as the criteria for other areas. The appropriateness of this method and applicability of the criteria to Marco Island have been debated in previous documents, such as the 2019 report by Turrell, Hall, and Associates and in presentations by Eugene Wordehoff.

2.1.2 <u>Impaired Waters</u>

Section 303(d) of the Clean Water Act (CWA) requires states to submit lists of surface waterbodies that do not meet applicable water quality standards. These waterbodies are defined as "Impaired Waters" and Total Maximum Daily Loads (TMDLs) must be established for these waters on a prioritized schedule. FDEP has established a series of guidelines to identify impaired waters which may require the establishment of MDLs. Waterbodies within the State of Florida have been divided into 5 separate groups for planning purposes, with Marco Island located in the Southwest Coast Planning Unit of the Everglades West Coast in Group 1.

FDEP has assigned waterbodies in Florida a Water Body Identification number (WBID) which is intended to represent waterbodies in the watershed or sub-watershed scale. WBIDs have a unique identification number that is tracked by FDEP, and the WBIDs are used in the annual assessment of impaired waters, implementation of TMDLs, and Basin Management Action Plans (BMAPs). An overview of WBIDs in the vicinity of Marco Island is given in Figure 2-1. The majority of Marco Island, excluding shoreline areas along the west and southwest portions of the island, is located in WBID 3278O.



Figure 2-1. WBIDs in the Vicinity of Marco Island.

A summary of verified water quality impairments for Marco Island and adjacent waterbodies is given in Table 2-2 based upon information provided in the Comprehensive Verified Impaired Water List, dated 8/18/2020. Marco Island waterways (designated as WBID 32780) are listed as impaired for total nitrogen due to annual geometric means exceeding 300 μg/l. WBID 3278P (located southeast of Marco Island) is listed as impaired for fecal coliform, total nitrogen, and total phosphorus due to annual geometric mean values for these parameters exceeding applicable limits. WBID 3278U (located northeast of Marco Island and referred to as Rookery Bay) is designated as impaired for fecal coliform, while WBID 8063 (located west of WBID 3278U but also designated as Rookery Bay) is listed as impaired for total nitrogen based upon AGM values exceeding 250 μg/l which is the standard for open water portions of the Gulf of Mexico. WBID 8064 (consisting of the Gulf of Mexico adjacent to Marco Island) is also listed as impaired for total nitrogen due to AGM values exceeding 250 μg/l.

TABLE 2-2

VERIFIED WATER QUALITY IMPAIRMENTS
FOR MARCO ISLAND AND ADJACENT WATERBODIES

WBID	DESCRIPTION	IMPAIRMENT	CRITERION NOT MET
3278O	Marco Island	Total Nitrogen	$AGM \le 300 \mu g/l$
		Fecal Coliform	> 400 cfu/100 ml
3278P	Marco Island South Segment	Total Nitrogen	AGM ≤ 300 μg/l
		Total Phosphorus	AGM < 46 μg/l
3278U	Rookery Bay	Fecal Coliform	> 400 cfu/100 ml
8063	Gulf of Mexico / Rookery Bay	Total Nitrogen	AGM ≤ 250 μg/l
8064	Gulf of Mexico / Marco Island	Total Nitrogen	AGM \leq 250 µg/l

2.2 <u>Historical Water Quality Characteristics</u>

2.2.1 Marco Island Waterways

2.2.1.1 Data Availability

Limited water quality monitoring has been conducted within the Marco Island waterways since approximately 2001. At that time, the City chose 12 monitoring locations which were spatially distributed over the island to include primary waterways and drainage basin areas. The frequency of monitoring at these sites has varied over time from monthly, to bi-monthly, to quarterly.

A more intensive water quality monitoring program was initiated in 2007, and the 12 sites were sampled bi-monthly for Total Kjeldahl Nitrogen (TKN) and Enterococcus bacteria. As pointed out in the 2019 water quality analysis conducted by Terrell, Hall, and Associates, Inc., monitoring data generated during the monitoring program from 2007-2014 were not collected using approved field monitoring protocol, and the data are not considered reliable. Beginning in 2015, sampling was continued at the 12 monitoring sites using an approved field monitoring protocol and manual, and the monitoring frequency was changed to a quarterly collection interval at all 12 sites. The collected data were periodically uploaded into the Florida Storage and Retrieval Database (STORET) system until 2016 when the State retired the STORET system and introduced the new Watershed Information Network (WIN) which provides a modernized centralized data management platform as a successor to STORET.

Available historical water quality data were obtained by ERD from the City of Marco Island, STORET, and the WIN database for use with this project. The data were perused by ERD to remove duplicate entries and to flag data entries which appear unlikely or impossible.

A summary of available historical water quality data for Marco Island monitoring sites is given in Table 2-3. These sites include the original 12 monitoring sites, along with 3 additional sites added in recent years, for a total of 15 island waterway monitoring sites. Most of the sites summarized on Table 2-3 have data for the period from 2007-2014 which consists primarily of TKN and Enterococcus. However, due to the potential quality control issues mentioned previously, these data are excluded from the data set, and only data collected from 2015 through the end of 2020 are included in the analysis conducted by ERD.

Locations of Marco Island water quality monitoring sites included in the historical data are illustrated on Figure 2-2. The monitoring sites are located throughout the island and include both upstream and downstream portions of the extensive canal system. Data used for this analysis include data collected from 2015-2020, with reported values for general parameters, field parameters, nutrients, microbiological parameters, and Secchi disk depth. One of the original 12 monitoring sites, referred to as "Perrine" was deleted from the monitoring program during 2017. However, supplemental monitoring sites, referred to as "Landmark", "Olde Marco", and "Swallow" were added as replacement sites, comprising a total of 14 current monitoring sites in the active water quality monitoring program.

2.2.1.2 Data Analysis

A complete listing of historical water quality data for Marco Island waterbodies from 2007-2020, depending upon data availability, is given in Appendix A-1, although data collected from 2007-2014 are not included in the analyses discussed in this section. Data which appear to be anomalies, reflect impossible values, or are far out of line with other historical values are highlighted in **yellow** and are not used in statistics analyses.

TABLE 2-3
SUMMARY OF HISTORICAL WATER QUALITY DATA FOR ISLAND MONITORING SITES

COLLECTING AGENCY	STATION I.D.	PERIOD OF RECORD	MONITORING FREQUENCY	NUMBER OF EVENTS	TYPE OF DATA
	Barfield Bridge	5/07-12/20	Quarterly to Monthly	95	2007-2014: TKN, Enterococcus 2015-2020: General Parameters, Field Parameters, Nutrients, Micro Parameters
	Collier Bridge	5/07-12/20	Quarterly to Monthly	94	2007-2014: TKN, Enterococcus 2015-2020: General Parameters, Field Parameters, Nutrients, Micro Parameters
	E. Winterberry Bridge	1/15-12/20	Quarterly to Monthly	52	General Parameters, Field Parameters, Nutrients, Micro Parameters
City of Marco Island	HC Center	5/07-12/20	Quarterly to Monthly	99	2007-2014: TKN, Enterococcus 2015-2020: General Parameters, Field Parameters, Nutrients, Micro Parameters
	Hollyhock	5/07-12/20	Quarterly to Monthly	88	2007-2014: TKN, Enterococcus 2015-2020: General Parameters, Field Parameters, Nutrients, Micro Parameters
	Hummingbird	5/07-12/20	Quarterly to Monthly	79	2007-2014: TKN, Enterococcus 2015-2020: General Parameters, Field Parameters, Nutrients, Micro Parameters
	JH Park	5/07-12/20	Quarterly to Monthly	100	2007-2014: TKN, Enterococcus 2015-2020: General Parameters, Field Parameters, Nutrients, Micro Parameters

TABLE 2-3 – CONTINUED

SUMMARY OF HISTORICAL WATER QUALITY DATA FOR ISLAND MONITORING SITES

COLLECTING AGENCY	STATION I.D.	PERIOD OF RECORD	MONITORING FREQUENCY	NUMBER OF EVENTS	TYPE OF DATA					
	Kendall	1/15-12/20	Quarterly to Monthly	41	General Parameters, Field Parameters, Nutrients, Micro Parameters					
	Landmark	10/19-12/20	Monthly	24	General Parameters, Field Parameters, Nutrients, Micro Parameters					
	McIlvaine	5/07-12/20	Quarterly to Monthly	73	2007-2014: TKN, Enterococcus 2015-2020: General Parameters, Field Parameters, Nutrients, Micro Parameters					
	Olde Marco	10/19-12/20	Monthly	24	General Parameters, Field Parameters, Nutrients, Micro Parameters					
City of Marco Island	Perrine	5/07-2/17	Quarterly	51	2007-2014: TKN, Enterococcus 2015-2020: General Parameters, Field Parameters, Nutrients, Micro Parameters					
	Swallow	10/19-12/20	Monthly	22	General Parameters, Field Parameters, Nutrients, Micro Parameters					
	W. Winterberry Bridge	1/15-12/20	Quarterly	50	General Parameters, Field Parameters, Nutrients, Micro Parameters					
	Windmill	5/07-12/20	Quarterly	100	2007-2014: TKN, Enterococcus 2015-2020: General Parameters, Field Parameters, Nutrients, Micro Parameters					

Figure 2-2. Locations of Historical Marco Island Water Quality Monitoring Sites.

ERD evaluated the historical data using a variety of methods. First, annual geometric mean values were calculated for each parameter and monitoring site for use in evaluating water quality trends. Trend analyses were conducted for total nitrogen, total phosphorus, chlorophylla, and Secchi disk depth at each monitoring site to evaluate water quality stability over the 6-year period from 2015-2020. In addition, graphics were generated which superimpose annual geometric mean values for measured parameters on the site map of water quality monitoring stations (provided in Figure 2-2) to provide an overview of spatial distributions for water quality parameters.

2.2.1.3 Data Summary

A summary of annual geometric mean values from 2015-2020 for each monitoring site included in the historical water quality program is given in Appendix A-2, and overall mean values for historical Marco Island monitoring sites from 2015-2020 are given on Table 2-4. The values summarized in this table reflect the arithmetic average of the annual geometric mean values for each site and parameter, summarized in Appendix A-2. Long-term values which exceed the NNC for nitrogen, phosphorus, and chlorophyll-a are highlighted in yellow.

Overall, measured pH values are relatively similar between the monitoring sites and reflect alkaline conditions typical of saltwater waterbodies. Each of the sites exhibited similar levels of dissolved oxygen and oxygen saturation. Salinity values were also relatively similar, although sites closer to tidal waters appear to have higher salinity values.

Measured concentrations of NO_x (nitrite + nitrate) are extremely low in value and likely limit algal production within the waterways. The vast majority of nitrogen consists of TKN which represents approximately 95% or more of the total nitrogen present. Concentrations of total phosphorus appear to be average to somewhat elevated in value for marine systems, with low to slightly elevated levels of chlorophyll-a.

2.2.1.4 Total Nitrogen

A graphical summary of mean annual total nitrogen concentrations in Marco Island waterways from 2015-2020 is given on Figure 2-3. Drainage sub-basin delineations are also provided on Figure 2-3 which are discussed in more detail in Section 3. These values are calculated by taking the arithmetic average of the annual geometric mean concentrations for total nitrogen at each site. Mean total nitrogen concentrations exhibit a relatively high degree of variability, ranging from 411-697 μ g/l. None of the Marco Island monitoring sites met the Numeric Nutrient Criteria (NNC) of 300 μ g/l established in Chapter 62-302.532 FAC.

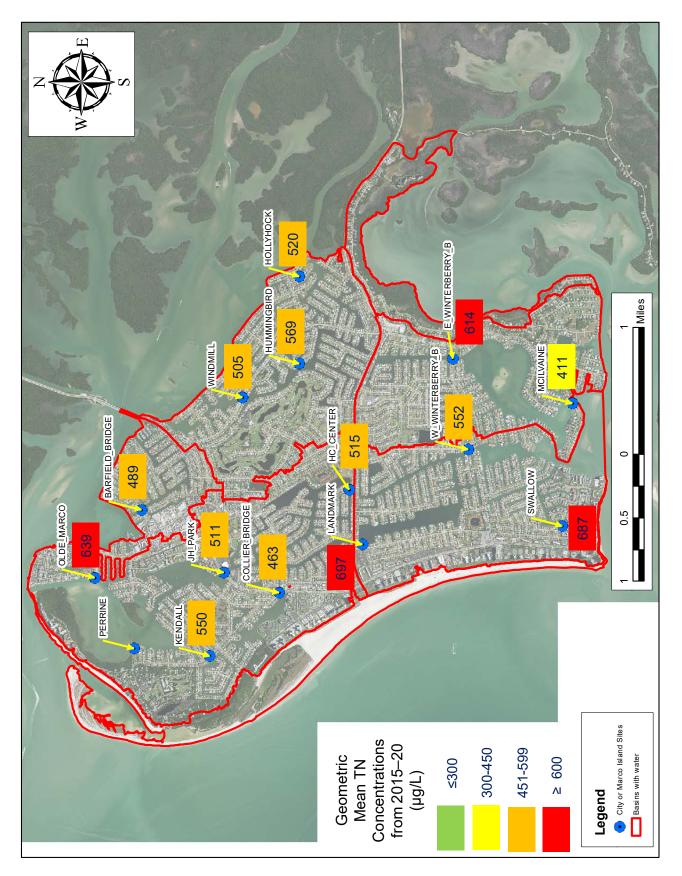


Figure 2-3. Mean Annual Total Nitrogen Concentrations in Marco Island Waterways from 2015-2020.

TABLE 2-4

OVERALL MEAN VALUES FOR HISTORICAL
MARCO ISLAND MONITORING SITES FROM 2015-2020

							PARAM	ETER						
MONITORING SITE	pH (s.u.)	Temperature (°C)	Diss. Oxygen (mg/l)	Diss. Oxygen (% saturation)	Conductivity (µmho/cm)	Salinity (ppt)	NO _x (μg/l)	TKN (μg/l)	Total Nitrogen (μg/l)	Total Phosphorus (µg/l)	Chlorophyll-a (µg/l)	Turbidity (NTU)	Secchi Disk Depth (m)	Enterococci (cfu/100 ml)
Barfield Bridge	7.86	26.18	6.1	91	50,940	33.4	21	468	489	41	4.1	4.7	1.60	30
Collier Bridge	7.83	27.05	5.4	82	48,759	31.7	20	443	463	42	3.1	2.2	1.71	31
E Winterberry Bridge	7.91	26.53	5.9	89	51,466	33.8	15	614	629	40	5.0	2.8	1.52	24
HC Center	7.83	26.79	5.9	88	49,439	32.3	17	498	515	35	4.1	1.4	1.66	19
Hollyhock	7.77	26.38	5.2	78	50,566	33.1	21	500	520	43	5.2	2.7	1.22	22
Hummingbird	7.83	27.07	5.7	86	49,625	32.4	15	554	569	46	5.5	1.9	1.33	34
JH Park	7.82	26.52	5.7	85	50,115	32.8	19	492	511	38	4.1	3.1	1.59	31
Kendall	7.81	26.64	5.5	82	50,122	32.8	22	528	550	46	3.9	4.2	1.33	28
Landmark	7.85	26.66	5.5	83	50,735	33.2	13	684	697	74	6.0	1.5	1.78	32
McIlvaine	8.02	24.76	6.0	87	51,910	34.1	15	396	411	43	3.3	1.3	1.45	20
Olde Marco	7.92	25.71	5.5	81	51,286	33.6	12	627	639	44	2.9	3.6	1.36	133
Swallow	7.91	26.56	5.1	76	48,693	31.7	31	657	687	75	5.8	3.4	1.34	261
W Winterberry Bridge	7.93	26.26	6.2	92	51,542	33.8	14	538	552	38	4.2	2.5	1.73	19
Windmill	7.83	26.40	5.8	87	50,044	32.7	14	491	505	50	5.2	3.2	1.46	36

SOURCE: Appendix A-2 (data source for annual values)

values which exceed applicable NNC

For comparison purposes, "stoplight" colors are assigned to the mean annual nitrogen concentrations with values less than 300 µg/l highlighted in green, values from 300-450 µg/l highlighted in yellow, values ranging from 451-599 µg/l by orange, and values exceeding 600 µg/l in red. Two of the highest long-term nitrogen concentrations have occurred at the sites designated as Landmark and Swallow. The Landmark site is on the end of a wide dead-end canal which is characterized by a deep water column and frequent anoxic conditions below a depth of approximately 5-6 m, based on the field monitoring program conducted by ERD. This site receives little, if any, flushing during tidal events. The Swallow monitoring site is also located in a dead-end canal in an area which also appears to be poorly flushed. Elevated levels of total nitrogen were also observed at the E. Winterberry Bridge site which reflects an outlet discharge from Roberts Bay. Although this site has a more direct tidal influence than the Landmark and Swallow sites, water quality at this site can be heavily impacted by sediment disturbance in Roberts Bay (which is relatively shallow in most areas) during windy conditions. In addition, the underside of the E. Winterberry Bridge is home to a large bat colony which may also have water quality impacts.

The last area with long-term annual nitrogen concentrations exceeding $600~\mu g/l$ is the Olde Marco site. This site is located adjacent to a shallow navigational channel which is used extensively by boaters since Collier Bay is too shallow for most boats to cross directly. This site is also impacted by sediment disturbance in Collier Bay during windy events, and this phenomenon was visually observed by ERD field personnel on multiple occasions.

Most of the sites with annual nitrogen concentrations less than 500 μ g/l are located in areas in relatively close proximity to off-shore waters, although the Jolly Bridge site is located in upstream portions of the respective drainage basin. The remaining sites highlighted in **orange**, with only a few exceptions, appear to be located in mid-portions of waterways in areas with moderate flushing potential.

2.2.1.5 <u>Total Phosphorus</u>

A graphical summary of mean annual total phosphorus concentrations in Marco Island waterways from 2015-2020 is given on Figure 2-4. The NNC criterion for total phosphorus in Marco Island waterways is 46 μ g/l, and most of the monitoring sites met this criterion. Long-term total phosphorus concentrations less than 46 μ g/l were observed at the JH Park, HC Center, and W. Winterberry Bridge monitoring sites, although each of these appears to be located in middle or upstream portions of the respective watershed areas. The most elevated long-term total phosphorus concentrations in Marco Island waterways occur at the Landmark and Swallow monitoring sites, each of which are located in upstream portions of the respective canal systems, and each of these sites also exhibited highly elevated values for total nitrogen. The next highest long-term total phosphorus concentration occurs at the Windmill monitoring site at a location in middle portions of the respective drainage basin.

2.2.1.6 Chlorophyll-a

A graphical summary of mean annual chlorophyll-a concentrations in Marco Island waterways from 2015-2020 is given on Figure 2-5. The NNC criterion for chlorophyll-a in Marco Island waterways is 4.9 μ g/l, and sites which meet this criterion are illustrated in **green**, while sites which exceed this criterion are illustrated in **yellow**. Of the 14 monitoring sites indicated on Figure 2-5, 8 sites (located primarily in central portions of the island) met the current NNC criterion for chlorophyll-a from 2015-2020. Exceedances of the NNC criterion for chlorophyll-a occur at the Landmark and Swallow monitoring sites, which also had exceedances for total phosphorus and total nitrogen along with the 3 monitoring sites which are hydrologically connected to E. Marco Bay. A slight exceedance of the NNC criterion for chlorophyll-a is present at the E. Winterberry Bridge site which also exhibited elevated values for total nitrogen.

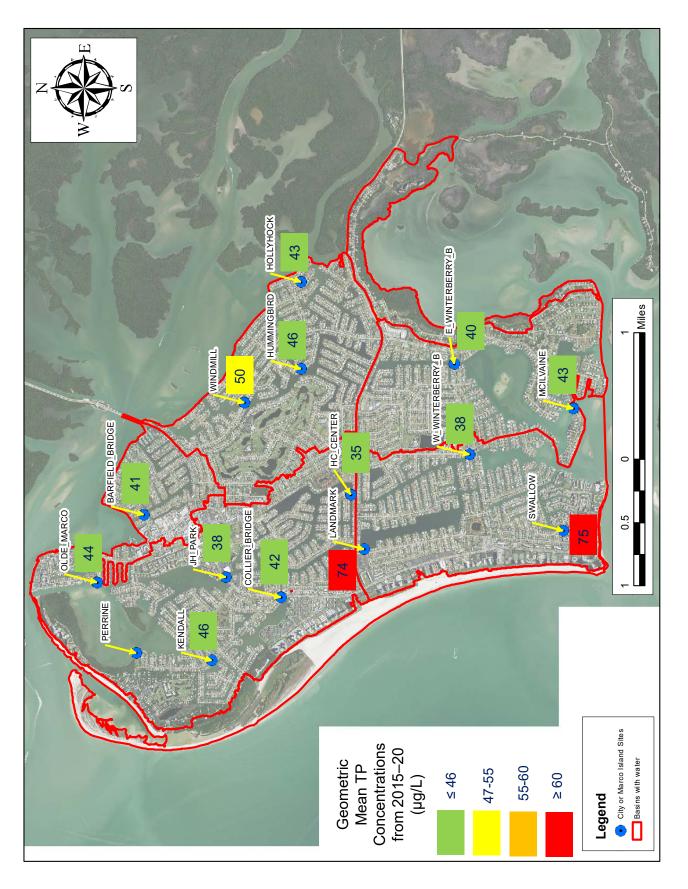


Figure 2-4. Mean Annual Total Phosphorus Concentrations in Marco Island Waterways from 2015-2020.

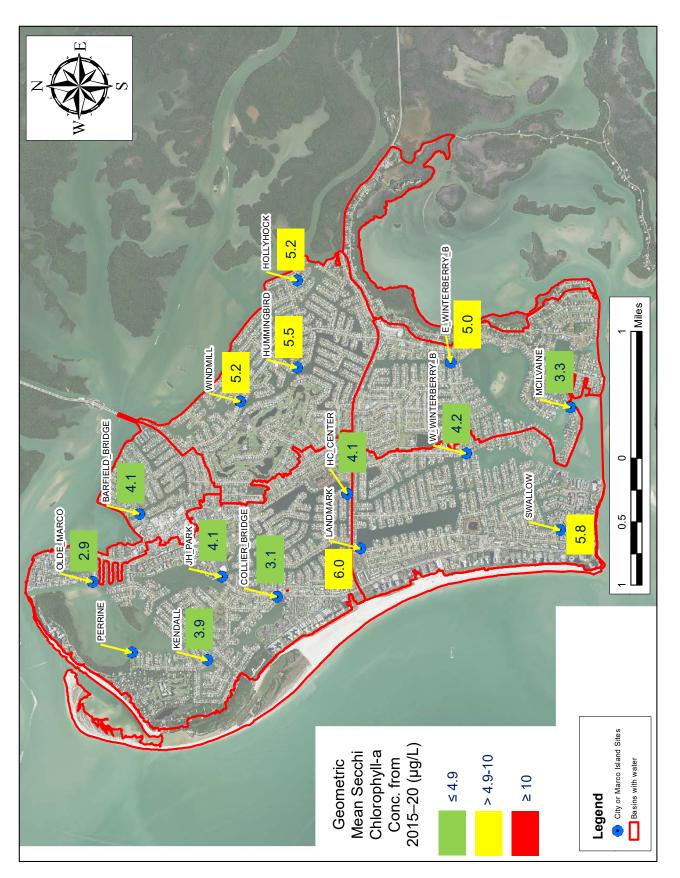


Figure 2-5. Mean Annual Chlorophyll-a Concentrations in Marco Island Waterways from 2015-2020.

2.2.1.7 Secchi Disk Depth

A graphical summary of mean annual Secchi disk depths in Marco Island waterways from 2015-2020 is given on Figure 2-6. There is no NNC criterion for Secchi disk depth, so the mean annual values are divided into measurements less than 1.5 m, values from 1.5-2 m, and values greater than 2 m, which generally reflect good water clarity by most observers. Overall, Secchi disk depths appear to be relatively similar between the individual monitoring sites, ranging from 1.22 m at the Hollyhock monitoring site to 1.78 m at the Landmark monitoring site. It is interesting to note that the Landmark site exhibited the highest measured Secchi disk depth (best water clarity) while also having some of the highest values for total nitrogen and total phosphorus. The highest measured Secchi disk depths appear to occur in interior portions of the island, with poorer water quality observed in areas adjacent to open water.

2.2.1.8 Enterococci

A graphical comparison of mean annual Enterococci counts in Marco Island waterways from 2015-2020 is given on Figure 2-7. The State of Florida Class III criterion for Enterococci in marine waters is 35 colony forming units per 100 ml (cfu/100 ml), and values less than this standard are highlighted in **green**. Values which exceed the standard but are less than 100 cfu/100 ml are highlighted in **yellow**, while values exceeding 100 cfu/100 ml are highlighted in **red**. Eleven of the 14 monitoring sites shown on Figure 2-7 easily meet the long-term Enterococci criterion, indicating no significant sewage impacts at these sites. The Windmill site has an annual mean Enterococci count of 36 cfu/100 ml from 2015-2020 and only slightly exceeds the 35 cfu/100 ml criterion.

However, substantial exceedances of the 35 cfu/100 ml criterion have occurred at the Olde Marco and Swallow monitoring sites. Since Enterococci are more specific to impacts from human activities than other microbial indicators, the elevated values observed at the Olde Marco and Swallow monitoring sites indicate a likely sewage contamination issue at these locations and should be further evaluated by the City. The Olde Marco area historically used septic tanks for sewage disposal but has been converted to a central sewer system.

2.2.1.9 Trend Analyses

Temporal plots of concentrations of total nitrogen, total phosphorus, chlorophyll-a, and Secchi disk depth were developed by ERD for each of the 14 current water quality monitoring sites based upon the historical data summarized in Appendix A-1. Individual measurements of each monitored parameter are indicated in red on the plots, and yearly geometric mean concentrations of the evaluated parameters are illustrated as black dots and lines. The average annual values are used to generate a regression trend line for nitrogen, phosphorus, chlorophyll-a, and Secchi disk depth to assist in identifying significant water quality trends. The calculated probability value (p-value) for the regression model is also provided which indicates the level of significance associated with each regression model. A model or relationship which is significant at a 95% confidence level would be associated with a p-value of 0.05. Temporal plots and regression analyses for each active monitoring site are provided in Appendix A-3.

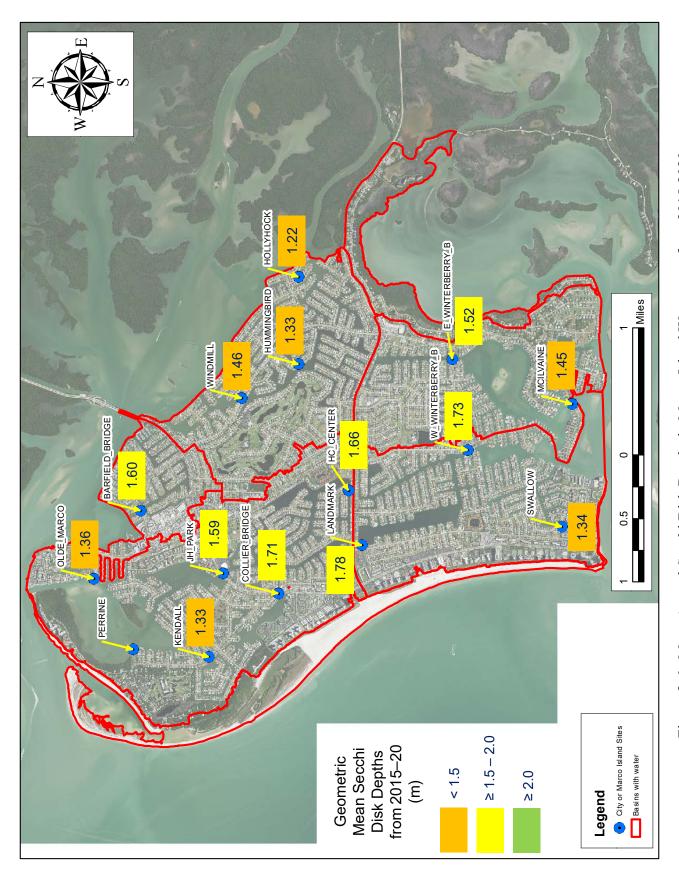
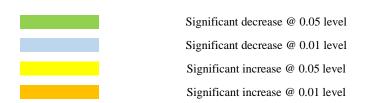


Figure 2-6. Mean Annual Secchi Disk Depths in Marco Island Waterways from 2015-2020.


Figure 2-7. Mean Annual Enterococci Counts in Marco Island Waterways from 2015-2020.

A summary of trendline slopes and level of significance for Marco Island monitoring sites from 2015-2020 is given on Table 2-5. Information on the trendline slope is provided for nitrogen, phosphorus, chlorophyll-a, and Secchi disk depth which reflects the change in concentration or value on an annual basis. Positive values indicate increases, while negative values indicate decreases for respective parameters. Information is also provided on the level of significance for the trendlines associated with each variable.

TABLE 2-5

TRENDLINE SLOPES AND LEVEL OF SIGNIFICANCE
FOR MARCO ISLAND MONITORING SITES FROM 2015-2020

MONITORING SITE		TRENDLI ncentration			SLOPE SIGNIFICANCE PROBABILITY (p-value)							
	Total N	Total P	Chyl-a	Secchi	Total N	Total P	Chyl-a	Secchi				
Barfield Bridge	53.5	6.1	0.4	-0.07	0.0034	0.0168	0.0320	0.0029				
Collier Bridge	35.8	4.6	-0.03	0.01	0.0055	0.0311	0.4058	0.4011				
E Winterberry Bridge	15.3	5.6	-0.2	0.004	0.7873	0.3753	0.5984	0.4102				
HC Center	39	5.8	0.5	-0.09	0.4007	0.1223	0.2996	0.3148				
Hollyhock	72.5	6.6	0.6	0.096	0.2194	0.3173	0.4627	0.0586				
Hummingbird	71.0	6.3	0.4	0.03	0.2692	0.3501	0.5248	0.3332				
JH Park	52.7	6.15	0.3	0.04	0.3795	0.1605	0.4207	0.6507				
Kendall	43.9	5.9	0.2	-0.20	0.1212	0.3288	0.6356	0.1167				
McIlvaine	49.5	4.20	-0.07	0.18	0.0423	0.2689	0.7506	0.1097				
W Winterberry Bridge	66.0	-1.44	-0.20	-0.05	0.1829	0.7185	0.2705	0.3816				
Windmill	47.0	6.46	0.4	-0.06	0.4279	0.2763	0.2137	0.1371				

Increases have been observed in total nitrogen concentrations at the Barfield Bridge and Collier Bridge from 2015-2020, and this relationship is significant at a 0.01 level (99% confidence). The slope indicates an increase of approximately 54 mg/l-yr for total nitrogen at the Barfield Bridge site and 36 mg/l increase per year at the Collier Bridge site. A significant increase in total nitrogen was also observed at the McIlvaine monitoring site although at a 0.05 level of significance (95% confidence).

A statistically significant increase was also observed for total phosphorus concentrations (0.05 level) at the Collier Bridge site and for chlorophyll-a (0.05 level) at the Barfield Bridge site. A significant decrease in Secchi disk depth or water clarity was also observed at the Barfield Bridge site (99% confidence).

Other than the highlighted squares on Table 2-5, none of the sites appear to exhibit a trend of either increasing or decreasing concentrations for the evaluated parameters over the past 6-year period. However, a minimum data period of approximately 10 years is usually considered to be the minimum amount of data necessary to detect truly significant water quality trends, and since the available period of data is only 6 years, the parameters exhibiting statistically significant changes over time may vary as more data become available.

2.2.1.10 Statistical Comparisons of Sites

Statistical comparisons of historical water quality data for Marco Island monitoring sites were generated in the form of box and whisker plots. The bottom of the box portion of each plot represents the lower quartile, with 25% of the data points falling below this value. The upper line of the box represents the 75% upper quartile, with 25% of the data falling above this value. The blue horizontal line within the box represents the median value, with 50% of the data falling both above and below this value. The vertical lines, also known as "whiskers", represent the 10 and 90 percentiles for the data sets. Individual values which fall outside of the 10-90 percentile range are indicated as red dots. Box and whisker plots for all measured parameters at the Marco Island sites from 2015-2020 are provided in Appendix A-4, and a discussion of plots for total nitrogen, total phosphorus, chlorophyll-a, and Secchi disk depth is provided in this section. The applicable NNC values for total nitrogen, total phosphorus, and chlorophyll-a are indicated by a green line for reference purposes.

A statistical comparison of concentrations of total nitrogen and total phosphorus measured in Marco Island waterways from 2015-2020 is given on Figure 2-8. Measured concentrations of total nitrogen exhibited a relatively high degree of variability in Marco Island waterways from 2015-2020, with measured values ranging from approximately 100 μ g/l to more than 2,000 μ g/l. It is interesting to note that the lowest degree of variability in measured total nitrogen concentrations appear to occur at sites in upstream portions of each respective drainage system at sites such as Collier Bridge, HC Center, Landmark, and Swallow, compared with values measured at the remaining sites. The relatively stable nitrogen concentrations observed at these sites suggest a lack of mixing and flushing at these sites. Overall, the vast majority of measured total nitrogen concentrations from 2015-2020 exceeded the water quality criterion of 300 μ g/l for total nitrogen.

Measured concentrations of total phosphorus also exhibited a relatively high degree of variability in measured values, with concentrations ranging from less than $10~\mu g/l$ to more than $300~\mu g/l$. In contrast to the trends observed for total nitrogen, approximately half of the measured total phosphorus values appear to be less than the applicable NNC criterion of $46~\mu g/l$. A slightly lower degree of variability in measured phosphorus concentrations is also apparent at many of the sites exhibiting low variability in nitrogen concentrations, although the trends are not as significant as those observed for total nitrogen.

Total Nitrogen

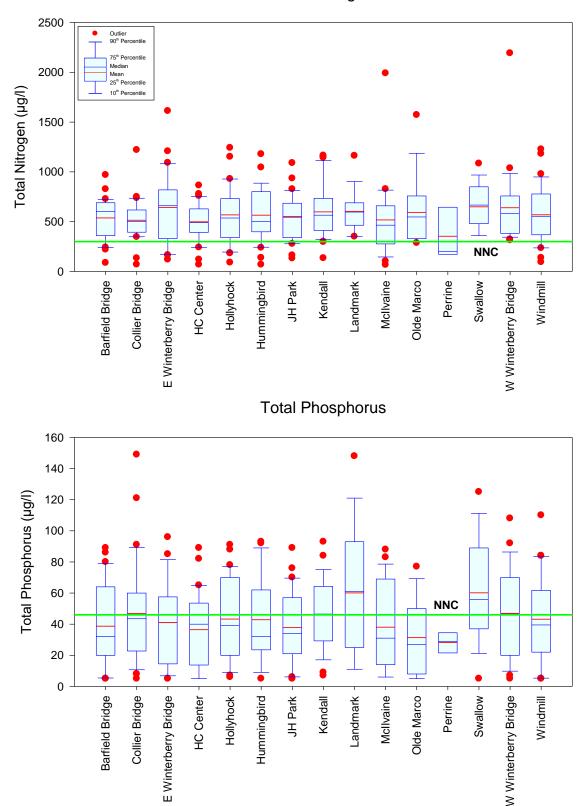


Figure 2-8. Statistical Comparison of Concentrations of Total Nitrogen and Total Phosphorus Measured in Marco Island Waterways from 2015-2020.

A statistical comparison of concentrations of chlorophyll-a and measured Secchi disk depths in Marco Island waterways from 2015-2020 is given on Figure 2-9. Measured chlorophyll-a values have ranged from 1-23 µg/l, although a value exceeding 170 µg/l was observed on 1 occasion at the Swallow monitoring site. Similar to the trend observed for total phosphorus, slightly more than half of the measured chlorophyll-a values have met the NNC criterion of 4.9 µg/l at the Marco Island sites. Also, similar to the trends observed for total nitrogen and total phosphorus, a lower degree of variability in measured chlorophyll-a concentrations was observed at the Collier Bridge, Kendall, and Landmark monitoring sites, each of which is located in upstream portions of the respective drainage basin. A relatively low degree of variability was observed at the McIlvaine and Olde Marco monitoring sites, each of which is located in close proximity to open tidal waters.

A relatively high degree of variability has also been observed in measured Secchi disk depths at the various monitoring sites, with measured values ranging from 0.6-3 m. Overall, measured Secchi disk depths reflect water clarity ranging from poor to good, with fair water quality on an overall basis.

A statistical comparison of measured values for Enterococcus in Marco Island waterways from 2015-2020 is given on Figure 2-10, with a logarithmic scale used for Enterococcus concentrations. Measured Enterococcus concentrations have been extremely variable in value, ranging from near zero to more than 10,000 cfu/100 ml. A majority of the measured values appear to be less than the applicable water quality criterion of 35 cfu/100 ml, although exceedances well in excess of 1,000 and even 10,000 have been observed at virtually all sites on multiple occasions.

2.2.1.11 Summary

Overall, water quality characteristics in Marco Island waterways have been relatively consistent at most sites from 2015-2020, although statistically significant increases in values have been observed for total nitrogen, chlorophyll-a, and Secchi disk depth at the Barfield Bridge site; for total nitrogen and total phosphorus at the Collier Bridge site; and for total nitrogen at the McIlvaine site. Overall mean total nitrogen concentrations in Marco Island waterways from 2015-2020 have been moderate to elevated in value, with virtually all measurements exceeding the water quality criterion of 300 μ g/l.

Annual mean total phosphorus concentrations in Marco Island waterways have been low to moderate in value, with concentrations at 11 of the 14 monitoring sites less than or equal to the applicable criterion of 46 μ g/l for total phosphorus. Exceedances of the criterion for both total nitrogen and total phosphorus have been consistently observed at the Landmark and Swallow monitoring sites, each of which is located in upstream portions of a relatively stagnant canal system.

Water clarity at the Marco Island monitoring sites has been poor to good, with overall fair water quality characteristics on a long-term basis. Enterococci counts at a majority of the monitoring sites are well below the criterion for this parameter of 35 cfu/100 ml. However, substantial exceedances of the Enterococci standard have been observed at the Olde Marco and Swallow monitoring sites, suggesting possible sewage impacts at these sites. The Olde Marco district has a privately owned and operated collection system. Sewage from Old Marco Lane North is collected by North Marco Utilities and pumped to the City wastewater facility for treatment.

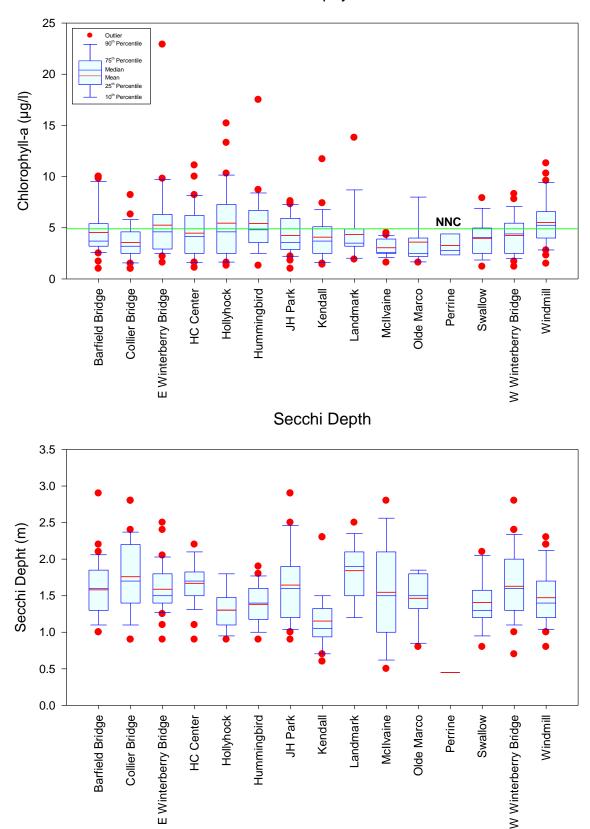


Figure 2-9. Statistical Comparison of Concentrations of Chlorophyll-a and Secchi Disk Depths Measured in Marco Island Waterways from 2015-2020.

Entero

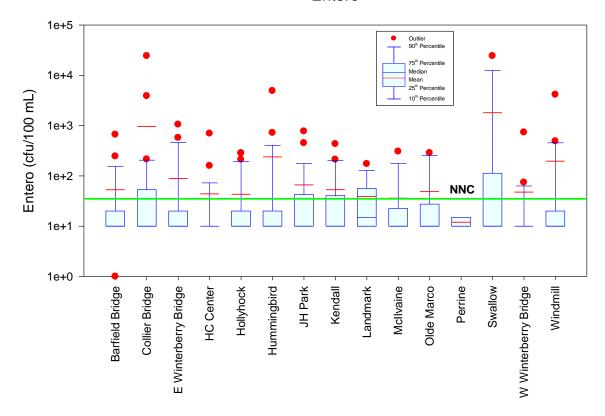


Figure 2-10. Statistical Comparison of Concentrations of Enterococcus Counts in Marco Island Waterways from 2015-2020.

2.2.2 Off-Island Waterways

2.2.2.1 Data Availability

In addition to the historical monitoring conducted by the City of Marco Island (discussed in the previous section), a large amount of historical monitoring data has been collected by other agencies, such as Collier County, the South Florida Water Management District (SFWMD), FDEP, and the Florida Department of Health (FDOH). An overview of historical monitoring sites used by other agencies is given on Figure 2-11. The vast majority of the monitoring efforts have been conducted in off-island waters, although multiple monitoring sites have also been included within the Marco Island waterways.

An expanded view of off-island monitoring sites north of Marco Island is given on Figure 2-12. A large number of monitoring sites have been included in this area, although few of these historical sites have current water quality data.

A summary of historical water quality data for off-island monitoring sites collected by other agencies is given in Table 2-6. Monitoring data have been collected by SFWMD, LakeWatch, FDOH, and FDEP.

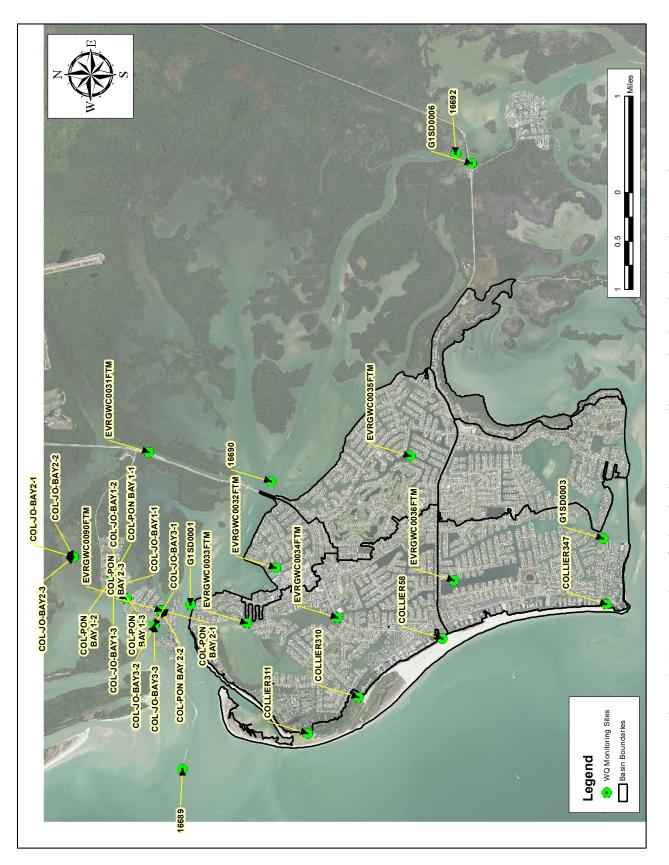


Figure 2-11. Overview of Historical Water Quality Monitoring Sites by Other Agencies.

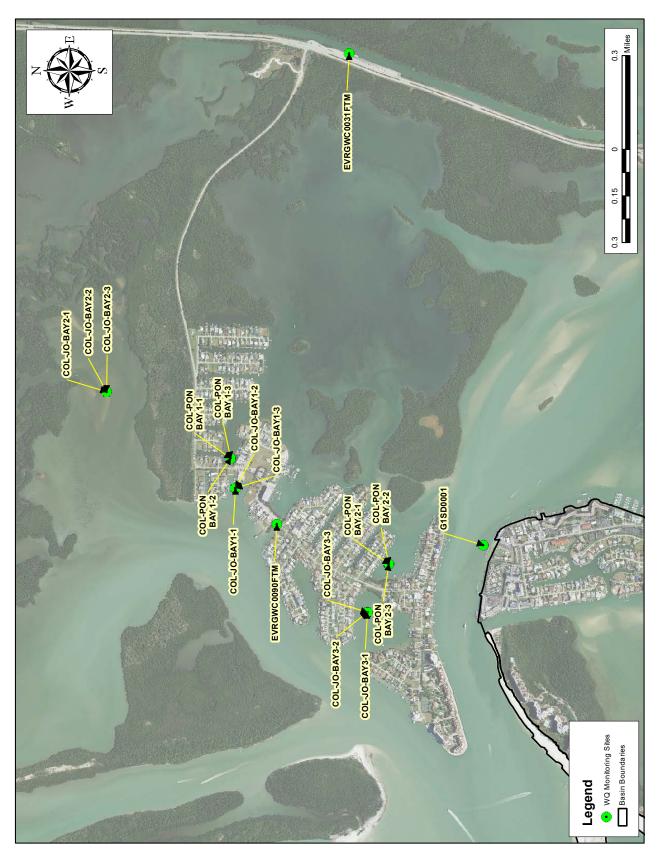


Figure 2-12. Expanded View of Off-Island Monitoring Sites North of Marco Island Near Isles of Capri.

TABLE 2-6

SUMMARY OF HISTORICAL WATER QUALITY DATA FOR OFF-ISLAND MONITORING SITES

COLLECTING AGENCY	STATION I.D.	PERIOD OF RECORD	MONITORING FREQUENCY	NUMBER OF EVENTS	TYPE OF DATA
S. d. El. H. W.	16689 Gulf of Mexico	1/15-9/20	Quarterly to monthly	27	Field Parameters, General Parameters, Nutrients, Chlorophyll-a
South Florida Water Management District (SFWMD)	16690 E. Marco Bay	1/15-9/20	Quarterly to monthly	29	Field Parameters, General Parameters, Nutrients, Chlorophyll-a
(SFWMD)	16692 CR 92 at Goodland Bay	1/15-9/20	Quarterly to monthly	29	Field Parameters, General Parameters, Nutrients, Chlorophyll-a
	Col-Jo Bay1-1	4/01-12/11	Quarterly	43	Total Nitrogen, Secchi Disk Depth
	Col-Jo Bay1-2	4/01-12/11	Quarterly	43	Total Nitrogen, Secchi Disk Depth
	Col-Jo Bay1-3	4/01-12/11	Quarterly	43	Total Nitrogen, Secchi Disk Depth
	Col-Jo Bay2-1	4/01-12/11	Quarterly	42	Total Nitrogen, Secchi Disk Depth
	Col-Jo Bay2-2	4/01-12/11	Quarterly	41	Total Nitrogen, Secchi Disk Depth
	Col-Jo Bay2-3	4/01-12/11	Quarterly	41	Total Nitrogen, Secchi Disk Depth
	Col-Jo Bay3-1	2/04-12/11	Quarterly	33	Total Nitrogen, Secchi Disk Depth
LakeWatch	Col-Jo Bay3-2	2/04-12/11	Quarterly	33	Total Nitrogen, Secchi Disk Depth
	Col-Jo Bay3-3	2/04-12/11	Quarterly	33	Total Nitrogen, Secchi Disk Depth
	Col-Pon Bay 1-1	4/01-9/11	Quarterly	42	Total Nitrogen, Secchi Disk Depth
	Col-Pon Bay 1-2	4/01-9/11	Quarterly	42	Total Nitrogen, Secchi Disk Depth
	Col-Pon Bay 1-3	4/01-9/11	Quarterly	42	Total Nitrogen, Secchi Disk Depth
	Col-Pon Bay 2-1	2/04/12/11	Quarterly	33	Total Nitrogen, Secchi Disk Depth
	Col-Pon Bay 2-2	2/04/12/11	Quarterly	33	Total Nitrogen, Secchi Disk Depth
	Col-Pon Bay 2-3	2/04/12/11	Quarterly	33	Total Nitrogen, Secchi Disk Depth
	Collier 310	4/17-12/20	Weekly	192	Enterococcus
Florida Department of Health	Collier 311	4/17-12/20	Weekly	172	Enterococcus
(FDOH)	Collier 347	4/17-12/20	Weekly	175	Enterococcus
	Collier 58	4/17-12/20	Weekly	183	Enterococcus

TABLE 2-6 – CONTINUED

SUMMARY OF HISTORICAL WATER QUALITY DATA FOR OFF-ISLAND MONITORING SITES

COLLECTING AGENCY	STATION I.D.	PERIOD OF RECORD	MONITORING FREQUENCY	NUMBER OF EVENTS	TYPE OF DATA
	EVRGWC 0031 FTM	1/06-10/10	Varies	7	Field Parameters, General Parameters, Nitrogen, Secchi Disk Depth
	EVRGWC 0032 FTM	1/06-10/06	Quarterly	3	Field Parameters, General Parameters, Nitrogen, Secchi Disk Depth
	EVRGWC 0033 FTM	1/06-10/06	Quarterly	3	Field Parameters, General Parameters, Nitrogen, Secchi Disk Depth
	EVRGWC 0034 FTM	1/06-10/06	Varies	2	Field Parameters, General Parameters, Nitrogen, Secchi Disk Depth
Florida Department of Environmental	EVRGWC 0035 FTM	1/06-10/06	Quarterly	3	Field Parameters, General Parameters, Nitrogen, Secchi Disk Depth
Protection (FDEP)	EVRGWC 0036 FTM	1/06-10/06	Quarterly	3	Field Parameters, General Parameters, Nitrogen, Secchi Disk Depth
	EVRGWC 0037 FTM	1/06-10/06	Quarterly	3	Field Parameters, General Parameters, Nitrogen, Secchi Disk Depth
	EVRGWC 0090 FTM	2/10-10/10	Quarterly	4	Field Parameters, General Parameters, Secchi Disk Depth
	GIS D0001	9/14-9/20	Quarterly	24	Field Parameters, General Parameters, Nutrients
	GIS D0003	9/14-11/20	Quarterly	24	Field Parameters, General Parameters, Nutrients
	GIS D0006	9/17-11/20	Quarterly	23	Field Parameters, General Parameters, Nutrients

The most complete data set for off-island monitoring sites have been conducted by SFWMD. The District has monitored 3 separate sites designated as Site 16689 (located in the Gulf of Mexico along the channel which discharges west from Marco Bay), Site 16690 (located in E. Marco Bay south of the Collier Bridge), and Site 16692 (located north of the CR 92 bridge in Goodland Bay). These sites provide a good overview of ambient water quality in off-shore waterbodies.

The LakeWatch Program conducted a large amount of monitoring at sites located north of Marco Island, as illustrated on Figure 2-12. Monitoring was conducted from 2001-2011 on a quarterly basis, with measurements conducted for total nitrogen and Secchi disk depth. However, due to the age of these data, they are not discussed in this analysis.

FDOH has also conducted a large amount of microbiological monitoring in perimeter portions of the west and southwest sides of the island. The number of samples collected at these sites from 2017-2020 ranges from 172-192 separate samples, all of which were analyzed only for Enterococcus bacteria.

FDEP collected a limited number of samples during 2006 and 2010 at the sites designated by the prefix EVRGWC as part of the program to identify impaired waters. Due to the age of these samples, these data are also not discussed in this report.

Additional data were also collected by FDEP at sites designated as GIS D0001 (located on the north end of Marco Island), GIS D0003 (located on the south end of the island), and GIS D0006 (located at the CR 92 bridge at Goodland Bay). Since data collected at this site are relatively current and include a large number of measured parameters, these data are included in the discussion in this analysis.

2.2.2.2 <u>Data Analysis</u>

A complete listing of historical water quality data for each of the off-island monitoring sites summarized in Table 2-6 is given in Appendix A-5. Data collected by SFWMD, FDOH, and FDEP are included for purposes of this evaluation. The period of record for the SFWMD data set is from 2015-2020, with a comparable period of 2014-2020 for the FDEP data. For purposes of this analysis, and to be consistent with analyses conducted for the historical island monitoring sites, only data collected from 2015-2020 are included in this evaluation.

A comparison of annual geometric mean values for water quality data in waterbodies adjacent to Marco Island from 2015-2020 is given on Table 2-7. Annual geometric mean values which exceed the NNC values listed in Table 2-1 are highlighted in yellow. Measured values for pH, temperature, and dissolved oxygen at the off-site monitoring locations are similar to values measured within the island waterways and are typical of values commonly observed in estuarine systems. Measured conductivity and salinity values at the off-island sites appear to be slightly greater during some events than observed at the Marco Island sites which would be expected due to the more direct connections to tidal waterbodies for the off-site locations.

Measured concentrations of both ammonia and NO_x are extremely low in value at each of the off-site monitoring locations. Concentrations of NO_x at the off-site monitoring locations appear to be lower in value at almost all sites than NO_x concentrations measured within the Marco Island waterways, suggesting enrichment of NO_x within the waterways and canals compared with off-site waterbodies.

Measured concentrations of total nitrogen in the off-site waterbodies appear to be slightly lower in value than typical concentrations measured in the island waterways, although virtually all of the annual geometric mean values for total nitrogen in off-shore waterbodies exceed the NNC of 300 μ g/l. Measured concentrations of total phosphorus in off-site waterbodies appear to be similar to, or perhaps greater than, phosphorus concentrations measured in the island waterways. Approximately one-third (9 of 27 values) of the annual geometric mean values in the off-shore waterbodies exceeded the NNC of 46 μ g/l for total phosphorus over the period from 2015-2020.

TABLE 2-7

ANNUAL GEOMETRIC MEAN VALUES FOR WATER QUALITY DATA IN WATERBODIES ADJACENT TO MARCO ISLAND FROM 2015-2020

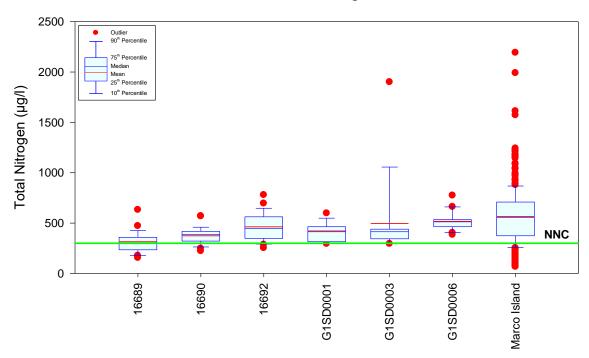
	TOC (Ngm)	2.5	ı	2.9	3.1	2.9	2.6	3.5	1	4.1	4.2	3.5	3.2	4.9		4.1	4.2	4.7	4.1	ı		-	1	-	-	-	-	-	-	1	1		1	ı	
	Secchi Disk Depth (m)	2.01		1.22	1.77	2.18	2.22	1.05	1	1.07	1.05	86.0	1.19	0.77		1.07	1.05	0.81	1.00	,	1	-	1	-	-	-	-	-	-		-		1		ı
	Turbidity (UTV)	2.1		4.0	2.7	2.1	1.8	5.7	1	9.7	5.8	3.7	5.4	7.2		7.6	5.8	7.2	8.4	,	ı	-	1	1.7	6.4	-	-	1	-	2.2	7.2		1	5.8	9.2
	Chlorophyll-a (l/g4)	1.6		3.1	2.7	2.3	1.5	2.7	1	5.2	2.7	3.1	2.8	3.7		5.2	2.7	3.5	3.6	1		3.1	2.1	2.5	2.1	-	-	2.7	2.7	3.6	3.5	6.7	4.1	3.3	3.6
	Trofal surodqsod (I\g4)	21	ı	37	31	56	28	37	ı	53	52	34	40	47		53	52	52	51	1		33	48	30	40	-	-	33	36	34	37	71	20	43	49
	lstoT nagorti <i>N</i> (Ng4)	285		308	322	307	277	393	1	424	424	355	360	493	1	424	424	450	435	543	1	395	436	329	420	1,900	435	304	369	384	438	265	486	480	544
PARAMETER	TKN (l\gu)			-	1	1	1		1	-	-	-	1	-	-	1	1	1	-	518	1	381	421	318	395	1,900	435	300	364	380	426	593	476	471	526
PARAN	([/डित्त) ^x ON	9		5	5	5	5	6	1	9	8	5	5	18	-	9	8	7	9	23	13	14	15	6	20	13	-	4	5	4	10	4	8	7	16
	V sinommA (Ng4)	6	1	7	8	9	8	13	1	21	25	14	6	25	-	21	22	25	20	-	-	-	1	-	-	-	-	-	-	-	-	-	1	-	1
	Vəlinifs? (1 qq)	34.1	1	31.8	35.0	34.5	34.4	33.3	1	31.0	34.1	33.9	34.0	32.9	-	31.0	34.1	34.6	33.1	1	-	-	1	1	-	-	-	-	-	1	-	-	1		ı
	Conductivity (ma/ommu)	51,905		48,758	54,224	52,525	52,265	50,893	1	48,002	52,514	51,721	32,671	46,960		48,002	52,514	50,825	50,543	50,360	51,521	51,569	52,235	52,137	48,384	51,200	51,179	53,302	52,544	52,107	49,169	42,143	52,392	51,566	43,717
	Diss. Oxygen (Ngm)	6.5	ı	6.3	6.3	6.5	6.5	5.8	ī	5.1	5.7	5.7	5.9	5.1		5.1	5.7	5.1	5.3	5.4	0.9	-	ì	1	-	5.9	6.4	-	-	1	-		1	ı	-
	Temperature (°C)	26.05		25.52	24.33	26.42	23.80	26.64	1	25.25	24.48	26.67	24.32	26.66	-	25.25	24.48	26.53	24.15	27.80	23.87	26.42	24.40	24.98	26.44	27.45	23.79	25.29	25.14	25.21	25.77	26.92	23.50	26.31	25.36
	Hq (.u.e)	7.88	ı	7.88	7.94	8.05	7.92	7.82	ı	7.78	7.85	7.92	7.82	LL'L	-	7.78	7.85	7.87	7.74	7.87	7.94	7.86	7.91	7.94	7.86	7.94	8.01	<i>16.1</i>	91.7	96'L	7.94	7.59	6L'L	7.80	7.82
	SAMPLE DATE	2015	2016	2017	2018	2019	2020	2015	2016	2017	2018	2019	2020	2015	2016	2017	2018	2019	2020	2015	2016	2017	2018	2019	2020	2015	2016	2017	2018	2019	2020	2017	2018	2019	2020
	STATION L.D.		16689	(Gulf near	Marco Bay	Channel)		16690	(East	Marco Bay	South of	Jolly	Bridge)		16692	(San Marco	Road Near	Goodland)			ı	1000015	10000510	I				C1 CD0003	01300003				710000	01300000	
	COLLECTING			CEWAN	SF WIND					SEWAD	OIM W. IC					CEMAIN	SFWIND					FDED	177					ENED	rder				מפעם	ruer	

Indicates exceedances of NNC

Exceedances of the chlorophyll-a criterion were also observed in off-site waterbodies in approximately 10% of the values included in the data set which is less than the number of exceedances at the island monitoring sites.

A statistical comparison of measured values of total nitrogen and total phosphorus at on- and off-island waterways from 2015-2020 is given on Figure 2-13. The off-island waterways reflect the SFWMD and FDEP monitoring sites, discussed previously. On-island data reflects the combined data set for all waterways based upon measurements conducted from 2015-2020. The measured total nitrogen concentrations at the off-island monitoring sites exhibit a relatively low degree of variability in measured values from 2015-2020, with the vast majority of values exceeding the NNC of 300 μ g/l for total nitrogen. A somewhat higher degree of variability, combined with higher individual values, was observed at the Marco Island monitoring sites.

Measured total phosphorus concentrations also appear to be similar in value between the off-island monitoring sites, with a majority of measured values less than the applicable NNC of $46~\mu g/l$ at most off-shore sites. The primary exception to this appears to be Site 16692, located near the CR 92 bridge in Goodland Bay which appears to have slightly higher phosphorus concentrations compared with the remaining off-island sites. A similar pattern was also observed for total nitrogen at this site. Historical phosphorus concentrations at Marco Island monitoring sites appear to be somewhat similar to values measured at the off-island sites, with a much higher degree of variability in individual measurements at the Marco Island sites. There are no known geologic sources of phosphorus in the Marco Island area, so the observed concentrations are due to wetland inflows (which often contain elevated nutrients) and human activities.


A statistical comparison of measured values of chlorophyll-a and Secchi disk depth at on-and off-island monitoring sites from 2015-2020 is given on Figure 2-14. The historical data suggest that a majority of measured chlorophyll-a concentrations in both the on- and off-island sites have met the NNC of 4.9 μ g/l for chlorophyll-a, although a large degree of variability has been observed in measured values in the Marco Island waterways.

Measured Secchi disk depths have also been highly variable at both the on- and off-island monitoring sites. A relatively high level of water clarity has been observed at FDEP monitoring Site 16689 (located in the Gulf of Mexico outside of Marco Bay). Secchi disk depths appear to decrease with increasing distance from open water at Sites 16690 (Jolly Bridge) and 16692 (Goodland Bay). Measured Secchi disk depths at the Marco Island monitoring sites appear to be somewhere between the relatively clear water observed in the Gulf of Mexico and Secchi disk measurements conducted at other background sites.

As discussed in a previous section, a large amount of Enterococci data have been collected by the FDOH at monitoring sites located in off-shore waters adjacent to Marco Island. These sites are designated as COLLIER58, COLLIER310, COLLIER311, and COLLIER347, and a complete listing of the data collected at these sites is provided in Appendix A-5.

A tabular summary of annual geometric mean values for Enterococci data collected at the 4 FDOH monitoring sites from 2017-2020 is given in Table 2-8. Geometric mean values for Enterococci are provided for each annual period, along with the number of individual exceedances observed in the data during the monitoring program.

Total Nitrogen

Total Phosphorus

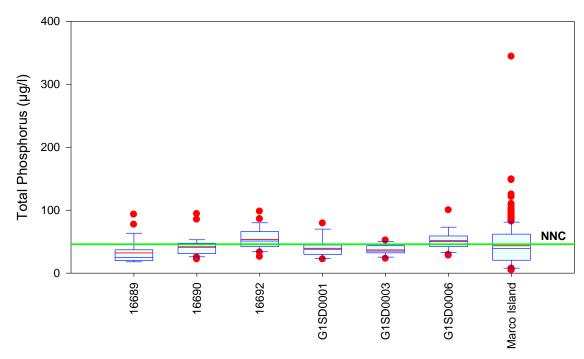
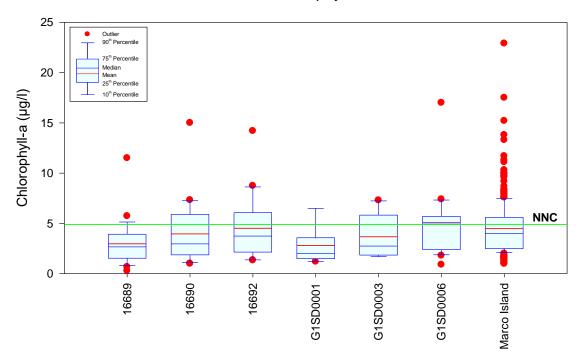



Figure 2-13. Statistical Comparison of Measured Values of Total Nitrogen and Total Phosphorus at On- and Off-Island Waterways from 2015-2020.

Chlorophyll-a

Secchi Depth

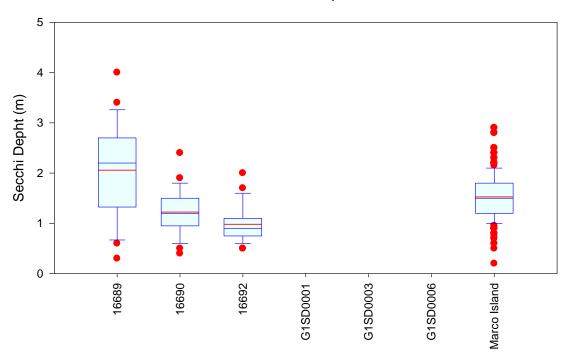


Figure 2-14. Statistical Comparison of Measured Values of Chlorophyll-a and Secchi Disk Depth at On- and Off-Island Waterways from 2015-2020.

TABLE 2-8

HISTORICAL ENTEROCOCCI DATA FOR
WATERBODIES ADJACENT TO MARCO ISLAND

COLLECTING AGENCY	STATION I.D.	SAMPLE DATE	ANNUAL GEOMETRIC MEAN FOR ENTEROCOCCI (cfu/100 ml)	NUMBER OF EXCEEDANCES
		2017	10	0
FDOH	COLLIER58	2018	13	4
TDOII	COLLIERS	2019	12	2
		2020	10	0
		2017	14	2
EDOH	COLLIED 210	2018	16	8
FDOH	COLLIER310	2019	21	13
		2020	21	14
		2017	11	1
FDOH	COLLIER311	2018	10	1
гроп	COLLIERSII	2019	12	3
		2020	11	0
		2017	10	0
EDOIL	COLLIED 247	2018	12	3
FDOH	COLLIER347	2019	11	1
		2020	11	1

As indicated on Figure 2-11, monitoring sites designated as COLLIER58, COLLIER310, and COLLIER311 are located in off-shore waters on the west side of Marco Island. Geometric mean Enterococci counts at these sites have been generally low in value, and each of the annual geometric mean values easily meets the Enterococci criterion of 35 cfu/100 ml. Although the geometric mean values meet the applicable criterion, individual exceedances of the criterion have been observed in samples collected at each of the 3 monitoring sites, with the most exceedances observed at COLLIER310 which is located in the northern half of the island. An additional monitoring site, designated as COLLIER347, is located along the southern portion of the island adjacent to the Gulf of Mexico. This site has exhibited extremely low annual geometric mean Enterococci values with only a limited number of individual exceedances.

A statistical comparison of measured Enterococci values for on- and off-island waterways from 2015-2020 is given on Figure 2-15. The vast majority of collected samples in both the on- and off-island monitoring sites easily met the Enterococci criterion, although individual exceedances of the criterion have been observed at each site. The observed exceedances at the Marco Island waterways sites have included substantially higher values than observed at the remaining sites. Please note that the scale for Enterococci values is a logarithmic scale, suggesting that some values measured in Marco Island waterways have exceeded the NNC by 2 orders of magnitude or more, although in general Enterococci counts are typically low in value.

Entero

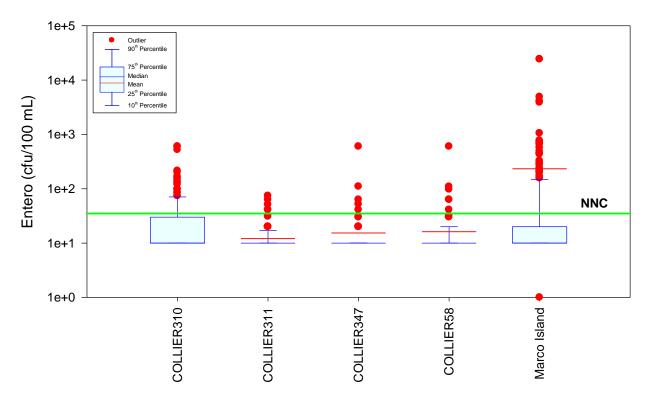


Figure 2-15. Statistical Comparison of Measured Enterococci Counts at On- and Off-Island Waterways from 2015-2020.

2.2.2.3 Impacts from Off-Island Communities

Multiple people have expressed concern to ERD about potential water quality impacts from off-island communities such as Goodland and Isles of Capri which primarily use septic tanks for wastewater disposal. Water quality impacts from septic tanks would be observed as elevated nutrients and Enterococci in off-shore waters adjacent to the communities.

A large amount of historical water quality data has been collected near each of these communities. Unfortunately, consistent data collection near Isles of Capri ended in 2011 at the nearby sites. The closest current water quality monitoring site is FDEP Site GISD0001 which is located in Marco Bay Channel and has daily tidal cycles which continuously move and replace the water, making detection of water quality impacts difficult.

In contrast, current water quality data are available at 2 separate monitoring sites near Goodland, consisting of SFWMD Site 16692 (which has current data for nutrients, general parameters, and chlorophyll-a), and FDEP Site GISD0006 (which has weekly data for Enterococcus). A comparison of concentrations of total nitrogen and total phosphorus at offshore monitoring sites is provided in Figure 2-13. Both Sites 16692 and GISD0006 appear to have the highest measured concentrations of total nitrogen and total phosphorus compared with other off-shore sites, although the differences are probably not statistically significant. As indicated on Figure 2-14, these sites also appear to have the highest median values for chlorophyll-a, although the trend is not as distinct as observed for total nitrogen and total phosphorus.

2.2.2.4 Summary

A substantial amount of historical water quality has been collected on off-shore waters. From 2015-2020, off-shore sites surrounding Marco Island exhibited AGM values for total nitrogen which exceeded the NNC of 300 μ g/l during 28 of the 30 annual periods at SFWMD and FDEP monitoring sites. Exceedances of the NNC for total phosphorus were observed during 9 of the 27 annual periods (33%), with exceedances of the NNC for chlorophyll-a during 3 of the 27 annual periods. Exceedances in Enterococci counts have also been observed on the northwest shoreline of the island, particularly in recent years. Off-shore areas provide the baseline water quality for Marco Island waterways and reflect water quality characteristics which would be present if no additional inputs occurred from Marco Island. Marco Island can, and does, add to existing concentrations but cannot reduce nutrient levels below the existing elevated levels. NNC criteria cannot be met in Marco Island waterways until the baseline water quality meets NNC.

2.3 <u>Current Water Quality Characteristics</u>

2.3.1 Monitoring Activities

A monthly surface water quality monitoring program was conducted in Marco Island waterways and off-shore waters by ERD from April-September 2020 at 17 fixed monitoring locations. Locations of the surface water monitoring sites used by ERD are indicated on Figure 2-16. The surface water monitoring sites were selected to provide general information on ambient water quality characteristics, evaluate horizontal and vertical water quality variability, and assist in identifying potential significant loading sources. Water quality monitoring was conducted on a monthly basis with a total of 6 monitoring events conducted at each of the 17 sites.

Sample collection procedures generally followed methods outlined in DEP-SOP-001/01 titled "Department of Environmental Protection Standard Operating Procedures for Field Activities" dated April 16, 2018. Surface water samples were collected using a battery-powered peristaltic pump constructed of plastic and stainless steel. All samples were collected at a depth equal to 50% of the Secchi disk depth at the time of sample collection. Each of the collected samples was preserved as appropriate for the parameter to be analyzed, stored in ice, and returned to the ERD Laboratory for chemical analyses. A listing of laboratory analyses performed on the collected samples is given in Table 2-9, along with a summary of analytical methods and laboratory detection limits.

Figure 2-16. Surface Water Monitoring Sites Used by ERD.

TABLE 2-9

ANALYTICAL METHODS AND DETECTION LIMITS FOR FIELD AND LABORATORY ANALYSES CONDUCTED BY ENVIRONMENTAL RESEARCH AND DESIGN, INC.

	REMENT METER	METHOD	LOCATION	METHOD DETECTION LIMITS (MDLs) ¹
	Hydrogen Ion (pH)	DEP-SOP-FT ² 1100	Field	NA
	Specific Conductivity	DEP-SOP-FT 1200	Field	0.3 μmho/cm
Field	Temperature	DEP-SOP-FT 1400	Field	NA
Parameters	Dissolved Oxygen	DEP-SOP-FT 1500	Field	0.2 mg/l
	Secchi Disk Depth	DEP-SOP-FT 1700	Field	NA
	ORP	DEP-SOP-FT 2100	Field	NA
	Alkalinity	SM-22 ³ , Sec. 2320 B	ERD Lab	1.4 mg/l
General Parameters	Turbidity	SM-22, Sec. 2130 B	ERD Lab	0.3 NTU
Turumeters	Color	SM-22, Sec. 2120 C	ERD Lab	1 Pt-Co unit
	Nitrate + Nitrite (NO _x -N)	SM-22, Sec. 4500-NO ₃ ,F	ERD Lab	0.002 mg/l
	Ammonia N (NH ₃ -N)	SM-22, Sec. 4500-NH ₃ ,G	ERD Lab	0.010 mg/l
Nutrients	Total Nitrogen	SM-22, Sec. 4500 N C	ERD Lab	0.014 mg/l
	Orthophosphorus (SRP)	SM-22, Sec. 4500 P F	ERD Lab	0.001 mg/l
	Total Phosphorus	SM-22, Sec. 4500 P F	ERD Lab	0.002 mg/l
Biological Parameters	Chlorophyll-a	SM-22, Sec. 10200 H.3	ERD Lab	0.1 μg/l
Biological Parameters	Enterococcus	SM-22, Sec. 9230 C	ERD Lab	1 cfu/100 ml

- 1. MDLs are calculated based on the EPA method of determining detection limits
- 2. <u>Standard Operating Procedures for Field Activities</u>, DEP-SOP-001/01, April 16, 2018
- 3. Standard Methods for the Examination of Water and Wastewater, 22nd Edition, 2012

During each monitoring event, vertical profiles of pH, temperature, conductivity, dissolved oxygen, oxidation reduction potential (ORP), and turbidity were conducted at each site. Field measurements were collected at water depths of 0.5 m and 1.0 m, and at 1.0 m intervals to the bottom at each site. All field measurements were performed using Hydrolab Surveyor 4a and Data Sonde 4 units. A measurement of Secchi disk depth was also performed at each site.

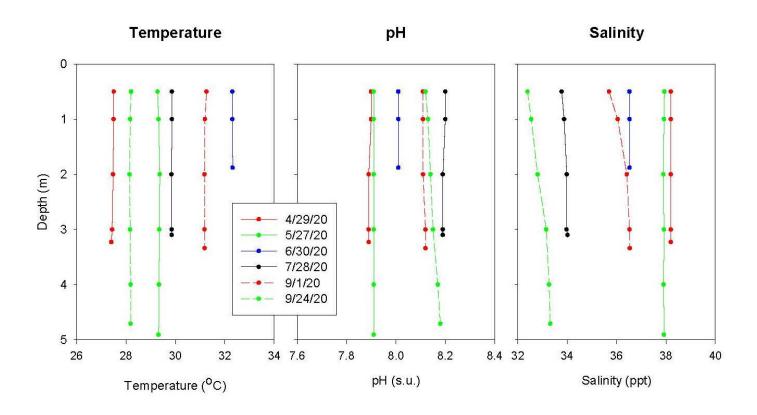
2.3.2 Field Profiles

A complete listing of vertical field profile data collected at the Marco Island monitoring sites from April-September 2020, and graphical plots of the field measurements for each site, are given in Appendix B-1. A discussion of the results of the vertical profile data is given in the following sections.

2.3.2.1 Off-Island Monitoring Sites

As indicated on Figure 2-16, 4 of the 17 water quality monitoring sites used by ERD are located in off-shore waters around the perimeter of Marco Island and are designated as Sites M-1 through M-4. In general, vertical field profiles collected at each of these sites were virtually isograde during each monitoring event. A graphical summary of vertical field profiles collected at Site M-3 is given in Figure 2-17 as an example of a typical off-island monitoring location. Although water depths varied between the 4 off-shore monitoring sites, the vertical field profiles were virtually identical, indicating no vertical stratification for temperature, pH, salinity, dissolved oxygen, or oxidation-reduction potential (ORP).

Each of the 4 off-island sites maintained adequate levels of dissolved oxygen to support aquatic wildlife, and easily met the Class III dissolved oxygen criterion of a minimum of 42% saturation within the top 2 m for marine waters. The water column at each of the off-shore sites was well oxidized from top to bottom during each monitoring event. Overall, vertical profiles collected at these sites suggest an extremely well mixed water column at each site due to the virtually continuous water movement.


2.3.2.2 On-Island Waterways Monitoring Sites

Vertical field profiles collected in the Marco Island waterways did not exhibit the consistent steady values observed at the off-shore sites. As an example, vertical field profiles collected in Marco Island at Site M-9 (located in mid portions of the waterway system associated with Sub-basin 3) are illustrated on Figure 2-18. Slight decreases were observed for both temperature and pH with increasing water depth, while salinity values generally increased slightly with increasing water depth.

A slight decrease is apparent in concentrations of dissolved oxygen with increasing depth, although measured values generally remained greater than 4 mg/l. A similar pattern is also apparent for dissolved oxygen saturation, with super-saturated conditions observed in surface layers of the water column during several events, generally indicative of a surface algal bloom. Dissolved oxygen decreased slightly with increasing depth, but remained above the minimum Class III criterion of 42%. The water column was generally oxidized at all depths.

In contrast, vertical profiles collected at monitoring locations located in upstream portions of waterways often exhibited significant stratification for 1 or more parameters. The best example of this was observed at monitoring site M-11, and a compilation of vertical field profiles collected at this site is given in Figure 2-19. This is one of the deeper sites and is located in an upstream portion of a wide canal system with little or no tidal flushing.

As seen on Figure 2-19, decreases in both temperature and pH were observed with increasing water depth during virtually all events. In contrast, salinity typically increased with increasing water depth before decreasing substantially near the water-sediment interface. This reduction in salinity is likely due to impacts from freshwater seeping into the bottom and sides of the canal system. Measured concentrations and saturation percentages for dissolved oxygen also decreased steadily with increasing water depth, although this site easily met the dissolved oxygen criterion of 42% saturation in the top 2 m. Lower portions of the water column exhibited reduced conditions during each of the 6 monitoring events which limits biological communities and increases the potential for nutrient recycling in the canal system.

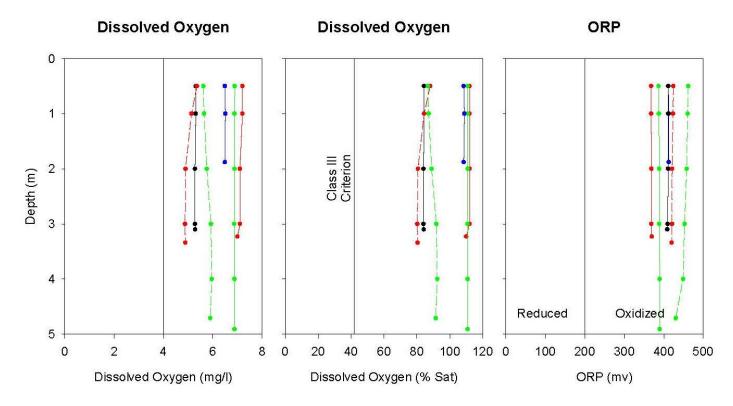


Figure 2-17. Vertical Field Profiles Collected in Marco Island at Site M-3.

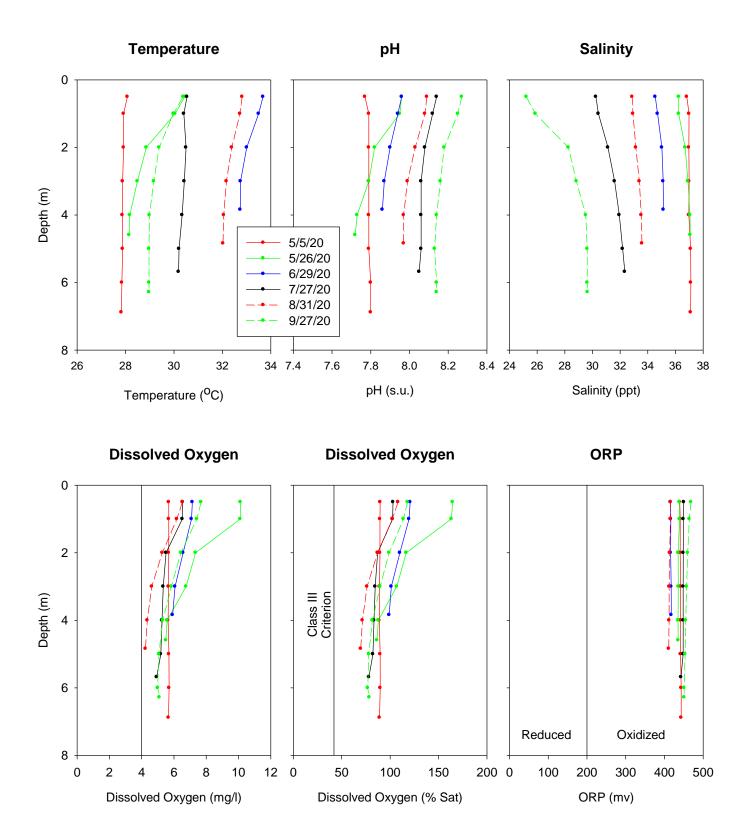


Figure 2-18. Vertical Field Profiles Collected in Marco Island at Site M-9.

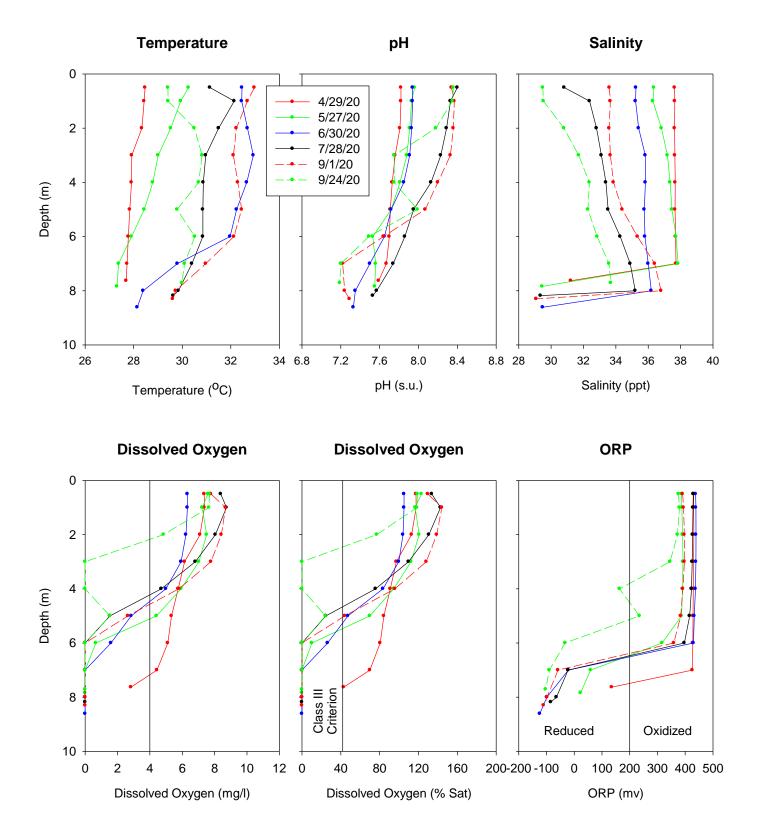


Figure 2-19. Vertical Field Profiles Collected in Marco Island at Site M-11.

The vertical profiles illustrated for Site M-9 and Site M-11 reflect 2 extremes of the monitored data during the field monitoring program observed in island waterways. Many of the sites exhibited patterns mid-way between those exhibited by Sites M-9 and M-11, with periodic stratification and conditions of low dissolved oxygen in lower portions of the water column which did not occur during all events. Many of these sites appear to be located in mid portions of waterway systems.

A summary of information obtained from vertical field profile data collected at the off-island and on-island monitoring sites is given in Table 2-10. Information is provided for each monitoring site regarding measured water depth, presence of stratification for temperature or pH, compliance with dissolved oxygen criterion, observed oxygen decreases near the water-sediment interface, changes in the water conductivity at the water-sediment interface, and presence of reduced conditions near the water-sediment interface. The only site which appears to exhibit thermal stratification is Site M-11 which was discussed previously. Approximately half of the monitoring sites exhibited pH stratification in lower portions of the water column which generally indicates a high degree of microbial activity within the sediments. Each of the sites easily met the dissolved oxygen criterion, although decreases in dissolved oxygen in lower portions of the water column were observed at multiple monitoring sites, all of which appear to be located in the southern half of the island.

Changes in conductivity at the water-sediment interface are indicative of external inflows or microbial activity which is releasing ions into the water column. Conditions such as these were observed during about one-third of the monitoring events primarily at locations in the southern half of Marco Island. Reduced conditions at the water-sediment interface were observed from 1-6 of the 6 monitoring events, also at sites located in the southern half of the island.

2.3.3 Chemical Characteristics

A summary of laboratory analyses conducted on surface water samples collected at each of the 17 monitoring sites from April-September 2020 is given Appendix B-2 which also includes simple descriptive statistics for parameters monitored at each site.

2.3.3.1 <u>Impacts of Tidal Events</u>

The surface water monitoring program conducted by ERD was designed to include monitoring conducted under both incoming and outgoing tidal conditions to assist in evaluating nutrient dynamics within the waterways. Three separate monitoring events were conducted for both incoming and outgoing characteristics, with incoming tidal conditions during April, June, and September and outgoing tidal conditions during May, July, and August.

TABLE 2-10

SUMMARY OF VERTICAL PROFILE DATA COLLECTED AT MARCO ISLAND FROM APRIL-SEPTEMBER 2020

				PARAMET	ΓER		
SITE	Water Depth (m)	Thermal Stratification	pH Stratification	Met Dissolved Oxygen Criterion	Dissolved Oxygen Decrease Near Bottom	Conductivity Change at Water-Sediment Interface	Reduced Conditions at Water- Sediment Interface
M-1	1.8 - 2.6	No	No	Yes	No	No	No
M-2	1.3 - 2.0	No	No	Yes	No	No	No
M-3	3.2 - 4.9	No	No	Yes	No	No	No
M-4	3.6 - 4.2	No	No	Yes	No	No	No
M-5	1.3 - 2.2	No	No	Yes	No	No	No
M-6	2.9 - 4.4	No	No	Yes	No	No	No
M-7	1.9 - 4.3	No	Slight	Yes	No	No	No
M-8	2.4 - 2.8	No	Slight	Yes	No	No	No
M-9	3.8 - 6.9	No	No	Yes	No	No	No
M-10	3.6 - 4.2	No	No	Yes	6 of 6 events	1 of 6 events	1 of 6 events
M-11	7.6 - 8.6	Yes	6 of 6 events	Yes	6 of 6 events	Yes	6 of 6 events
M-12	2.2 - 3.6	No	Slight	Yes	1 of 6 events	1 of 6 events	2 of 6 events
M-13	2.9 - 3.8	No	6 of 6 events	Yes	4 of 6 events	2 of 6 events	3 of 6 events
M-14	3.7 - 4.2	No	3 of 6 events	Yes	6 of 6 events	2 of 6 events	4 of 6 events
M-15	5.2 - 7.7	No	No	Yes	No	No	1 of 6 events
M-16	3.3 - 8.4	No	No	Yes	No	No	No
M-17	5.7 - 7.3	No	3 of 6 events	Yes	5 of 6 events	2 of 6 events	3 of 6 events

A summary of water quality characteristics in off-island surface water samples collected during incoming and outgoing tidal conditions from April-September 2020 is given in Table 2-11. Surface water monitoring was conducted for a period of 6 months, with 3 samples collected under incoming tide conditions and 3 samples collected under outgoing tide conditions. Due to the relatively small amount of available data, it becomes more difficult to detect trends or differences in water quality characteristics between tidal conditions, although some patterns are clearly visible in the data. For example, measured alkalinity values appear to be greater during incoming tidal conditions as well buffered and highly alkaline seawater encroaches into the waterways. Outgoing tides carry a combination of seawater as well as inflows from Marco Island and adjacent tributaries which generally have lower salinity and lower alkalinity values.

TABLE 2-11

WATER QUALITY CHARACTERISTICS OF OFF-ISLAND SURFACE WATER SAMPLES COLLECTED DURING INCOMING AND OUTGOING TIDAL CONDITIONS FROM APRIL-SEPTEMBER 2020

							PA	RAMET	ER					
LOCATION	TIDE CONDITION	Alkalinity (mg/l)	Ammonia N (μg/l)	NO _x -N (μg/l)	Diss. Organic N (µg/I)	Particulate N (μg/l)	Total N (µg/l)	SRP (µg/l)	Diss. Organic P (μg/l)	Particulate P (µg/l)	Total P (µg/l)	Turbidity (NTU)	Color (Pt-Co)	Chlorophyll-a (µg/l)
M-1	In	135	3	3	443	129	580	21	7	7	36	2.7	5	8.7
1V1-1	Out	130	5	4	390	159	588	21	6	10	39	5.3	6	12.5
M-2	In	137	8	4	378	134	555	30	3	6	40	3.7	9	12.5
IVI-Z	Out	139	3	6	440	217	688	27	7	10	44	12.7	15	17.7
M 2	In	139	6	6	479	47	558	24	4	9	38	2.3	2	8.0
M-3	Out	128	6	6	486	96	602	21	3	5	31	2.3	7	10.3
M 4	In	132	6	3	476	29	520	22	2	16	42	4.0	2	8.9
M-4	Out	130	5	7	448	36	513	30	3	10	43	2.1	7	6.9

Measured total nitrogen concentrations at 3 of the 4 off-shore monitoring sites exhibited highest concentrations during outgoing tides which suggests nutrient enrichment from incoming water sources which exits during outgoing tidal conditions. A similar pattern is also observed for total phosphorus at most sites, with the most elevated values observed during outgoing tidal conditions, suggesting enrichment of nutrients to off-island waterbodies from external sources. Measured values for color are also greater during outgoing tide conditions since many of the inflows to off-island surface waters come from highly colored sources. Chlorophyll-a concentrations also appear to be greater during outgoing tide conditions, with the exception of the Gulf of Mexico Site (M-4).

A summary of water quality characteristics of surface water samples collected in island waterways during incoming and outgoing tidal conditions is given in Table 2-12. With only a few exceptions, measured alkalinity values within the island waterways are higher during incoming tidal conditions than during outgoing tides for the same reasons discussed previously for the off-island sites. Measured concentrations of total nitrogen also appear to be greatest at 7 of the 13 island waterway sites during outgoing tidal conditions, indicating that the tide is removing nutrients entering the system between tidal cycles. A notable exception to this generality is monitoring Site M-11 which is located in the extreme upstream portion of a wide, deep canal system. At this location, outgoing concentrations of total nitrogen appear to be substantially lower than values observed under incoming conditions.

Measured concentrations of total phosphorus appear to exhibit a mixture of tidal conditions under which more elevated concentrations are observed. Five of the island waterway monitoring sites discharge lower concentrations of total phosphorus during outgoing tidal conditions than enter the system through tidal inflows, suggesting that either uptake occurs within the waterways for phosphorus inputs transported by tidal influx or watershed inflows are more dilute which reduces canal concentrations. However, the remaining sites exhibit higher concentrations under outgoing conditions, suggesting enrichment of phosphorus concentrations in these areas from watershed sources.

Virtually all island waterway sites exhibit lower concentrations of turbidity during outgoing tidal conditions than during incoming tide. This phenomenon suggests that particulate matter introduced into the system by the incoming tide is being removed within the waterways between tidal events, although this removal of particulate matter adds to accumulation of sediments within the waterways.

A majority of the monitoring sites exhibit slightly higher color values during outgoing tide than during incoming tide conditions. Since ocean water generally has low color concentrations, increases in color observed under outgoing tidal conditions suggest influx of color-causing compounds from watershed areas into the waterways.

A mixture of tidal impacts is also apparent for chlorophyll-a. Five of the waterway monitoring sites discharge higher concentrations of chlorophyll-a during outgoing tides than enters the system during incoming tides. However, the remaining sites exhibit higher concentrations in the tidal inflow than in outflow, suggesting that chlorophyll-a may be removed within the system as algal particles die and accumulate into the sediments.

2.3.3.2 Comparison of Water Quality Characteristics

A summary of overall geometric mean water quality characteristics of surface water samples collected at off-island monitoring sites from April-September 2020 is given in Table 2-13. Measured chemical characteristics for virtually all parameters appear to be similar between the 4 off-island monitoring locations, although the Gulf of Mexico site (M-4) exhibited the lowest value for total nitrogen, color, and chlorophyll-a. The off-island sites are characterized by extremely low levels of both ammonia and NO_x, with the vast majority of nitrogen present as dissolved organic nitrogen. The lack of significant dissolved inorganic nitrogen (DIN) is likely the limiting factor for algal productivity at these sites. Somewhat elevated values of particulate nitrogen were observed at Sites M-1 and M-2 which is likely due to resuspension of particulate matter resulting from tidal movement through the system.

TABLE 2-12

WATER QUALITY CHARACTERISTICS OF ISLAND WATERWAY SURFACE WATER SAMPLES COLLECTED DURING INCOMING AND OUTGOING TIDAL CONDITIONS FROM APRIL-SEPTEMBER 2020

							PA	RAMET	ER					
LOCATION	TIDE CONDITION	Alkalinity (m/gl)	Ammonia N (μg/l)	NO _x -N (μg/l)	Diss. Organic N (μg/l)	Particulate N (μg/l)	Total N (µg/l)	SRP (µg/l)	Diss. Organic P (μg/l)	Particulate P (µg/l)	Total P (µg/l)	Turbidity (NTU)	Color (Pt-Co)	Chlorophyll-a (µg/l)
M-5	In	139	3	4	482	48	559	23	10	12	48	6.3	5	11.0
IVI-J	Out	139	3	7	422	93	595	21	9	11	42	4.1	6	11.6
M-6	In	138	9	4	427	76	523	28	6	12	46	2.2	8	15.4
171-0	Out	135	8	9	477	114	628	28	3	11	43	2.3	9	14.3
M-7	In	144	6	3	469	49	533	22	15	10	48	2.9	7	15.8
141-7	Out	131	5	6	478	63	577	23	12	9	44	2.6	7	14.5
M-8	In	135	3	5	484	102	605	21	9	12	43	2.9	9	17.5
141-0	Out	123	5	4	464	138	625	18	11	18	48	1.8	9	11.5
M-9	In	137	9	4	508	71	599	26	4	13	43	3.0	12	13.0
141-9	Out	133	5	4	434	143	594	27	5	14	47	1.8	13	15.6
M-10	In	134	3	3	457	70	559	26	15	11	52	1.7	9	16.1
IVI-10	Out	132	5	4	435	112	611	17	15	7	41	1.2	11	12.9
M-11	In	132	3	4	401	117	569	24	15	10	50	1.3	6	16.8
IVI-11	Out	133	3	5	254	137	478	24	12	16	57	0.8	10	13.3
M-12	In	142	7	3	529	85	637	24	8	7	40	1.6	14	9.5
IVI-12	Out	140	5	7	452	149	624	25	13	10	48	1.1	12	24.8
M-13	In	145	13	4	485	108	699	19	12	16	48	2.3	16	14.3
IVI-13	Out	132	3	4	502	158	692	19	10	9	40	1.9	14	24.9
M-14	In	131	3	5	555	100	669	17	6	12	36	2.4	6	16.8
171-1-4	Out	137	5	6	546	137	700	23	3	11	39	1.3	8	14.3
M-15	In	140	3	2	488	46	557	20	8	6	34	2.4	5	14.7
171-13	Out	134	3	4	448	51	514	29	8	9	46	2.5	10	14.5
M-16	In	138	5	3	390	122	525	22	10	9	43	2.6	4	11.7
171-10	Out	138	5	3	334	77	433	25	9	10	45	1.9	8	12.7
M-17	In	137	3	3	480	53	540	22	6	10	41	3.6	4	10.8
171-1 /	Out	135	5	4	479	137	632	29	11	10	52	2.7	10	8.4

TABLE 2-13

GEOMETRIC MEAN WATER QUALITY CHARACTERISTICS OF SURFACE WATER SAMPLES COLLECTED AT OFF-ISLAND SITES FROM APRIL-SEPTEMBER 2020

		PARAMETER											
LOCATION	Alkalinity (m/gl)	Ammonia N (μg/l)	NO _x -N (/gμ)	Diss. Organic N (μg/l)	Particulate N (μg/l)	Total N (µg/l)	SRP (µg/l)	Diss. Organic P (μg/l)	Particulate P (μg/l)	Total P (μg/l)	Turbidity (NTU)	Color (Pt-Co)	Chlorophyll-a (µg/l)
M-1	133	4	3	416	143	584	21	6	9	38	3.8	5	10.4
M-2	138	5	5	408	170	618	28	5	8	42	6.9	12	14.9
M-3	133	6	6	482	67	579	23	3	7	35	2.3	4	9.0
M-4	131	5	5	462	32	517	26	3	13	43	2.9	4	7.8

In contrast to the trend observed for total nitrogen, the off-shore monitoring sites appear to have abundant dissolved inorganic phosphorus (DIP) in the form of soluble reactive phosphorus (SRP). The data suggest an abundance of phosphorus with the shortage of nitrogen limiting algal productivity. Dissolved SRP comprises the dominant form of phosphorus present in the off-shore surface waters, contributing 50-60% or more of the overall total phosphorus concentration. Measured color values at the off-shore sites are generally low in value, with the most elevated color observed at monitoring Site M-2 which is located in an area receiving significant inflows from adjacent waterways.

Measured chlorophyll-a concentrations were slightly elevated in the off-shore monitoring sites, with geometric mean values ranging from 7.8-14.9 μ g/l. However, the monitoring program was conducted during the most productive portion of the year, and chlorophyll-a values measured during winter conditions would likely be lower.

A tabular summary of geometric mean concentrations in surface water samples collected in Marco Island waterways from April-September 2020 is given on Table 2-14. Similar to the trends observed for the off-shore sites, waterway samples contained extremely low levels of dissolved inorganic nitrogen which likely limits algal productivity in these areas. The dominant nitrogen form present at each site was dissolved organic nitrogen which comprises 80-90% of the overall nitrogen present. Measured particulate nitrogen concentrations ranged from relatively low to slightly elevated, depending upon location. Measured total nitrogen concentrations during the field monitoring program appear to be similar to long-term historical values measured within the island waterways.

TABLE 2-14

GEOMETRIC MEAN WATER QUALITY CHARACTERISTICS OF SURFACE WATER SAMPLES COLLECTED AT ISLAND WATERWAY SITES FROM APRIL-SEPTEMBER 2020

						PA	RAMET	ER					
LOCATION	Alkalinity (m/gl)	Ammonia N (μg/l)	NO _x -N (l/gμ)	Diss. Organic N (µg/I)	Particulate N (µg/l)	Total N (µg/l)	SRP (µg/l)	Diss. Organic P (μg/l)	Particulate P (μg/l)	Total P (µg/l)	Turbidity (NTU)	Color (Pt-Co)	Chlorophyll-a (µg/l)
M-5	139	3	5	451	67	577	22	9	12	45	5.1	6	11.3
M-6	136	9	6	451	93	573	28	4	11	45	2.2	9	14.8
M-7	137	5	4	474	55	555	23	13	9	46	2.7	7	15.1
M-8	128	4	4	474	119	615	20	10	14	45	2.3	9	14.2
M-9	135	7	4	469	101	596	26	4	13	45	2.4	12	14.3
M-10	133	4	4	446	89	584	21	15	9	46	1.4	10	14.4
M-11	133	3	4	319	126	522	24	13	12	53	1.0	8	14.9
M-12	141	5	5	489	113	631	25	10	8	44	1.3	13	15.3
M-13	139	6	4	493	131	696	19	11	12	44	2.1	15	18.9
M-14	135	4	7	563	116	700	20	4	12	39	2.0	6	15.5
M-15	137	3	3	468	48	535	24	8	7	39	2.5	7	14.6
M-16	138	5	3	361	97	477	24	9	9	44	2.2	6	12.2
M-17	136	4	4	480	85	584	26	8	10	46	3.2	6	9.6

Similar to the trends observed in the off-shore surface water samples, island waterways contained an abundance of SRP which is directly available for algal uptake, and the lack of inorganic nitrogen likely limits algal productivity within the waterways. Measured total phosphorus concentrations during the field monitoring program appear to be similar to long-term historical values measured within the island waterways.

A relatively high degree of variability was observed in measured values of both turbidity and color, with turbidity values ranging from 1.0-5.1 NTU and color values ranging from 6-15 Pt-Co units. An inverse relationship appears to exist between turbidity and color, with higher turbidity values generally associated with lower color concentrations.

Measured chlorophyll-a concentrations in the island waterways appear to be somewhat higher than historical values discussed previously. The ERD Laboratory uses the highly sensitive fluorometric technique for measuring chlorophyll-a which relies upon actual chlorophyll standards rather than the common regression relationship used by most commercial laboratories. As discussed previously for the off-shore surface water samples, the monitoring program was conducted during the most biologically productive months of the year, and values collected during other seasonal periods would likely be lower in value.

2.3.3.3 **Summary**

Water quality monitoring conducted by ERD indicated a well mixed water column at all on- and off-shore monitoring sites within the top 4-5 m of the water column. However, areas deeper than 4-5 m, particularly in upstream portions of the canals, were characterized by anaerobic conditions with large increases in conductivity near the water-sediment interface. These conditions suggest poor circulation and relatively stagnant conditions in upstream areas. Chemical characteristics of surface water samples collected by ERD are similar to long-term historical values measured in Marco Island waterways. Waterway samples suggest an enrichment in concentrations for nutrients and chlorophyll-a, compared with off-shore waters, which increases with increasing distance upstream within the waterways. No significant differences were observed in water quality characteristics between incoming and outgoing tidal events, although concentrations of nutrients and chlorophyll-a were often higher under outgoing tidal conditions.

2.4 <u>Sediment Characteristics</u>

Sediment core samples were collected in off-shore and waterway sites to evaluate the characteristics of existing sediments and potential impacts on water quality within the waterways. Sediment core samples were collected at 26 locations on April 29 and May 26, 2020 by ERD personnel. Locations of Marco Island sediment sampling sites are illustrated on Figure 2-20.

2.4.1 Sampling Techniques

Sediment samples were collected at each of the 26 monitoring sites using a stainless steel split-spoon core device, which was penetrated into the sediments at each location to a minimum distance of approximately 0.5 m. After retrieval of the sediment sample, any overlying water was carefully decanted before the split-spoon device was opened to expose the collected sample. Visual characteristics of each sediment core sample were recorded, and the 0-10 cm layer was carefully sectioned off and placed into a 120-ml wide-mouth polyethylene container for transport to the ERD laboratory. Duplicate core samples were collected at each site, and the 0-10 cm layers were combined together to form a single composite sample for each of the 26 monitoring sites. The polyethylene containers utilized for storage of the collected samples were filled completely to minimize air space in the storage container above the composite sediment sample. Each of the collected samples was stored in ice and returned to the ERD laboratory for physical and chemical characterization.

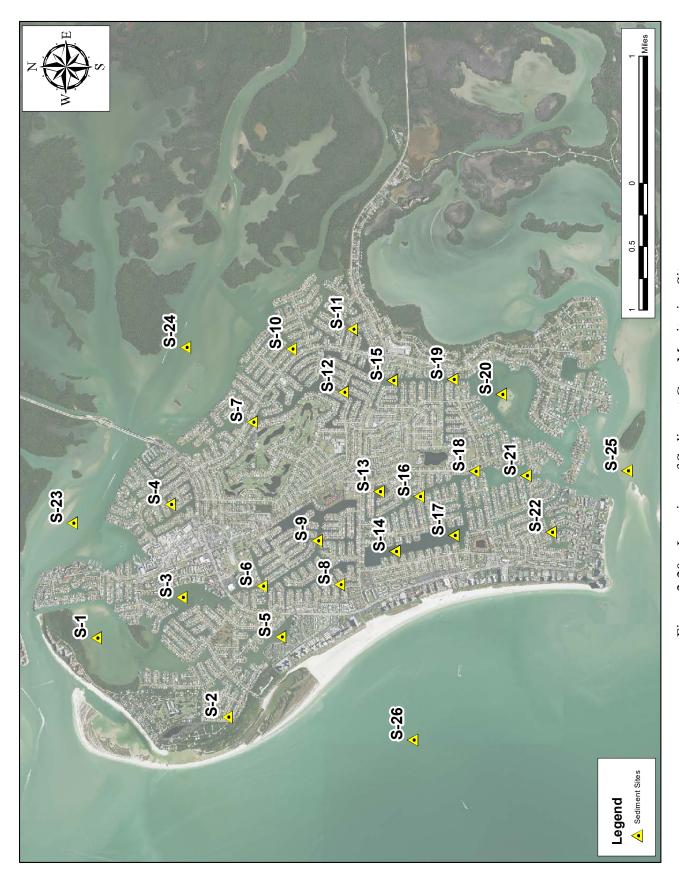


Figure 2-20. Locations of Sediment Core Monitoring Sites.

2.4.2 Sediment Characterization and Speciation Techniques

Each of the 26 collected sediment core samples was analyzed for a variety of general parameters, including moisture content, organic content, sediment density, total nitrogen, and total phosphorus. Methodologies utilized for preparation and analysis of the sediment samples for these parameters are outlined in Table 2-15.

TABLE 2-15

ANALYTICAL METHODS FOR SEDIMENT ANALYSES

MEASUREMENT PARAMETER	SAMPLE PREPARATION	ANALYSIS REFERENCE	REFERENCE PREP./ANAL.*	METHOD DETECTION LIMITS (MDLs)
pН	EPA 9045	EPA 9045	3/3	0.01 pH units
Moisture Content	p. 3-54	p. 3-58	1/1	0.1%
Organic Content (Volatile Solids)	p. 3-52	pp. 3-52 to 3-53	1/1	0.1%
Total Phosphorus	pp. 3-227 to 3-228 (Method C)	EPA 365.4	1/2	0.005 mg/kg
Total Nitrogen	p. 3-201	pp. 3-201 to 3-204	1/1	0.010 mg/kg
Specific Gravity (Density)	p. 3-61	pp. 3-61 to 3-62	1/1	NA

*REFERENCES:

- 1. <u>Procedures for Handling and Chemical Analysis of Sediments and Water Samples</u>, EPA/Corps of Engineers, EPA/CE-81-1, 1981.
- 2. Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, Revised March 1983.
- 3. <u>Test Methods for Evaluating Solid Wastes, Physical-Chemical Methods</u>, Third Edition, EPA-SW-846, Updated November 1990.

In addition to general sediment characterization, a fractionation procedure for inorganic soil phosphorus was conducted on each of the 26 collected sediment samples. A modified version of the Chang and Jackson Procedure, as proposed by Peterson and Corey (1966), was used for phosphorus fractionation. The modified Chang and Jackson Procedure allows the speciation of sediment phosphorus into saloid-bound phosphorus (defined as the sum of soluble plus easily exchangeable sediment phosphorus), iron-bound phosphorus, and aluminum-bound phosphorus. Although not used in this project, subsequent extractions of the Chang and Jackson procedure also provide calcium-bound and residual fractions.

The Chang and Jackson procedure was originally developed at the University of Wisconsin to evaluate phosphorus bonding in dried agricultural soils. However, drying of wet sediments will significantly impact phosphorus speciation, particularly the soluble and iron-bound associations. Therefore, the basic Chang and Jackson method was adapted and modified by ERD in 1992 for wet sediments by adjusting solution concentrations and extraction timing to account for the liquid volume in the wet sediments and the reduced solids mass. This modified method has been used as the basis for all sediment inactivation projects which have been conducted in the State of Florida.

Saloid-bound phosphorus is considered to be available under all conditions at all times. Iron-bound phosphorus is relatively stable under aerobic environments, generally characterized by redox potentials greater than 200 mv (E_h), while unstable under anoxic conditions, characterized by redox potential less than 200 mv. Aluminum-bound phosphorus is considered to be stable under all conditions of redox potential and natural pH conditions. A schematic of the Chang and Jackson Speciation Procedure for evaluating soil phosphorus bounding is given in Figure 2-21.

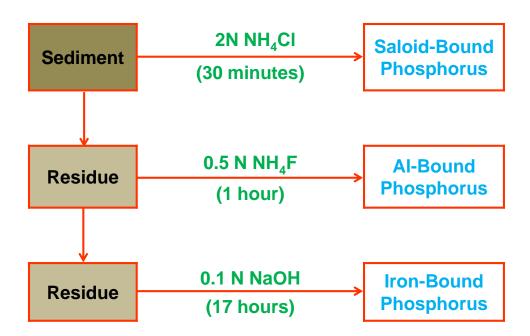


Figure 2-21. Schematic of Chang and Jackson Speciation Procedure for Evaluating Soil Phosphorus Bonding.

For purposes of evaluating release potential, ERD typically assumes that potentially available inorganic phosphorus in soils/sediments, particularly those which exhibit a significant potential to develop reduced conditions below the sediment-water interface, is represented by the sum of the soluble inorganic phosphorus and easily exchangeable phosphorus fractions (collectively termed saloid-bound phosphorus), plus iron-bound phosphorus which can become solubilized under reduced conditions. Aluminum-bound phosphorus is generally considered to be unavailable in the typical sediment pH range of approximately 5.5-7.5 under a wide range of redox conditions.

2.4.3 Sediment Characteristics

2.4.3.1 Visual Characteristics

Visual characteristics of sediment core samples were recorded for each of the 26 sediment samples collected in Marco Island during April and May 2020, and a summary of visual characteristics of sediment core samples is given in Table 2-16. In general, a thin surficial layer of gray sandy clay with shell fragments was observed at 18 of the 26 monitoring sites, with measured depths ranging from 4->116 cm. This unconsolidated surficial layer is comprised primarily of fresh organic material (such as dead algal cells) and detritus which has recently accumulated onto the bottom of the waterways combined with a mixture of sand and clay, likely residual material from the original construction. Much of this material is easily disturbed by wind action or boating activities. Sediments beneath the surficial layers consist primarily of brown medium sand combined with organic detritus and shell fragments.

2.4.3.2 General Sediment Characteristics

After return to the ERD Laboratory, the collected sediment core samples were evaluated for general sediment characteristics, including pH, moisture content, organic content, sediment density, total nitrogen, and total phosphorus. A summary of general characteristics measured in each of the 26 collected sediment core samples is given in Table 2-17. In general, sediments at Marco Island sites were found to be slightly acidic to slightly alkaline in pH, with measured pH values ranging from 6.64-7.85 and an overall geometric mean of 7.25. These values are similar to sediment pH measurements commonly observed in estuarine systems.

Measurements of sediment moisture content and organic content in Marco Island sediments were variable between the individual sediment sites. Some of the collected sediment samples are characterized by a relatively low moisture content and low organic content, suggesting that these surficial sediments are comprised primarily of sand or inorganic detritus. In contrast, other sediment core samples are characterized by elevated values for both moisture content and organic content, suggesting areas of accumulated organic muck. Measured sediment moisture contents ranged from 20.4-77.5% with an overall geometric mean of 44.1%. Sediment moisture contents in excess of 50% are often indicative of highly organic sediments, while moisture contents less than 50% reflect mixtures of sand and muck. The measured sediment moisture contents at the Marco Island sites are similar to values commonly observed in estuaries and reflect a combination of sandy and loose organic sediments.

Measured sediment organic content in Marco Island sediments ranged from 0.1-20.9%, with an overall mean of 5.2%. In general, sediment organic content values in excess of 20-30% are often indicative of organic muck type sediments, with values less than 20-30% representing either sand or mixtures of muck and sand, suggesting a low amount of organic matter in the sediments.

TABLE 2-16

VISUAL CHARACTERISTICS OF SEDIMENT CORE SAMPLES COLLECTED IN MARCO ISLAND WATERWAYS ON APRIL 29 AND MAY 25, 2020

SITE NO.	LAYER (cm)	VISUAL APPEARANCE
	0 – 10	Gray sandy clay with shell
S-1	10 - >24	Brown fine sand with organics and shell
S-2	0 - 36	Gray sandy clay with shell
5-2	36 - >43	Brown fine sand with organics and shell
S-3	0 - >42	Gray sandy clay with shell
	0 - 22	Gray sandy clay with shell
	22 - 32	Black fine sand
S-4	32 - 33	Brown fine sand
	33 - 35	Black fine sand Brown fine sand
0.5	35 - >38	
S-5	0 - >66	Gray sandy clay with shell
S-6	0 - >15	Gray sandy clay with shell
S-7	0 – 4	Gray sandy clay with shell
~ ~	4 - >18	Brown fine sand with organics
S-8	0 - >23	Brown fine sand with organics
S-9	0 - 50	Gray sandy clay with shell
	50 - >62 0 - 8	Brown fine sand with organics
S-10	8 – 66	Gray sandy clay with shell Dark brown consolidated organic muck
5-10	66 - >83	Brown fine sand with organics and shell
S-11	0 - >63	Gray sandy clay with shell
	0 – 29	Gray sandy clay with shell
S-12		Fine brown sand
S-13	29 - >38 0 - 41	Gray sandy clay with shell
3-13	41 - >44 0 - 33	Brown fine sand with organics
S-14		Gray sandy clay with shell
~ 1.	33 - >71	Brown fine sand with organics
	0-41	Gray sandy clay with shell
S-15	41 - 52 $52 - 86$	Brown organic detritus Gray sandy clay with shell
	85 - >97	Brown organic detritus
0.16	0-8	Gray sandy clay
S-16	8 - >24	Brown fine sand with organics
S-17	0 – 4	Dark brown unconsolidated organic muck
5-17	4 ->35	Brown fine sand with organics
S-18	0 ->20	Gray sand with shell
S-19	0 - 4	Dark brown unconsolidated organic muck
	4 - > 35	Brown fine sand with organics
S-20	0 - >116	Clay Gray sandy clay with shell
S-21	0 - 28	Gray sandy clay with shell
	28 - >34	Brown fine sand with organics
S-22	0 - 102	Gray sandy clay with shell
	102 - >111	Brown fine sand with organics
S-23	0 - >6	Brown fine sand with organics and shell
S-24	0 - >29	Brown fine sand with organics
S-25	0 - >10	Brown fine sand with organics and shell
S-26	0 - >30	Light gray fine sand

TABLE 2-17

GENERAL CHARACTERISTICS OF SEDIMENT CORE
SAMPLES COLLECTED IN MARCO ISLAND DURING 2020

SITE	DATE COLLECTED	pH (s.u.)	MOISTURE CONTENT (%)	ORGANIC CONTENT (%)	WET DENSITY (g/cm³)	TOTAL NITROGEN (μg/cm³)	TOTAL PHOSPHORUS (µg/cm³)
S-1	4/29/20	7.37	33.7	6.4	1.93	418	390
S-2	4/29/20	7.48	54.2	9.9	1.62	509	550
S-3	4/29/20	7.27	25.3	5.3	2.06	398	333
S-4	4/29/20	7.48	54.0	8.9	1.63	536	454
S-5	5/26/20	6.69	67.9	14.8	1.41	567	536
S-6	4/29/20	7.40	28.7	3.1	2.04	506	471
S-7	4/29/20	7.39	29.5	3.8	2.02	787	422
S-8	4/29/20	7.44	34.2	4.3	1.94	646	376
S-9	4/29/20	7.46	65.2	13.9	1.45	509	589
S-10	4/29/20	7.36	64.3	12.5	1.47	630	455
S-11	4/29/20	7.25	73.0	20.9	1.32	281	251
S-12	4/29/20	7.46	71.0	17.5	1.36	597	412
S-13	4/29/20	7.21	76.4	7.5	1.33	282	334
S-14	4/29/20	7.15	75.2	15.4	1.32	610	538
S-15	4/29/20	7.38	77.5	0.1	1.34	397	537
S-16	4/29/20	7.00	28.8	5.8	2.01	704	870
S-17	4/29/20	7.10	72.1	13.0	1.36	519	544
S-18	5/26/20	6.64	25.1	0.9	2.11	154	77
S-19	4/29/20	7.18	36.3	3.2	1.93	443	500
S-20	4/29/20	7.06	72.8	19.4	1.33	517	542
S-21	4/29/20	7.10	45.9	4.8	1.77	1234	448
S-22	4/29/20	7.02	70.5	17.1	1.37	642	625
S-23	4/29/20	7.85	21.5	1.2	2.16	425	193
S-24	4/29/20	7.36	28.3	3.2	2.04	829	539
S-25	4/29/20	7.19	21.4	1.7	2.16	405	345
S-26	11/20/20	7.44	20.4	0.9	2.45	88	233
N	Iinimum Value:	6.64	20.4	0.1	1.32	88	77
M	aximum Value:	7.85	77.5	20.9	2.45	1,234	870
G	eometric Mean:	7.25	44.1	5.2	1.69	471	409

Measured sediment density values are also useful in evaluating the general physical characteristics of sediments within a lake. Sediments with calculated wet densities between 1.0 g/cm³ and 1.25 g/cm³ are indicative of highly organic muck type sediments, while sediment densities of approximately 2.0 or greater are indicative of sandy sediment conditions. Values between 1.25 g/cm³ and 2.0 g/cm³ indicate mixtures of sand muck. Measured sediment density values in Marco Island sediments range from 1.32-2.45 g/cm³, with an overall mean of 1.69 g/cm³, indicating sediments which are comprised primarily of sandy clay and sand with a low organic fraction.

Measured concentrations of total phosphorus in Marco Island sediments were found to be low to elevated in value with a moderate degree of variability throughout the sites, ranging from 77-870 $\mu g/cm^3$, with an overall mean of 409 $\mu g/cm^3$. In general, sandy sediments with high wet densities are characterized by low total phosphorus concentrations, while highly organic muck type sediments are characterized by elevated total phosphorus concentrations.

Similar to the trends observed for sediment phosphorus concentrations, total nitrogen concentrations are low in value, with a low degree of variability throughout Marco Island sediments. Measured sediment nitrogen concentrations ranged from 88-1,234 $\mu g/cm^3$, with an overall mean of 471 $\mu g/cm^3$. Measured sediment nitrogen concentrations appear to be similar to values normally observed in estuary systems.

2.4.3.3 Phosphorus Speciation

As discussed in Section 2.4.3, each of the collected sediment core samples was evaluated for phosphorus speciation based upon the Chang and Jackson speciation procedure. This procedure allows phosphorus within the sediments to be speciated with respect to bonding mechanisms within the sediments and is useful in evaluating the stability of phosphorus in the sediments and the potential for release of phosphorus from the sediments under anoxic or other conditions.

A summary of phosphorus speciation in sediment core samples collected from Marco Island sites during 2020 is given in Table 2-18. Saloid-bound phosphorus represents sediment phosphorus which is either soluble or easily exchangeable and is typically considered to be readily available for release from the sediments into the overlying water column. As seen in Table 2-18, saloid-bound phosphorus concentrations appear to be low in value at most of the monitoring sites. Measured values for saloid-bound phosphorus range from 2-26 $\mu g/cm^3$, with an overall geometric mean of 8 $\mu g/cm^3$, representing a moderate pool of readily available phosphorus.

TABLE 2-18

PHOSPHORUS SPECIATION IN SEDIMENT CORE SAMPLES
COLLECTED AT MARCO ISLAND DURING APRIL AND MAY 2020

SITE	DATE	SALOID- BOUND P	IRON- BOUND P	ALUMINUM- BOUND P	AVAILA SEDIM PHOSPH	ENT
~	COLLECTED	(μg/cm³ wet wt.)	(μg/cm ³ wet wt.)	(μg/cm³ wet wt.)	g/cm ³	% of Total P
S-1	4/29/20	10	5	106	16	4
S-2	4/29/20	9	6	96	16	3
S-3	4/29/20	15	8	94	23	7
S-4	4/29/20	7	19	63	26	6
S-5	5/26/20	6	4	140	10	2
S-6	4/29/20	7	7	94	14	3
S-7	4/29/20	21	10	102	31	7
S-8	4/29/20	7	9	76	16	4
S-9	4/29/20	3	8	64	11	2
S-10	4/29/20	5	11	90	17	4
S-11	4/29/20	9	12	90	21	8
S-12	4/29/20	5	8	93	12	3
S-13	4/29/20	3	6	64	9	3
S-14	4/29/20	8	8	78	16	3
S-15	4/29/20	3	5	59	8	1
S-16	4/29/20	21	7	104	28	3
S-17	4/29/20	4	6	68	10	2
S-18	5/26/20	9	2	18	11	14
S-19	4/29/20	10	8	96	18	4
S-20	4/29/20	11	4	72	15	3
S-21	4/29/20	12	4	77	16	4
S-22	4/29/20	7	5	81	12	2
S-23	4/29/20	26	5	37	31	16
S-24	4/29/20	17	12	98	30	6
S-25	4/29/20	25	2	42	26	8
S-26	11/20/20	2	2	22	5	2
N	Ainimum Value:	2	2	18	5	1
N	Iaximum Value:	26	19	140	31	16
G	eometric Mean:	8	6	72	16	4

In general, iron-bound phosphorus associations in the Marco Island sediments appear to be low in value. Iron-bound phosphorus is relatively stable under oxidized conditions, but becomes unstable under a reduced environment, causing the iron-phosphorus bonds to separate, releasing the bound phosphorus directly into the water column. Iron-bound phosphorus concentrations in the Marco Island sediments range from 2-19 $\mu g/cm^3$, with an overall mean of 6 $\mu g/cm^3$. Since iron-bound phosphorus can be released under anoxic conditions, portions of the sediments may have conditions favorable for release of iron-bound sediment phosphorus into the water column throughout much of the year. However, the iron-bound phosphorus concentrations summarized in Table 2-18 appear to be low in value compared with values commonly observed in estuary systems.

Aluminum-bound phosphorus represents an unavailable species of phosphorus within the sediments. Phosphorus bound with aluminum is typically considered to be inert under a wide range of pH and redox conditions within the sediments. Aluminum-bound sediment phosphorus concentrations at the Marco Island sites range from 18-140 $\mu g/cm^3$, with an overall mean of 75 $\mu g/cm^3$. These values suggest that approximately 13% of the existing phosphorus within the sediments is bound in sediment associations with aluminum which are considered to be unavailable.

Total available phosphorus represents the sum of the saloid-bound phosphorus and iron-bound phosphorus associations in each sediment core sample. Since the saloid-bound phosphorus is immediately available, and the iron-bound phosphorus is available under reduced conditions, the sum of these speciations represents the total phosphorus which is potentially available from inorganic bonding mechanisms within the sediments. This information can be utilized as a guide for future sediment management activities such as dredging. A summary of total available phosphorus in each of the 26 collected sediment core samples is also given in Table 2-18. Total available phosphorus concentrations within the sediments range from 5-31 $\mu g/cm^3$, with an overall geometric mean of 16 $\mu g/cm^3$, reflecting a low value.

Available sediment phosphorus can also expressed as a percentage of total phosphorus concentrations within the sediments to indicate the percentage of existing sediment phosphorus which is available for release. This value is calculated as the ratio of the total available phosphorus values listed for each site in Table 2-18 divided by the total sediment phosphorus concentrations listed in Table 2-17. The percentage of available phosphorus within the Marco Island sediments ranges from approximately 1-16%, with an overall geometric mean of 4%. This suggests that approximately 4% of the existing accumulation of phosphorus within the sediments is potentially available for release into the overlying water column as a result of sediment agitation or anoxic conditions. Since the existing sediment phosphorus concentrations are low in value, only a small amount of sediment phosphorus is potentially available for release.

2.4.3.4 Comparison of Sediment Characteristics

A comparison of sediment characteristics by sub-basins and off-island areas is given in Table 2-19. Measured sediment values for pH and moisture content are relatively similar between collection sites in each of the 5 sub-basin areas. Measured organic content in sediments collected in Sub-basins 1, 2, and 4 appear to be similar in value, with the most elevated sediment organic content observed in Sub-basin 3 and the lowest sediment organic content observed in Sub-basin 5. In contrast, off-island sediment monitoring sites appear to have substantially lower values for moisture content and organic content, along with a much greater value for wet density, indicating a sandy sediment substrate. These values suggest that sediments in the off-shore monitoring sites consist primarily of sand with low moisture and organic content, reflecting a low level of accumulation for organic matter. The off-island and Gulf monitoring sites receive significantly more flushing activity than the internal waterways where stagnant conditions are often observed.

TABLE 2-19

COMPARISON OF SEDIMENT CHARACTERISTICS
BY SUB-BASIN AND OFF-ISLAND AREAS

	RE NT TO THE FEE		EN.	RUS	SEDIMENT PHOSPHORUS SPECIATION (µg/cm³)			AVAILABLE SEDIMENT PHOSPHORUS				
SUB- BASIN	SITES INCLUDED	pH (s.u.)	MOISTURE CONTENT (%)	ORGANIC CONTENT (%)	WET DENSITY (g/cm³)	TOTAL NITROGEN (μg/cm³)	TOTAL PHOSPHORUS (µg/cm³)	Saloid-Bound	Iron-Bound	Aluminum- Bound	$ m g/cm^3$	% of Total P
1	1,2,3,5,6,8,9	7.30	41.2	7.1	1.76	502	454	7	7	93	15	3
2	4	7.48	54.0	8.9	1.63	536	454	7	19	63	26	6
3	7,10,11,12	7.36	56.0	11.5	1.52	537	376	8	10	94	19	5
4	13,14,16,17,18,21, 22	7.03	51.6	6.8	1.58	499	407	8	5	63	14	3
5	15,19,20	7.21	58.9	0.6	1.51	450	526	7	6	74	13	2
Off- Island	23,24,25	7.46	23.5	1.9	2.12	523	330	22	4	53	5	2
Gulf of Mexico	26	7.44	20.4	0.9	2.45	88	233	2	2	22	21	9

Measured sediment nitrogen concentrations are virtually identical in each of the 5 sub-basins as well as the off-island monitoring sites, suggesting no significant differences in nitrogen concentrations between any of the sediment monitoring locations. Since nitrogen appears to be the limiting nutrient in both on-island and off-shore areas, the lack of differential accumulation of organic nitrogen is not surprising and indicates that organic nitrogen is rapidly recycled back into the water column which limits sediment nitrogen accumulation.

A somewhat higher degree of variability is apparent in measured total phosphorus concentrations between the sub-basins and off-island monitoring sites, although geometric mean values for the sub-basin areas are relatively similar. Somewhat lower overall total phosphorus concentrations of 330 $\mu g/cm^3$ and 233 $\mu g/cm^3$ were observed at the off-island and Gulf monitoring sites where accumulation of organic matter is limited due to the relatively constant flow regimes. It appears that phosphorus is accumulating within the sediments of the island waterways since water column concentrations do not appear to be limiting algal productivity. This reduced uptake of phosphorus allows phosphorus to accumulate in sediments.

The off-island monitoring sites appear to have a higher concentration of saloid-bound phosphorus and a lower concentration of iron-bound phosphorus compared with the on-island waterways and Gulf monitoring sites. More elevated levels of saloid-bound and lower levels of iron-bound are common in primarily sand sediments where phosphorus bonding mechanisms are much less complex than those which occur in sediments with significant organic content. Concentrations of aluminum-bound and organic-bound phosphorus associations appear to be similar between each of the 5 sub-basin areas, with lower values for each of these parameters observed in the off-island sites. These lower values are also associated with the lack of significant organic matter at the off-island sites.

2.4.3.5 Summary

Overall, sediment samples collected in Marco Island waterways are near neutral in pH, with relatively low levels for both moisture content and organic content, suggesting sediments consisting primarily of sand or inert materials. Measured values for moisture content and organic content are lower in off-shore sediments than in island waterways, reflecting differences in sediment accumulation mechanisms between the 2 areas. No significant differences are apparent in accumulation of total nitrogen between the island waterways and off-shore sites, presumably resulting from nitrogen limitation within the aquatic systems, although an extremely low nitrogen concentration was measured at the Gulf site. However, accumulation of total phosphorus is apparent in Marco Island waterways compared with off-shore and Gulf sites. Onshore and off-shore sites exhibit low to moderate levels of both saloid- and iron-bound sediment phosphorus. Overall, approximately 9% of the total phosphorus present within the sediments is potentially available for release into the overlying water column.

SECTION 3

CHARACTERISTICS OF THE MARCO ISLAND DRAINAGE BASIN

Characteristics of the drainage basin area for Marco Island are summarized in this section, including information on drainage basin delineations, land use characteristics, soil types, basin topography, hydrologic characteristics, stormwater treatment facilities and techniques, and methods of sewage disposal. A discussion of current watershed characteristics is given in the following sections. For purposes of this analysis, "current" conditions are defined as those present in June 2020.

For purposes of this project, the drainage basin includes all developed areas located within the City of Marco Island. The City boundary includes not only the main island area but also areas of largely undeveloped small keys and mangrove forests located east and southeast of the main island and a sparsely developed area on Horr's Island, referred to as Key Marco PUD. Since these areas are mostly undeveloped and were not included in the water quality evaluation program, they are excluded for purposes of this analysis.

3.1 Watershed Characteristics

A delineation of contributing drainage basin areas for Marco Island was conducted by ERD as part of this project. A preliminary drainage basin map for Marco Island was obtained from the Marco Island Public Works Department as a stormsewer inventory map with drainage basin delineations. ERD also obtained 1-ft LIDAR contour elevations for the watershed area (dated 2018) obtained from USGS. In addition to the information obtained from Marco Island and USGS, ERD also reviewed high-resolution aerial photography (January 2018) for the drainage basin area and conducted extensive field reconnaissance. This information was used to verify and modify, as appropriate, the watershed delineation contained in the Marco Island GIS system to reflect existing conditions at the time of this analysis during 2020.

An overview of the delineated drainage basins for Marco Island is given on Figure 3-1. For purposes of this evaluation, the Marco Island area has been divided into 7 separate drainage sub-basins. The main island is divided into 5 sections, referred to as Sub-basins 1-5, which are bisected in an east-west direction by San Marco Road and in a north-south direction by Bald Eagle Drive and S. Heathwood Drive, although the north-south separation is not as definitive as the east-west separation. The northeast section is further sub-divided into areas which discharge to Factory Bay and areas which discharge to Marco Bay. Each of the 5 sub-basins discharges through the respective canal systems to open tidal water. Sub-basin 1 discharges to Collier Bay and Marco Bay. Sub-basin 2 discharge to Factory Bay and ultimately to Marco Bay, with Sub-basin 3 discharging to East Marco Bay, Sub-basin 4 discharging to Caxambas Bay, and Sub-basin 5 discharging to Roberts Bay and ultimately to Caxambas Bay.

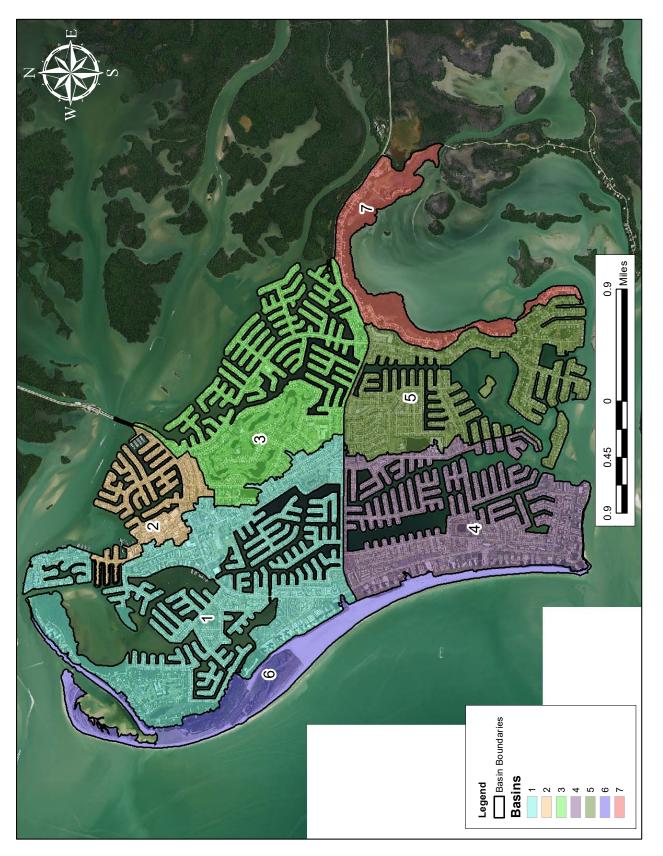


Figure 3-1. Overview of the Marco Island Drainage Basin Area. (Photo Date: January 2018)

Two additional sub-basin areas are also included on Figure 3-1. Sub-basin 6 reflects portions of the island which discharge directly to open water by direct overland flow and primarily include the beach areas along the west side of the island. The final area, referred to as Sub-basin 7, reflects developed areas which discharge directly to Barfield Bay on the southeast side of the island, excluding Harris Island and other small keys.

A comparison of Marco Island sub-basin areas is given in Table 3-1. The identified sub-basin areas range in size from 306.5 acres (Sub-basin 2) to 1,487.1 acres (Sub-basin 1), with a total land area of 5,366.68 acres. The 5 mainland island sub-basin areas (Sub-basins 1-5) contain 84.2% of the overall drainage basin area. Each of the 2 remaining sub-basin areas contributes approximately 10% or less of the total basin area.

TABLE 3-1
SUB-BASIN AREAS DISCHARGING TO MARCO ISLAND

SUB- BASIN	AREA (acres)	PERCENT OF TOTAL (%)	ULTIMATE POINT OF DISCHARGE
1	1,487.05	27.7	Collier Bay to Marco Bay
2	306.51	5.7	Factory Bay to Marco Bay
3	935.45	17.4	East Marco Bay
4	955.10	17.8	Caxambas Bay
5	834.67	15.6	Roberts Bay to Caxambas Bay
6	497.82	9.3	Gulf of Mexico
7	350.08	6.5	Barfield Bay
TOTAL:	5,366.68	100	

3.2 Land Use in the Marco Island Drainage Basin

Preliminary land use information for Marco Island was obtained from the 2016 Land Use Inventory conducted by the South Florida Water Management District (SFWMD). The Land Use Inventory is the standard resource used by FDEP and engineers throughout Florida for calculating runoff loadings and for developing TMDL documents and analyses. These data provide a uniform methodology for defining land use throughout Florida which is independent of, and in some cases different from, local land use definitions.

The land use information for the Marco Island watershed was obtained in a GIS format in the form of Level III FLUCCS (Florida Land Use Cover and Classification System) codes. The Level III FLUCCS codes were condensed by ERD to a series of general land use categories to simplify presentation of the information and to assist in assigning runoff characteristics for non-monitored land use types. The SFWMD inventory was used as a preliminary base map, and modifications to the land use characterization data were made, as necessary, using a combination of recent high resolution aerial photography and extensive field reconnaissance to reflect land use under current conditions, defined as June 2020 for purposes of this analysis. Information was also obtained from the Collier County Property Appraiser's Office to identify vacant parcels and right-of-way areas.

An overview of current land use (June 2020) in the Marco Island drainage basin is given on Figure 3-2. Under current conditions, the drainage basin is dominated primarily by medium-density residential, multi-family, commercial, recreational, and highway land uses. In addition to the developed land use categories listed previously, the Marco Island drainage basin also includes open spaces, forests, wetlands, and fresh and saltwater ponds.

A tabular summary of current land use in the Marco Island drainage basin is given in Table 3-2 which includes a land use summary for each of the sub-basin areas identified on Figure 3-1. Overall, the single largest land use category in the Marco Island drainage basin is medium-density residential which covers approximately 57.9% of the total drainage basin area. The second most significant land use category is multi-family residential (apartments, condos, etc.) which occupies 10.8% of the overall drainage basin area, followed by commercial (6.2%), mangrove swamp (5.5%), swimming beaches (5.3%), and recreational areas (3.7%). Each of the remaining land use categories contributes approximately 3% or less of the overall drainage basin area. The areas designated as Sub-basins 6 and 7 consist primarily of swimming beaches and natural coastal areas, with scattered residential homes.

3.3 Area Waterways

In addition to the land use summarized in Table 3-2, Sub-basins 1-5 also include large areas of canals and waterways which are intertwined with the developed areas, and these canals and waterways are perhaps the defining feature of Marco Island. Waterway areas are highlighted in **dark blue** on Figure 3-2 but are not included in the land use areas summarized on Table 3-2 since they are considered receiving waters for the upland areas. A summary of surface areas for waterways contained in Sub-basins 1-5 is given in Table 3-3 based on the waterway boundaries shown on Figure 3-2. Overall, the primary sub-basins contain 1,524.96 acres of canals and waterways. This information is used in a subsequent section to evaluate direct loadings from bulk precipitation on canals and waterways.

Virtually all of the canals and waterways are excavated channels which are retained by seawalls constructed of pile-driven sheets of steel, aluminum or concrete sections. Locations of existing seawalls are indicated on Figure 3-3. Overall, the canal system for Marco Island contains approximately 120 miles of constructed seawalls. Efforts for repair or replacement of existing seawalls were commonly observed during the field monitoring program.

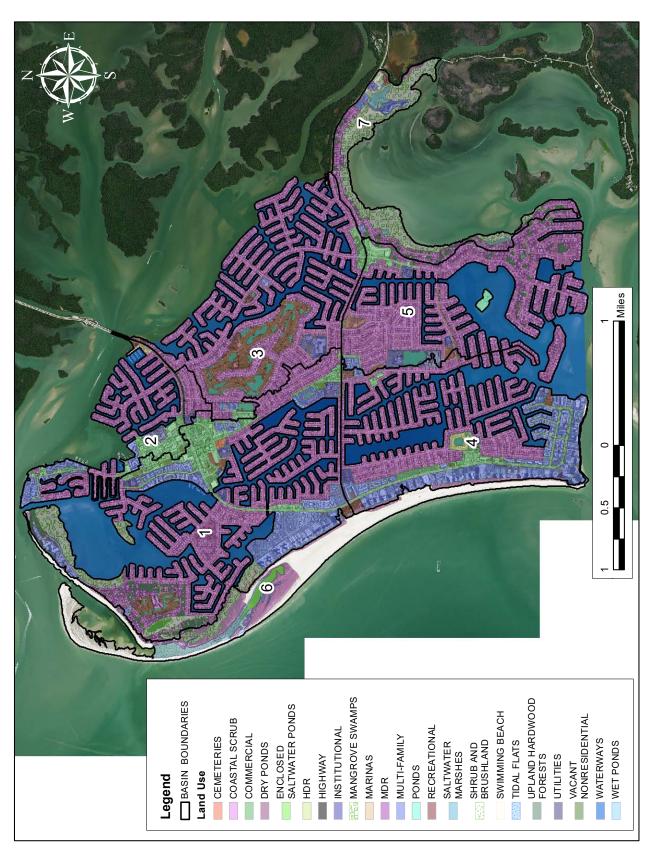


Figure 3-2. Current (June 2020) Land Use in the Marco Island Drainage Basin.

TABLE 3-2

CURRENT (JUNE 2020) LAND USE CHARACTERISTICS
IN THE MARCO ISLAND WATERSHED

I AND LICE	LAND USE AREA BY SUB-BASIN (acres)							GRANT	PERCENT
LAND USE	1	2	3	4	5	6	7	TOTAL (acres)	OF TOTAL (%)
Cemeteries	3.27							3.27	0.1
Coastal Scrub	14.38	-		19.80	1.64	114.22	4.59	154.62	2.9
Commercial	159.93	49.84	19.90	74.87	27.60		0.41	332.56	6.2
Dry Ponds	5.71	0.34	1.55	10.06	0.55		0.32	18.52	0.3
Saltwater Ponds	5.57	-				17.79		23.35	0.4
High-Density Residential (HDR)				9.68				9.68	0.2
Highway		9.11	3.59					12.70	0.2
Institutional	25.12	2.97	22.85	11.21	24.31		2.82	89.29	1.7
Mangrove Swamps	103.17		1.13			22.20	169.06	295.54	5.5
Marinas		4.72						4.72	0.1
Medium-Density Residential (MDR)	815.36	214.18	714.33	541.67	706.02	8.17	106.24	3,105.97	57.9
Multi-Family	263.17	10.28	6.37	264.00	8.39	9.10	18.31	579.63	10.8
Ponds	6.35		37.76	2.67	19.50			66.28	1.2
Recreational	37.28	1.46	124.81	14.22	16.98	1.54	2.84	199.14	3.7
Saltwater Marshes							14.37	14.37	0.3
Scrub and Brushland		1					12.17	12.17	0.2
Swimming Beaches	0.23	-		1.25		281.49		282.97	5.3
Tidal Flats		-				41.66		41.66	0.8
Upland Hardwood Forests	40.38		0.26		21.39	1.66	18.59	82.29	1.5
Utilities		12.76		3.41	6.67			22.83	0.4
Vacant Lots	7.14	0.85	2.30	2.27	1.61			14.16	0.3
Wet Ponds			0.60				0.36	0.97	0.02
TOTAL:	1,487.05	306.51	935.45	955.10	834.67	497.82	350.08	5,366.68	100.0

TABLE 3-3

SURFACE AREAS OF CANALS AND WATERWAYS IN THE PRIMARY MARCO ISLAND SUB-BASINS

SUB-BASIN	AREA OF CANALS / WATERWAYS (acres)					
1	565.51					
2	75.65 227.87					
3						
4	374.28					
5	281.65					
TOTAL:	1,524.96					

Figure 3-3. Locations of Marco Island Seawalls. (Source: City of Marco Island Public Works Department)

3.4 Soil Characteristics

Information on soil types within the Marco Island drainage basin was obtained from the SFWMD GIS database. Soil information was extracted in the form of Hydrologic Soil Groups (HSG) which classify soil types with respect to runoff-producing characteristics. The chief consideration in each of the soil group types is the inherent capacity of bare soil to permit infiltration. A summary of the characteristics of hydrologic soil groups present in the Marco Island drainage basin is given in Table 3-4.

TABLE 3-4
CHARACTERISTICS OF SCS HYDROLOGIC
SOIL GROUP CLASSIFICATIONS

SOIL GROUP	DESCRIPTION	RUNOFF POTENTIAL	INFILTRATION RATE		
A	Deep sandy soils	Very low	High		
A/D	Deep sandy soils with high	Very high in undeveloped condition	Very low in undeveloped state		
	water table in undeveloped conditions	Very low when developed and water table lowered	Very high when water table lowered with development		
D	Fine silty sands and clays	High in undeveloped condition	Very low in undeveloped state		
	Time sitty sailus aliu ciays	Very high	Low to none		
W	Wetland or hydric soils	Very high	Low to none		

A graphical summary of hydrologic soil groups (HSG) in the Marco Island drainage basin under existing conditions is given on Figure 3-4. The drainage basin is dominated by soils in HSG A and A/D, both of which reflect soils with a low runoff potential under developed conditions, with the A/D soils indicating soils which behave as HSG D under undeveloped conditions but function as HSG A soils when developed and the water table is lowered. Since the watershed is currently developed, most of the soils function as HSG A soils which exhibit a very low runoff potential and a high rate of infiltration of runoff into groundwater. HSG D and W soils are located primarily in natural low-lying areas.

A tabular summary of hydrologic soils in the Marco Island drainage basin under existing conditions is given in Table 3-5. Approximately 88.9% of the soils within the drainage basin are classified in HSG A which reflects deep sandy soils with a low runoff potential and a high infiltration rate. An additional 2.9% of the soils within the basin, primarily in perimeter areas along the western watershed boundary and southeast of Marco Island, have a dual classification of A/D which consists of deep sandy soils with a high water table in the undeveloped condition. In the undeveloped state, the soils act hydrologically as HSG D soils with a high runoff potential but function similar to an HSG A soil when the area is developed and the high water table conditions are controlled and lowered. Since much of the existing watershed has been developed

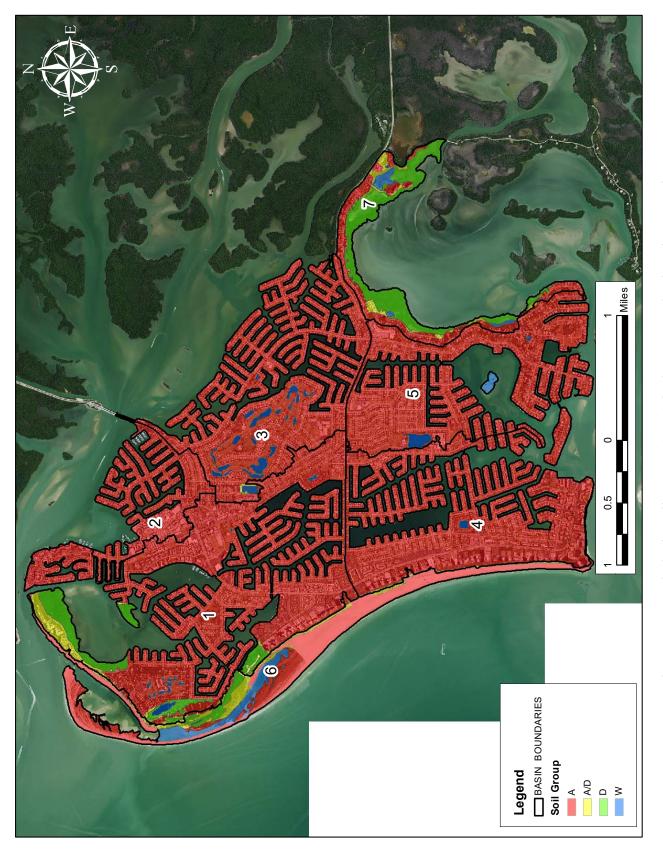


Figure 3-4. Hydrologic Soil Groups (HSG) in the Marco Island Drainage Basin.

and water control mechanisms have been initiated, 91.8% of the drainage basin area can be considered to function as an HSG A soil which exhibits a low runoff potential and a high rate of infiltration into groundwater. Approximately 5.5% of the drainage area is covered by HSG D soils in coastal perimeter areas which have a low infiltration rate and high runoff potential, and 2.7% of the drainage basin area is covered by HSG W soils which consist of wetland, ponds, and hydric soils.

TABLE 3-5
HYDROLOGIC SOIL GROUPS IN THE MARCO ISLAND WATERSHED

HYDROLOGIC SOIL GROUP	HYDROLOGIC SOIL GROUPS BY SUB-BASINS (acres)					GRAND TOTAL	PERCENT OF TOTAL		
(HSG)	1	2	3	4	5	6	7	(acres)	(%)
A	1,318.49	306.51	893.60	946.88	814.38	352.76	136.36	4,768.98	88.9
A/D	53.48		2.37	5.55	0.78	63.41	29.94	155.53	2.9
D	103.17		1.13			22.20	169.06	295.54	5.5
W	11.92		38.36	2.67	19.50	59.45	14.73	146.63	2.7
TOTAL:	1,487.05	306.51	935.46	955.10	834.66	497.82	350.08	5,366.68	100.0

3.5 Stormsewer System

Marco Island has constructed an extensive stormsewer system to discharge runoff generated during rain events. An overview of the current stormsewer system is given on Figure 3-5. Most stormsewer systems are relatively short in length and discharge surface runoff into the nearest canal system or open water. Overall, the Marco Island stormsewer system has 1,864 stormsewer inlets with 1,324 of the current inlets (71%) retrofitted with inlet filters manufactured by Suntree which are designed to remove leaves, litter, and solid debris. The inlets are periodically cleaned and serviced by City personnel.

Currently, Marco Island has 393 stormsewer outfalls, with the vast majority discharging to the canal system. Only one of the outfalls discharges directly to the Gulf of Mexico, with 7 outfalls discharging to Barfield Bay, 10 outfalls discharging to Roberts Bay, 2 outfalls discharging to Caxambas Bay, and 5 outfalls discharging to Collier Bay.

3.6 Topography

Topographic information for the Marco Island drainage basin was obtained using the 2018 1-ft LIDAR elevation contour maps developed by USGS. The delineated drainage basin boundary was superimposed over the aerial contour maps to develop the drainage basin topographic map. A topographic map for the Marco Island drainage basin is given on Figure 3-6, with an elevation range of -4 ft to 50 ft. Elevation contours for the Marco Island drainage basin range from near 0 ft (NAVD88) adjacent to open water to approximately 45-50 ft (NAVD88) in the relic dune area located along the southeast perimeter of the island.

Figure 3-5. City of Marco Island Stormsewer System. (Source: City of Marco Island Public Works Department)

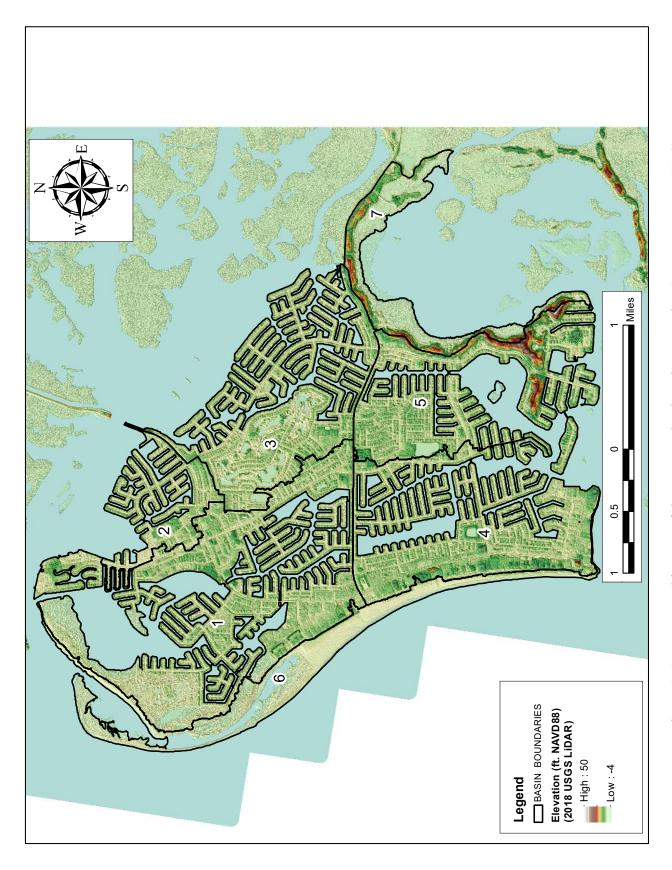


Figure 3-6. Topographic Map of the Marco Island Drainage Basin. (Source: USGS, 2018)

Although a small portion of the City has elevations as high as 45-50 ft, the vast majority of Marco Island has land elevations less than 10 ft. A topographic map with a range of 0-10 ft is given on Figure 3-7. Central portions of the island are relatively flat with elevations ranging from 4-10 ft (NAVD88).

3.7 Sewage Disposal

Currently, disposal of sanitary sewage on Marco Island occurs almost exclusively using a central sewer collection system. According to the Water and Sewer Department (W&SD), only approximately 20-21 on-site treatment systems remain on the Island, and the remaining systems will be phased out by 2024.

Collected raw sewage is transported through an extensive network of underground sewer mains to a sewage treatment facility located south of Factory Bay near the intersection of E. Elkcam and Windward Drive, referred to as the Marco Island Reclaimed Water Production Facility (RWPF). The sewage facility provides treatment for wastewater generated on Marco Island along with the Isles of Capri and Goodland. A photograph of the Marco Island Wastewater Treatment Facility is given on Figure 3-8.

Raw wastewater is sent to the RWPF where a Modified Ludzack-Ettinger (MLE) process is used to reduce nitrogen concentrations through denitrification using a series of anoxic and aerobic stages. Following this process, the water is screened using 3 parallel rotary drum screens to remove solids. The raw screened sewage is sent to 2 biological treatment tanks which consist primarily of aeration tanks designed for removal of organic matter through microbial digestion. Following biological treatment, the water is sent to 5 Zenon membrane filtration units and then to 2 chlorine contact chambers. Treated wastewater which does not meet specifications for reuse is sent to 2 deep injection wells. Reuse water is stored in 2 on-site 500,000-gallon tanks used to feed the reuse distribution system. The sludge from wastewater treatment is thickened and sent to an off-site biosolids compost processing facility.

A schematic of the RWPF wastewater treatment process is given on Figure 3-9. The plant has a permitted treatment capacity of 4.92 million gallons per day (MGD), but the average flow from 2011-2020 has been less than half of this value. The Marco Island wastewater facility is operated by the Marco Island Water and Sewer Department. A division referred to as the Collection and Distribution (C&D) team is responsible for all buried water and wastewater assets including potable water mains, raw water mains, sewer mains, and reuse water mains. The existing sewer system contains 287 miles of mains and 2,127 manholes.

In addition to the primary wastewater facility, the City previously operated a small plant, referred to as the Marco Shores Wastewater Treatment Plant (WWTP), which served the Old Marco district. However, this plant was decommissioned and demolished in February 2020. The permitted capacity of this facility was 0.30 MGD, with the treated wastewater disposed of in 21 acres of rapid infiltration basins (RIBs) where the effluent discharged into shallow groundwater.

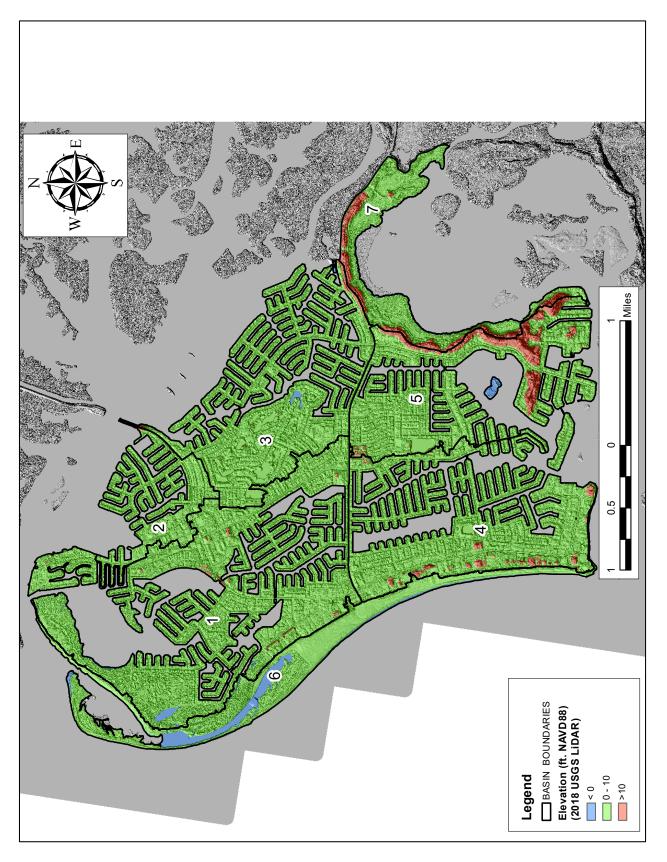


Figure 3-7. Limited Range Topographic Map for Marco Island. (Source: USGS)

Figure 3-8. Photo of the City of Marco Island Wastewater Treatment Facility. (Source: City of Marco Island)

A summary of average daily inflow rates for the Marco Island and Marco Shores wastewater treatment plants is given in Table 3-6, based on annual reporting forms submitted to FDEP by the City covering the period from 2011-2020. Monitored inflow rates to the RWPF have ranged from 1.90-2.45 MGD, with increases in inflow observed during each annual period except 2016-2017. In contrast, inflows to the Marco Shores WWTP have remained relatively consistent over time. Each of the two plants is currently operating at less than 50% of the permitted capacities. The values provided in Table 3-6 reflect annual average inflow rates, but a large seasonal variability occurs with greater flows during milder portions of the year and minimum inflow during summer.

TABLE 3-6
SUMMARY OF AVERAGE DAILY INFLOW RATES FOR THE MARCO ISLAND AND MARCO SHORES WWTPs FROM 2011-2020

FACILITY	PERMITTED CAPACITY (MGD)	AVERAGE INFLOW (MGD)								AVERAGE	
		2011- 2012	2012- 2013	2013- 2014	2014- 2015	2015- 2016	2016- 2017	2017- 2018	2018- 2019	2019- 2020	(MGD)
Marco Island WWTP	4.92	1.90	2.00	2.01	2.04	2.09	2.05	2.17	2.27	2.45	2.11
Marco Shores WWTP	0.300	0.085	0.089	0.089	0.103	0.097	0.093	0.091	0.087	0.086	0.091
	TOTAL:	1.98	2.09	2.10	2.14	2.19	2.14	2.26	2.36	2.54	2.20

TO CUSTOMERS MEMBRANES FILTRATION (MBR) REUSE SLUDGE HOLDING **TANKS** RECLAIMED WATER PRODUCTION FACILITY TO DEEP INJECTION WELL DISPOSAL BIOLOGICAL REACTORS STORAGE REUSE **TANKS** VAPOR TO ODOR CONTROL THICKENERS EQUALIZATION STORAGE TANKS DEWATERING WASTE WATER DEEP INJECTION RETURN WELL SUMP WASTE WATER SCREENS RETURN Solids Solids Landfill REUSE SUMP CONTACTORS WASTE WATER TO LANDFILL CHLORINE TO LANDFILL **TO PLANT**

Figure 3-9. Schematic of the City of Marco Island Wastewater Treatment Process.

3.8 Reuse Irrigation

Virtually all sewage treated at the Marco Island wastewater treatment plant becomes reuse irrigation and, according to the W&SD, the demand often exceeds the availability. During these conditions, raw water from the City's primary drinking water source is used to augment the reuse system either directly or indirectly. Typically, this water is sent directly to either the Marco Island or Marco Shores golf course through dedicated pipelines. Raw drinking water can also be used to augment the reuse system as a whole. To augment the reuse system, raw water enters the head of the chlorine contact chamber at the treatment plant, is disinfected, and sent out through the pressurized distribution system to points of application. All 3 golf courses store the reclaimed water in their storage area (lake or tank) prior to distributing.

A map of current and potential reuse irrigation customers is given on Figure 3-10. Under current conditions, reuse is applied exclusively to commercial and multi-family properties, including 3 City parks, 2 schools, and 3 separate golf courses. The largest golf course customer is the Marco Island Golf Course, an 18-hole course which stores the reuse water in a series of unlined lakes prior to application. Reuse water is also sent to the Marco Shores Golf Course, an off-island 18-hole course where the reuse water is stored in a HDPE-lined lake, and the Hideaway Beach Golf Course, a 9-hole course where reuse water is stored in an uncovered tank. The current reuse application area is approximately 864 acres, with another 100 acres listed as potential customers. The reuse system contains more than 42 miles of distribution mains.

A summary of reuse water consumption from 2011-2020 is given in Table 3-7 based on the Annual Reuse Reports submitted by the City to FDEP from 2011-2020. The treated wastewater flows in Table 3-7 are based on the information from the Marco Island WWTP provided in Table 3-6. The City supplements the treated wastewater with an additional limited flow from the raw drinking water source. The average daily flow available for reuse irrigation from October 1, 2019-September 30, 2020 is 2.47 MGD.

TABLE 3-7
SUMMARY OF RECLAIMED WATER AND SUPPLEMENTAL WATER CONSUMPTION BY REUSE CUSTOMERS

DADAMETER		AVERAGE FLOW (MGD)								
PARAMETER	2011- 2012	2012- 2013	2013- 2014	2014- 2015	2015- 2016	2016- 2017	2017- 2018	2018- 2019	2019- 2020	(MGD)
Treated Water from Marco Island WWTP	1.90	2.00	2.01	2.04	2.09	2.05	2.17	2.27	2.45	2.11
Raw Water Source	0.17	0.11	0.11	0.07	0.01	0.10	0.13	0.05	0.02	0.09
TOTAL:	2.07	2.11	2.12	2.11	2.10	2.15	2.30	2.32	2.47	2.20

SOURCE: Annual Reuse Reports submitted by the City to FDEP - Form 62-610.300(4)(a)2

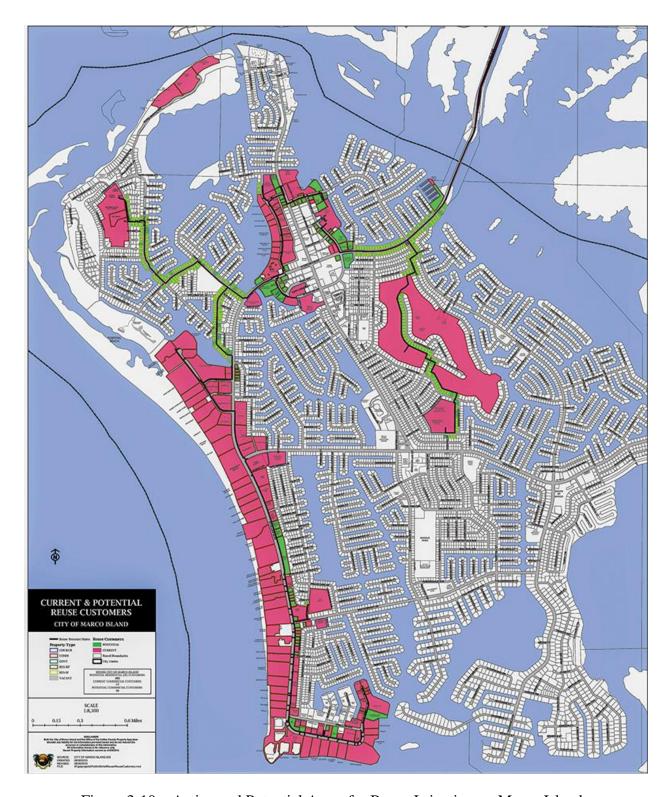


Figure 3-10. Active and Potential Areas for Reuse Irrigation on Marco Island.

A summary of reuse application and disposal from 2011-2020 is given in Table 3-8. Of the total available reuse water, approximately 80-90% is used for surface irrigation, with the remaining 10-20% discharged to a deep groundwater injection well, typically during wet weather conditions when sufficient surface storage is not available. Water which does not meet reuse criteria can be diverted to the "substandard" pond where it is stored prior to re-treatment. The total annual reuse water application and disposal volumes in Table 3-8 are identical to the generated reuse volumes summarized on the bottom of Table 3-7.

TABLE 3-8

SUMMARY OF REUSE WATER APPLICATION AND DISPOSAL FOR THE MARCO ISLAND WWTP FROM 2011-2020

PARAMETER		AVERAGE FLOW (MGD)											
	2011-2012	2012-2013	2013-2014	2014-2015	2015-2016	2016-2017	2017-2018	2018-2019	2019-2020				
Reuse Applied	1.83	1.64	1.77	1.89	1.56	1.77	2.08	1.89	1.97				
Deep Well Disposal	0.24	0.47	0.35	0.22	0.54	0.38	0.22	0.43	0.50				
TOTAL:	2.07	2.11	2.12	2.11	2.10	2.15	2.30	2.32	2.47				

SOURCE: Annual Reuse Reports submitted by the City to FDEP - Form 62-610.300(4)(a)2

Once the reuse has been generated, the City uses multiple ponds and tanks to store the water between irrigation events. Each of these facilities is connected to the reuse system through buried pipelines. A listing of reuse water storage facilities used by the City is given in Table 3-9. Reuse is stored in both lined and unlined ponds as well as covered and uncovered tanks. Water is withdrawn from these facilities during irrigation events.

A summary of major reuse water users, defined as average consumption >0.1 MGD, is given in Table 3-10. The permitted disposal capacity is provided along with the acreage for each user. The irrigation areas are based on information provided by the City to FDEP for the required annual reporting of reuse activities summarized on FDEP Form 62-610.300(4)(a)2. The largest permitted annual user of reuse is landscaping along Collier Blvd., followed by the miscellaneous users and the golf course areas. The Hammock Bay Golf Course is located off-island, so the total area irrigated with reuse water on Marco Island is about 734 acres based on the information provided in Table 3-10. However, the areas listed in Table 3-10 appear to reflect parcel areas which include both pervious and impervious areas rather than grassed or landscaped areas only, so the actual area irrigated is less than the areas indicated on Table 3-10.

TABLE 3-9

MARCO ISLAND RECLAIMED WATER STORAGE FACILITY INVENTORY

FACILITY NAME	LOCATION	FUNCTION	FACILITY TYPE	
Marco Island Golf Course	Central Marco Island	System storage	Unlined pond	
Marco Shore GC Storage Pond	Mainsail Drive, Naples	System storage	Lined pond	
Hideaway Beach Golf Course	North Marco Island	System storage	Uncovered tank	
Reject Storage	807 Elkcam Circle, E	Reject storage	Lined pond	
Public Access Storage Tank	807 Elkcam Circle, E	System storage	Covered tanks (2-0.5 MG)	
Utility Storage Tank	Mainsail Drive, Naples	System storage	Covered tank (1-0.5 MG) (demolished 2019)	

SOURCE: Annual Reuse Reports submitted by the City to FDEP - Form 62-610.300(4)(a)2

SUMMARY OF MAJOR REUSE WATER USERS FOR THE MARCO ISLAND AND MARCO SHORES WWTPs FROM 2011-2020 (> 0.1 MGD)

TABLE 3-10

USER NAME	USER TYPE	CAPACITY (MGD)	ACREAGE (acres)
Marco Island Golf Course	Golf course	0.450	154
Hammock Bay (Marco Shores)	Golf course	0.342	130
Hideaway Beach Golf Course and Country Club	Golf course	0.181	30
Collier Blvd. Users (condos, medians)	Residential developments	0.965	250
Miscellaneous Users (side streets of Collier Blvd., condos along Elkcam Circle, schools and parks, off-island areas)	Other landscape irrigation	0.496	300
	TOTAL:	2.434	864

SOURCE: Annual Reuse Reports submitted by the City to FDEP - Form 62-610.300(4)(a)2

A summary of reuse irrigation application areas and volumes from 2011-2020 is given in Table 3-11 based on Annual Reuse Reports provided by the City to DEP. Separate data are provided for the 314-acre golf course application area and the 550-acres of other public access areas. Average application rates for reuse irrigation on the golf course and public areas from 2011-2020 have ranged from 1.64-2.08 MGD. Currently, application of reuse water is not regulated by the City, and there are no restrictions on irrigation volume, frequency, or application rates. The City charges a fee for reuse water which varies by end user.

TABLE 3-11

SUMMARY OF REPORTED REUSE IRRIGATION AREAS AND VOLUMES
FOR THE MARCO ISLAND AND MARCO SHORES WWTPs FROM 2011-2020

REUSE	IRRIGATED	CAPACITY (MGD)	AVERAGE FLOW (MGD)								
AREA	AREA (acres)		2011- 2012	2012- 2013	2013- 2014	2014- 2015	2015- 2016	2016- 2017	2017- 2018	2018- 2019	2019- 2020
Golf Course	314	0.973	0.67	0.50	0.50	0.45	0.34	0.42	0.65	0.55	0.52
Other Public Access	550	1.461	1.16	1.14	1.27	1.44	1.22	1.35	1.43	1.34	1.45
TOTAL:	864	2.434	1.83	1.64	1.77	1.89	1.56	1.77	2.08	1.89	1.97

SOURCE: Annual Reuse Reports submitted by the City to FDEP - Form 62-610.300(4)(a)2

A summary of reuse application rates for golf course and public access areas on Marco Island from 2015-2020 is given on Table 3-12. The average daily reuse application rate to the golf courses over this period is 0.496 MGD, with an average of 1.36 MGD applied to the public access areas. Based on the report forms provided to FDEP by the City, golf course areas irrigated with reuse water, including the Marco Island and Marco Shore golf courses, cover approximately 284 acres. However, an independent analysis of the golf course areas by ERD indicated an area of 263.8 acres total with 229.99 acres of pervious surfaces which could be irrigated. Using the average application rate of 0.496 MGD to golf course areas, and including only pervious areas, the average application rate is 0.56 inches/week.

The surface area of public access areas receiving reuse irrigation is stated to be 550 acres by the City. An independent analysis of these areas by ERD, based on the active reuse parcel map shown on Figure 3-10 and discussions with City personnel, indicated an area of 638.5 acres, with 332.8 acres of pervious surfaces suitable for irrigation. Using the average daily application rate of 1.36 MGD to pervious areas, the average reuse application rate to common areas is 0.88 inches/week. An additional discussion of areas with reuse irrigation is given in Section 4.1.3.

TABLE 3-12

REUSE APPLICATION RATES FOR GOLF COURSE AND PUBLIC ACCESS AREAS FROM 2015-2020

REUSE AREA	IRRIGATED AREAS	AVERAGE APPLICATION RATES				
	(acres)	MGD	inch/week			
Golf Courses	229.99	0.496	0.56			
Other Public Access	398.96	1.36	0.88			
TOTAL:	628.95					

The City conducts routine monitoring of the water quality characteristics of reuse irrigation on a weekly basis, with laboratory analyses conducted for orthophosphorus (PO₄), nitrate (NO₃), total Kjeldahl nitrogen (TKN), total nitrogen, and TSS. A compilation of weekly analyses conducted on reuse irrigation was provided to ERD by the City over the 10-year period from 2012-2021. A complete listing of the results of these analyses is given in Appendix A-6.

A graphical summary of temporal variability in Marco Island reuse water characteristics from 2012-2021 is given on Figure 3-11. Individual measurements are illustrated for each weekly monitoring event, with annual geometric mean values for each parameter indicated as **black dots** to provide a less cluttered view of potential long-term trends.

Generated flow rates for reuse irrigation have been highly variable over the period of record, with measured values ranging from approximately 0.5-3.0 MGD. A definite seasonal pattern is present in the flow data, with higher flow rates during winter conditions and lower flow rates during summer, although the seasonal variability is less pronounced in recent years. A trend analysis of flow rates was conducted using the linear regression technique discussed previously in Section 2.2.1.9, and the analysis of reuse flow rates indicates a highly significant (>99% confidence level) of increasing flow rate over time, with an annual increase of 0.08 MGD per year.

Measured concentrations of orthophosphorus have also been highly variable in reuse water, ranging from <0.1 mg/l to approximately 12 mg/l. A cyclic pattern is also apparent for measured orthophosphorus concentrations, with the highest values observed during winter conditions and the lowest values observed during summer, although the variability appears to be less pronounced in recent years. The trend analysis conducted for changes in orthophosphorus concentrations indicates that there is no significant trend of increasing or decreasing values over time.

Measured concentrations of nitrate in reuse water have also been highly variable, ranging from near zero to more than 30 mg/l. Peak values for nitrate appear to have occurred during 2017 and 2018, although the cause for these elevated values is not known. A seasonal pattern is also apparent in measured nitrate concentrations, although not to the extent observed for discharge and orthophosphorus. The regression analysis indicates no significant trend of either increasing or decreasing nitrate concentrations.

Measured concentrations of TKN in reuse water have exhibited a higher level of consistency in values compared with the previous parameters, with the vast majority of measured TKN values ranging from 1-2 mg/l, although concentrations exceeding 7 mg/l have been observed. The trend analysis indicates a statistically significant trend (99% confidence level) of decreasing concentrations of TKN in reuse water over time.

Measured concentrations of total nitrogen in reuse water have been highly variable, ranging from near zero to more than 30 mg/l. A seasonal pattern is also apparent in the total nitrogen data, although not as definitive as those observed for discharge, orthophosphorus, or nitrate. Measured concentrations of total nitrogen frequently exceed the maximum groundwater limit for total nitrogen of 10 mg/l established by US EPA, and groundwater disposal of the reuse water could result in an exceedance of this value rendering the aquifer unsuitable for potable use. The trend analysis indicates no significant trend of either decreasing or increasing concentrations of total nitrogen in reuse water over time.

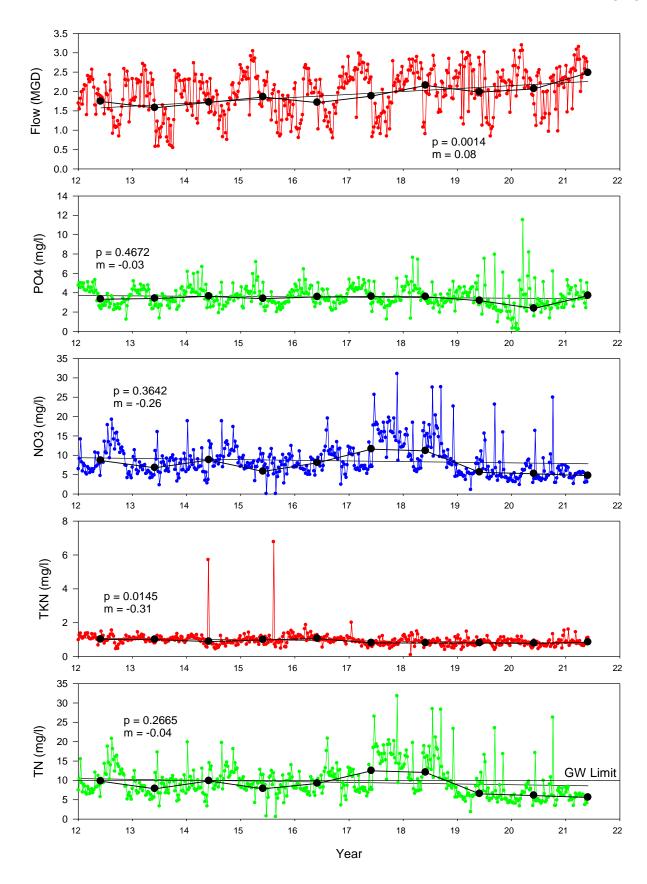


Figure 3-11. Temporal Variability in Marco Island Reuse Water Characteristics from 2012-2021.

Summary statistics for Marco Island reuse irrigation water from 2012-2021 are given in Table 3-13. Available data for 2021 include information collected through June 2, 2021. Information is provided in Table 3-13 for overall minimum values, maximum value, and geometric mean for all measurements conducted from 2012-2021. Differences between minimum and maximum values for all laboratory-measured parameters cover a range of at least 1-2 orders of magnitude. The geometric mean value for orthophosphorus is 3.33 mg/l, with an annual geometric mean value of 8.63 mg/l for total nitrogen and approximately 87% comprised of nitrate.

TABLE 3-13

SUMMARY STATISTICS FOR MARCO
ISLAND REUSE IRRIGATION FROM 2012-2021

PARAMETER -	REUSE									
	Flow (MGD)	PO ₄ (mg/l)	NO ₃ (mg/l)	TKN (mg/l)	Total N (mg/l)	TSS (mg/l)				
Minimum Value	0.54	0.08	0.01	0.09	0.56	0.30				
Maximum Value	3.19	11.50	31.00	6.76	31.77	3.70				
GEOMEAN:	1.87	3.33	7.49	0.89	8.63	0.47				

Annual geometric mean values for Marco Island reuse irrigation from 2012-2021 are given on Table 3-14. Peak concentrations for both nitrate and total nitrogen occurred from the period from 2017-2018, with some of the lowest measured annual values for TKN. Overall, the reuse irrigation water contains extremely elevated levels of inorganic forms of both nitrogen and phosphorus in a form immediately available for uptake by either terrestrial or aquatic vegetation and organisms.

TABLE 3-14

ANNUAL GEOMETRIC MEAN VALUES FOR MARCO ISLAND REUSE IRRIGATION FROM 2012-2021

		REUSE									
PARAMETER	Flow (MGD)	PO ₄ (mg/l)	NO ₃ (mg/l)	TKN (mg/l)	Total N (mg/l)	TSS (mg/l)					
2012	1.74	3.33	8.64	1.01	9.78	0.62					
2013	1.58	3.40	6.76	1.00	7.82	0.60					
2014	1.72	3.62	8.77	0.88	9.85	0.60					
2015	1.86	3.38	5.82	0.98	7.82	0.61					
2016	1.71	3.57	8.05	1.06	9.20	0.60					
2017	1.88	3.60	11.58	0.80	12.47	0.46					
2018	2.16	3.58	11.13	0.80	12.06	0.30					
2019	1.98	3.17	5.62	0.80	6.52	0.35					
2020	2.07	2.38	5.22	0.78	6.07	0.30					
2021	2.48	3.70	4.72	0.84	5.60	0.33					
MEAN VALUE:	1.92	3.37	7.63	0.89	8.72	0.48					

3.9 Stormwater Treatment

Watershed areas which currently receive stormwater treatment within the Marco Island drainage basin were identified by ERD using a combination of aerial photography, field reconnaissance, and a review of historical permitting records in possession of SFWMD. A summary of the results of this evaluation is given on Figure 3-12 which illustrates parcels with permitted and non-permitted stormwater management systems within the Marco Island drainage basin during June 2020. Permitted stormwater management systems within the basin area consist primarily of dry retention ponds (which rely upon infiltration of runoff into the soil) and wet detention ponds (which provide stormwater treatment by a combination of physical settling of particles and biological uptake of nutrients).

Areas using roadside swales for runoff conveyance, whether part of a permitted stormwater system or not, are also indicated on Figure 3-12 since swale systems, even those designed primarily for conveyance purposes, can provide both a reduction in runoff volume and a decrease in nutrient concentrations. Since this analysis is used to estimate runoff loadings to adjacent receiving waters, it includes all areas where reductions in runoff volume and/or mass loading can be achieved regardless of whether or not the mechanism is a permitted stormwater management facility.

As indicated on Figure 3-12, virtually all of the currently developed parcels within the Marco Island drainage basin west have existing stormwater treatment facilities and mechanisms, consisting primarily of dry retention ponds and roadside swales. Dry retention is used primarily in commercial areas north of N. Collier Blvd. and along the hotel and high-rise corridor area on the west and southwest sides of the island. Virtually all residential areas have swale treatment systems, with golf course areas treated by internal ponds which are also used for storage of reuse water.

3.10 Hydrologic Characteristics

Hydrologic characteristics were evaluated for each of the identified sub-basin areas discharging to Marco Island under existing conditions (June 2020) for use in hydrologic modeling to calculate annual runoff inputs to the waterways. The hydrologic modeling, discussed in Section 4, is based upon the methodology developed by Harper and Baker (2007) which uses a modified SCS curve number methodology to calculate runoff volumes based upon the hydrologic characteristics of the drainage basin, including impervious area, directly connected impervious area (DCIA), and soil curve number values (CN values) to estimate runoff volumes for modeled storm events. This is the standard methodology used by Water Management Districts and FDEP for calculating loadings for TMDL studies and pre- vs. post-loading analyses. Hydrologic characteristics of the sub-basin areas were determined for each of the identified land use types in each sub-basin area in Marco Island drainage basin.

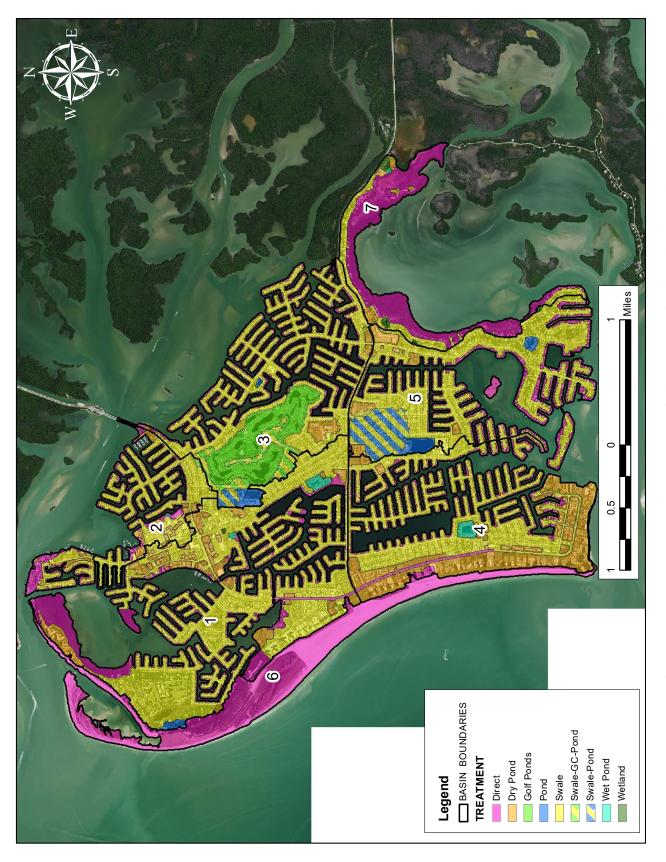


Figure 3-12. Stormwater Treatment Areas in the Marco Island Drainage Basin.

3.10.1 Impervious Areas

Impervious areas in the Marco Island watershed were delineated by ERD using aerial photography to calculate the impervious area within each sub-basin area and developed land use type. Impervious areas include all areas which prevent infiltration of runoff into the ground, such as homes, driveways, roadways, sidewalks, patios, pools, buildings, etc. The impervious area was then expressed as a percentage of the total area for each identified land use type and sub-basin.

All impervious areas in the Marco Island drainage basin were digitized by ERD to separate pervious and impervious areas in each sub-basin. Examples of digitized impervious areas for medium-density residential parcels are given in Figure 3-13. Impervious percentages for residential areas ranged from 45.6-58.0%, with an average of 50.7%.

3.10.2 <u>Directly Connected Impervious Percentages</u>

One of the parameters used in the modified SCS curve number methodology developed by Harper and Baker for estimating runoff volumes is the directly connected impervious areas (DCIA). DCIA reflects impervious surfaces which are hydraulically connected to the stormsewer or drainage system such that runoff generated on these impervious surfaces flows directly into the drainage system without first flowing over pervious surfaces. Runoff generated in these areas is assumed to discharge directly into the drainage system with losses occurring only as a result of initial abstraction on impervious surfaces which evaporates following the rain event.

Residential areas on Marco Island have no DCIA since the drainage system consists of vegetated roadside swales. The most significant DCIA percentages are located in commercial areas, highways, and a few of the multi-family condos and apartments with large parking areas.

3.10.3 <u>Curve Numbers</u>

One of the most important parameters used by the SCS curve number methodology is the curve number (CN) value which is a variable parameter used to estimate runoff depths for modeled rain events based upon soil characteristics and land cover. A discussion of soil characteristics within the Marco Island drainage basins was provided in Section 3.4. The SCS curve number methodology assigns curve number values to each of the hydrologic soil groups discussed in Section 3.4 as a function of land cover for each soil type. Curve number values range from approximately 30-98 and reflect the runoff generating potential for a particular combination of soil type and land cover.

Figure 3-13. Examples of Delineated Impervious Areas for Residential Parcels.

The hydrologic model used in this report to estimate generated runoff volumes conducts separate modeling for DCIA and non-DCIA areas. Runoff from DCIA areas is calculated as the rainfall-initial abstraction, while runoff from non-DCIA areas is calculated using a curve number value. A non-DCIA curve number reflects the area-weighted composite curve number for the land use and soil type combined with impervious areas that are not considered to be DCIA. Non-DCIA curve numbers were calculated for each land use category and sub-basin area in the Marco Island sub-basins under existing conditions, and appear to be on the lower end of the range of potential CN values for many of the drainage basin areas due to the highly permeable soils within the sub-basin areas.

3.10.4 Summary

A tabular summary of hydrologic characteristics of the land use categories in the Marco Island drainage basin under current conditions is given in Table 3-15. This information is used to develop estimates of runoff generated hydrologic inputs to Marco Island. The values summarized in this table do not include waterbodies or stormwater treatment systems referred to as "Dry Ponds, Ponds, and Wet Ponds" on Figure 3-2, since the BMP efficiency calculations conducted by ERD already include the volumetric and mass loadings which fall on the stormwater management systems. Therefore, the sum of the land use areas provided in Table 3-15 exclude the identified stormwater management systems and the sum of the treated and non-treated areas do not equal the total watershed area of 5,366.68 acres.

Overall, the Marco Island drainage basin has an average impervious percentage of approximately 41.0%. However, since much of the area is drained by grassed roadside swales, the DCIA within the drainage basin is only 1.6%.

TABLE 3-15

HYDROLOGIC CHARACTERISTICS OF THE MARCO ISLAND DRAINAGE BASIN

LAND USE	AREA (acres)	IMPERVIOUS AREA (acres)	IMPERVIOUS (% of Total)	DCIA AREA (acres)	PERCENT DCIA (%)	NON-DCIA CN VALUE
Cemeteries	3.27	0.37	11.2	0.00	0.0	45.6
Coastal Scrub	154.62	0.00	0.0	0.00	0.0	53.7
Commercial	332.56	247.49	74.4	66.52	26.9	79.1
High-Density Residential	9.68	4.94	51.0	2.33	47.1	59.9
Highway	12.71	10.11	79.5	4.77	47.2	78.7
Institutional	89.28	40.33	45.2	0.73	1.8	65.4
Mangrove Swamps	295.54	0.00	0.0	0.00	0.0	87.0
Marinas	4.72	2.75	58.3	0.00	0.0	73.4
Medium-Density Residential	3105.97	1455.53	46.9	0.84	0.1	66.6
Multi-Family	579.64	356.94	61.6	10.18	2.9	74.9
Recreational	199.14	29.49	14.8	1.24	4.2	47.4
Saltwater Marshes	14.37	0.00	0.0	0.00	0.0	98.0
Scrub and Brushland	12.17	0.00	0.0	0.00	0.0	74.3
Swimming Beach	282.97	0.00	0.0	0.00	0.0	77.0
Tidal Flats	41.66	0.00	0.0	0.00	0.0	98.0
Upland Hardwood Forests	82.29	0.00	0.0	0.00	0.0	41.4
Utilities	22.83	17.87	78.3	0.00	0.0	85.2
Vacant Land	14.15	0.00	0.0	0.00	0.0	39.0
Grand Total	5,257.56	2,165.81	41.2	86.60	1.6	69.2

SECTION 4

HYDROLOGIC INPUTS AND LOSSES

Average annual hydrologic budgets were developed for the waterways associated with Sub-basins 1-5, as summarized in Table 3-3, which include inputs from direct precipitation, stormwater runoff, irrigation, and groundwater seepage. Hydrologic losses are calculated for evaporation and outflow to adjacent tidal waterbodies. The hydrologic budget is used as input for development of nutrient budgets as well as estimation of hydraulic residence times within the waterways.

A conceptual schematic of evaluated hydrologic inputs and losses in Marco Island waterways is given on Figure 4-1. A discussion of identified hydrologic inputs and losses for Marco Island waterways is given in the following sections.

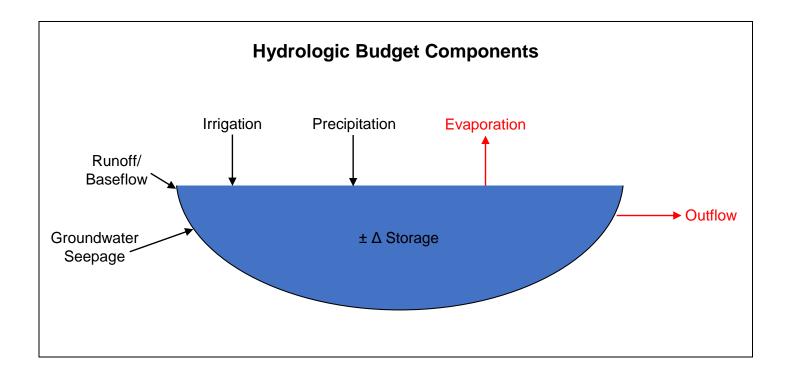


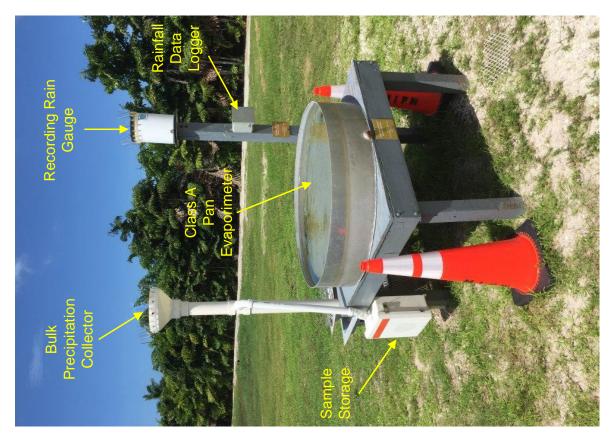
Figure 4-1. Conceptual Schematic of Evaluated Hydrologic Inputs and Losses to Marco Island Waterways.

4.1 Hydrologic Inputs

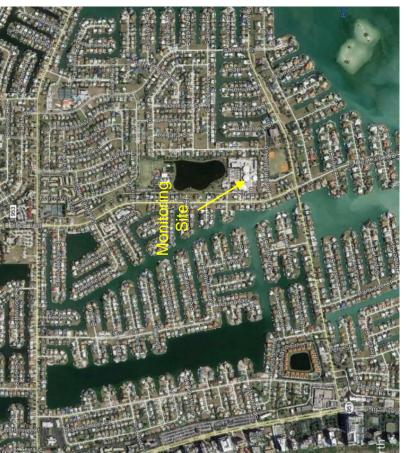
4.1.1 <u>Direct Precipitation</u>

4.1.1.1 Rainfall Events During the Field Monitoring Program

Hydrologic instrumentation was installed by ERD in the southern portion of the island at the Marco Island water treatment facility near the intersection of S. Heathwood Dr. and Lily Ct. to provide information on the characteristics of rainfall events which occurred during the field monitoring program and collect samples of bulk precipitation for nutrient analyses. The location of the hydrologic monitoring site is shown on Figure 4-2a.


A photograph of the hydrologic instrumentation installed at the site is given on Figure 4-2b. Rainfall was monitored using an ISCO Model 674 tipping bucket rain gauge which was attached to a 4-inch x 4-inch wooden post. The rainfall recorder produced a continuous record of all rainfall which occurred at the site, with a resolution of 0.01 inch. Rainfall data were stored inside a digital storage device (Hobo Event Rainfall Logger) which was also attached to the wooden post inside a waterproof enclosure. The rainfall record was used to provide information on general rainfall characteristics during the field monitoring program from May-November 2020. A manual rain gauge was also installed at the site to corroborate rainfall records provided by the recording rain gauge.

In addition to the tipping bucket rain gauge and manual rain gauge, a bulk precipitation collector and pan evaporimeter were also installed at the site, as indicated on Figure 4-2b. However, the evaporation data are not used for this project since the monitoring program covered only a portion of an annual cycle.


A summary of individual rain events monitored at the hydrologic monitoring site from May 1-November 30, 2020 is given in Table 4-1. Overall, a total of 49.80 inches of rainfall was recorded at the site during this period from 102 individual rain events ranging from 0.01-5.41 inches, with an average event rainfall of 0.44 inches. Rain event durations ranged from 0.02-26.66 days, with antecedent dry conditions between rain events ranging from 0.25-7.97 days.

A comparison of measured rainfall from May-November 2020 with typical "normal" rainfall is given in Table 4-2, with a graphical comparison provided in Figure 4-3. "Normal" rainfall is based on mean monthly rainfall recorded at the Marco Island meteorological monitoring site (USC00085359) over the 30-year period from 1991-2020 which is located near the maintenance facility at the Marco Island golf course.

During the field monitoring program, a total of 49.80 inches of rainfall were recorded compared with a "normal" rainfall of 42.65 inches for the months of May-November. Therefore, rainfall during the field monitoring program was approximately 17% above normal for this period. Higher than "normal" rainfall was measured during May, June, July, September, and November, with below "normal" rainfall during the remaining months.

b. Hydrologic Instrumentation

a. Hydrologic Monitoring Site Location

Figure 4-2. Marco Island Hydrologic Instrumentation.

TABLE 4-1

MEASURED RAINFALL AT THE MARCO ISLAND
MONITORING SITE FROM MAY 1 – NOVEMBER 30, 2020

EVI		EVI		EVENT	EVENT	ANTECEDENT	AVERAGE
START		END :		RAINFALL	DURATION	DRY PERIOD	INTENSITY
Date	Time	Date	Time	(inches)	(hours)	(days)	(in/hr)
5/7/20	12:35	5/7/20	12:35	0.01			
5/10/20	7:39	5/10/20	12:29	0.06	4.83	2.79	0.01
5/10/20	21:44	5/10/20	21:44	0.01			
5/14/20	9:59	5/14/20	9:59	0.01			
5/15/20	8:59	5/15/20	14:59	0.07	6.00	0.96	0.01
5/18/20	18:09	5/18/20	19:44	1.29	1.58	3.13	0.81
5/19/20	2:59	5/19/20	5:49	0.51	2.83	0.30	0.18
5/19/20	14:09	5/19/20	14:19	0.07	0.17	0.35	0.42
5/23/20	12:39	5/23/20	16:04	0.83	3.42	3.93	0.24
5/24/20	6:44	5/24/20	6:44	0.01			
5/24/20	14:39	5/25/20	3:39	0.28	13.00	0.33	0.02
5/28/20	11:49	5/28/20	11:49	0.01			
5/28/20	22:29	5/28/20	22:29	0.01			
5/29/20	17:14	5/30/20	0:39	0.57	7.42	0.78	0.08
5/30/20	14:59	5/30/20	22:24	0.71	7.42	0.60	0.10
6/1/20	18:51	6/1/20	21:22	3.41	2.52	1.85	1.35
6/2/20	12:25	6/2/20	21:10	3.71	8.75	0.63	0.42
6/3/20	12:50	6/3/20	19:37	0.54	6.78	0.65	0.08
6/4/20	5:41	6/4/20	5:41	0.01			
6/4/20	13:53	6/4/20	21:05	2.07	7.20	0.34	0.29
6/5/20	12:49	6/5/20	15:20	0.21	2.52	0.66	0.08
6/5/20	21:24	6/6/20	10:08	0.44	12.73	0.25	0.03
6/6/20	21:19	6/7/20	4:19	0.23	7.00	0.47	0.03
6/9/20	12:19	6/9/20	12:19	0.01			
6/11/20	13:40	6/11/20	17:00	0.65	3.34	2.06	0.19
6/13/20	17:19	6/13/20	17:19	0.01			
6/14/20	15:08	6/14/20	15:47	0.41	0.64	0.91	0.64
6/15/20	20:11	6/15/20	20:51	0.36	0.66	1.18	0.54
6/16/20	7:39	6/16/20	7:39	0.01			
6/17/20	16:35	6/17/20	20:52	0.48	4.28	1.37	0.11
6/18/20	9:07	6/18/20	13:15	0.16	4.14	0.51	0.04
6/19/20	12:06	6/19/20	13:00	0.06	0.90	0.95	0.07
6/21/20	7:09	6/21/20	7:09	0.01			
6/26/20	14:35	6/26/20	14:39	0.04	0.07	5.31	0.57
6/27/20	23:24	6/27/20	23:24	0.01			

TABLE 4-1 -- CONTINUED

MEASURED RAINFALL AT THE MARCO ISLAND MONITORING SITE FROM MAY 1-NOVEMBER 30, 2020

EVI		EVI	ENT	EVENT	EVENT	ANTECEDENT	AVERAGE
START	DATE	END 1	DATE	RAINFALL	DURATION	DRY PERIOD	INTENSITY
Date	Time	Date	Time	(inches)	(hours)	(days)	(in/hr)
7/5/20	22:48	7/6/20	13:22	1.03	14.56	7.97	0.07
7/12/20	11:51	7/12/20	17:31	1.81	5.66	5.94	0.32
7/15/20	14:15	7/15/20	14:15	0.01			
7/16/20	14:18	7/16/20	18:53	0.08	4.58	1.00	0.02
7/17/20	13:07	7/17/20	17:05	0.48	3.96	0.76	0.12
7/17/20	23:29	7/18/20	0:14	0.05	0.75	0.27	0.07
7/19/20	13:44	7/19/20	16:25	2.41	2.69	1.56	0.90
7/20/20	0:00	7/20/20	0:00	0.01			
7/20/20	14:21	7/20/20	19:27	0.48	5.11	0.60	0.09
7/21/20	11:42	7/21/20	12:43	0.12	1.01	0.68	0.12
7/22/20	1:10	7/22/20	7:10	0.06	6.01	0.52	0.01
7/22/20	16:56	7/22/20	17:32	0.03	0.61	0.41	0.05
7/23/20	13:32	7/23/20	21:32	0.87	8.00	0.83	0.11
7/24/20	21:31	7/25/20	0:16	0.21	2.75	1.00	0.08
7/25/20	8:05	7/25/20	8:05	0.01			
7/25/20	14:20	7/25/20	16:48	0.32	2.46	0.26	0.13
7/27/20	19:08	7/27/20	22:16	0.02	3.14	2.10	0.01
7/31/20	15:39	7/31/20	17:32	0.80	1.88	3.72	0.42
8/1/20	14:56	8/1/20	20:15	0.02	5.32	0.89	0.00
8/5/20	8:24	8/5/20	10:58	0.68	2.57	3.51	0.26
8/5/20	21:07	8/5/20	21:11	0.02	0.07	0.42	0.27
8/7/20	14:01	8/7/20	21:08	0.50	7.12	1.70	0.07
8/8/20	15:18	8/8/20	20:59	0.15	5.68	0.76	0.03
8/9/20	9:14	8/9/20	14:17	0.61	5.06	0.51	0.12
8/13/20	19:30	8/13/20	20:17	0.06	0.78	4.22	0.08
8/17/20	5:19	8/17/20	11:17	0.83	5.96	3.38	0.14
8/18/20	7:42	8/18/20	8:06	0.08	0.40	0.85	0.20
8/19/20	0:35	8/19/20	1:25	0.95	0.84	0.69	1.13
8/19/20	9:11	8/19/20	10:46	0.32	1.59	0.32	0.20
8/20/20	17:19	8/20/20	23:42	0.37	6.39	1.27	0.06
8/21/20	7:30	8/21/20	7:30	0.01			
8/21/20	22:18	8/21/20	23:02	0.65	0.73	0.62	0.90
8/22/20	11:04	8/22/20	11:49	0.03	0.75	0.50	0.04
8/22/20	18:01	8/22/20	18:01	0.01			
8/23/20	7:04	8/23/20	7:04	0.01			
8/24/20	9:37	8/24/20	12:39	0.20	3.04	1.11	0.07
8/26/20	15:11	8/26/20	21:02	0.33	5.85	2.11	0.06
8/28/20	13:07	8/28/20	13:47	0.03	0.66	1.67	0.05
8/30/20	22:58	8/30/20	22:59	0.02	0.02	2.38	1.00

TABLE 4-1 -- CONTINUED

MEASURED RAINFALL AT THE MARCO ISLAND MONITORING SITE FROM MAY 1 – NOVEMBER 30, 2020

Date Time Date Time (inches) (days) (in/hr) 9/1/20 17:18 9/1/20 17:53 0.34 0.58 1.76 0.58 9/4/20 17:03 9/4/20 19:14 0.08 2.18 2.97 0.04 9/5/20 15:24 9/5/20 17:51 0.61 2.46 0.84 0.25 9/6/20 13:03 9/6/20 18:10 0.50 5.12 0.80 0.10 9/7/20 5:49 9/7/20 5:49 0.01 9/9/20 1:58 9/9/20 20:20 1.40 18.37 1.84 0.08 9/10/20 11:13 9/10/20 19:21 0.91 8.14 0.62 0.11 9/11/20 16:04 9/11/20 17:16 0.77 1.20 0.86 0.64 9/11/20 12:05 9/13/20 14:45 5.41 26.66 0.78 0.20 9/14/20 6:02 9/14/20 12:00 0.49 5.97 0.64 0.08 9/21/20 14:03 9/21/20 16:00 0.08 1.95 7.09 0.04 9/28/20 9:48 9/28/20 9:48 0.01 9/28/20 9:45 9/29/20 13:05 0.47 8.19 0.80 0.66 10/2/20 9:26 10/2/20 23:47 0.25 14.34 2.85 0.02 10/3/20 17:46 10/3/20 21:04 0.11 3.29 0.75 0.03 10/4/20 14:08 10/4/20 14:32 0.23 0.40 0.38 0.57 10/6/20 17:28 10/6/20 19:40 0.09 2.19 2.12 0.04 10/9/20 20:01 10/9/20 20:03 0.06 0.04 3.01 1.59 10/12/20 11:26 10/12/20 11:26 0.01 10/12/20 11:26 10/12/20 11:26 0.01 10/12/20 11:26 10/12/20 11:26 0.01 10/10/20 20:18 10/19/20 20:18 0.01 10/12/20 11:26 10/12/20 11:21 0.21 1.87 2.73 0.11 10/12/20 10:58 10/20/20 23:18 0.01 10/12/20 11:26 10/12/20 11:26 0.01	EVENT START DATE		ENT	EVENT	EVENT	ANTECEDENT DRY PERIOD	AVERAGE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				RAINFALL	DURATION	DRY PERIOD	INTENSITY
9/4/20				` /	` /		` '
9/5/20							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
9/7/20							
9/9/20 1:58 9/9/20 20:20 1.40 18.37 1.84 0.08 9/10/20 11:13 9/10/20 19:21 0.91 8.14 0.62 0.11 9/11/20 16:04 9/11/20 17:16 0.77 1.20 0.86 0.64 9/12/20 12:05 9/13/20 14:45 5.41 26.66 0.78 0.20 9/14/20 6:02 9/14/20 12:00 0.49 5.97 0.64 0.08 9/21/20 14:03 9/21/20 16:00 0.08 1.95 7.09 0.04 9/28/20 9:48 0.01 9/29/20 4:54 9/29/20 13:05 0.47 8.19 0.80 0.06 10/2/20 9:26 10/2/20 23:47 0.25 14.34 2.85 0.02 10/3/20 17:46 10/3/20 21:04 0.11 3.29 0.75 0.03 10/4/20 3:							
9/10/20							
9/11/20							
9/12/20 12:05 9/13/20 14:45 5.41 26.66 0.78 0.20 9/14/20 6:02 9/14/20 12:00 0.49 5.97 0.64 0.08 9/21/20 14:03 9/21/20 16:00 0.08 1.95 7.09 0.04 9/28/20 9:48 9/28/20 9:48 0.01 9/29/20 4:54 9/29/20 13:05 0.47 8.19 0.80 0.06 10/2/20 9:26 10/2/20 23:47 0.25 14.34 2.85 0.02 10/3/20 17:46 10/3/20 21:04 0.11 3.29 0.75 0.03 10/4/20 3:10 10/4/20 14:32 0.23 0.04 0.38 0.57 10/6/20 17:28 10/6/20 19:40 0.09 2.19 2.12 0.04 10/9/20 20:01 10/9/20 20:03 0.06 0.04 3.01 1.59							
9/14/20 6:02 9/14/20 12:00 0.49 5.97 0.64 0.08 9/21/20 14:03 9/21/20 16:00 0.08 1.95 7.09 0.04 9/28/20 9:48 9/28/20 9:48 0.01 9/29/20 4:54 9/29/20 13:05 0.47 8.19 0.80 0.06 10/2/20 9:26 10/2/20 23:47 0.25 14.34 2.85 0.02 10/3/20 17:46 10/3/20 21:04 0.11 3.29 0.75 0.03 10/4/20 3:10 10/4/20 5:08 0.04 1.97 0.25 0.02 10/4/20 3:10 10/4/20 14:32 0.23 0.40 0.38 0.57 10/6/20 17:28 10/6/20 19:40 0.09 2.19 2.12 0.04 10/12/20 4:09 10/12/20 4:14 0.03 0.08 2.34 0.38 10/							
9/21/20 14:03 9/21/20 16:00 0.08 1.95 7.09 0.04 9/28/20 9:48 9/28/20 9:48 0.01 9/29/20 4:54 9/29/20 13:05 0.47 8.19 0.80 0.06 10/2/20 9:26 10/2/20 23:47 0.25 14.34 2.85 0.02 10/3/20 17:46 10/3/20 21:04 0.11 3.29 0.75 0.03 10/4/20 3:10 10/4/20 5:08 0.04 1.97 0.25 0.02 10/4/20 14:08 10/4/20 14:32 0.23 0.40 0.38 0.57 10/6/20 17:28 10/6/20 19:40 0.09 2.19 2.12 0.04 10/19/20 20:01 10/9/20 20:03 0.06 0.04 3.01 1.59 10/12/20 4:09 10/12/20 4:14 0.03 0.08 2.34 0.38							
9/28/20 9;48 9/28/20 9;48 0.01							
9/29/20							
10/2/20							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
10/4/20							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
10/12/20 4:09 10/12/20 4:14 0.03 0.08 2.34 0.38 10/12/20 11:26 10/12/20 11:26 0.01 10/16/20 15:49 10/16/20 16:02 0.20 0.23 4.18 0.87 10/19/20 9:29 10/19/20 11:21 0.21 1.87 2.73 0.11 10/19/20 20:18 10/19/20 20:18 0.01 10/20/20 10:58 10/20/20 14:14 0.02 3.26 0.61 0.01 10/21/20 14:04 10/21/20 15:13 0.10 1.16 0.99 0.09 10/24/20 16:40 10/24/20 17:01 0.33 0.36 3.06 0.93 10/25/20 9:51 10/25/20 22:57 0.46 131 0.70 0.04 10/26/20 16:54 10/26/20 23:18 0.21 6.40 0.75 0.03 <							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
11/5/20 16:02 11/5/20 19:39 0.33 3.63 4.94 0.09 11/7/20 1:25 11/7/20 1:34 0.02 0.15 1.24 0.13 11/7/20 18:42 11/7/20 23:51 0.14 5.15 0.71 0.03 11/8/20 11:09 11/9/20 13:37 2.52 26.47 0.47 0.10 11/11/20 2:35 11/11/20 13:20 0.49 10.74 1.54 0.05 11/14/20 15:06 11/14/20 15:06 0.01 11/16/20 20:59 11/16/20 21:07 0.13 0.14 2.25 0.92 11/22/20 16:35 11/22/20 17:12 0.15 0.62 5.81 0.24 11/30/20 15:23 11/30/20 23:25 0.20 8.05 7.92 0.02							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
11/11/20 2:35 11/11/20 13:20 0.49 10.74 1.54 0.05 11/14/20 15:06 11/14/20 15:06 0.01 11/16/20 20:59 11/16/20 21:07 0.13 0.14 2.25 0.92 11/22/20 16:35 11/22/20 17:12 0.15 0.62 5.81 0.24 11/30/20 15:23 11/30/20 23:25 0.20 8.05 7.92 0.02							
11/14/20 15:06 11/14/20 15:06 0.01 11/16/20 20:59 11/16/20 21:07 0.13 0.14 2.25 0.92 11/22/20 16:35 11/22/20 17:12 0.15 0.62 5.81 0.24 11/30/20 15:23 11/30/20 23:25 0.20 8.05 7.92 0.02							
11/16/20 20:59 11/16/20 21:07 0.13 0.14 2.25 0.92 11/22/20 16:35 11/22/20 17:12 0.15 0.62 5.81 0.24 11/30/20 15:23 11/30/20 23:25 0.20 8.05 7.92 0.02							
11/22/20 16:35 11/22/20 17:12 0.15 0.62 5.81 0.24 11/30/20 15:23 11/30/20 23:25 0.20 8.05 7.92 0.02					0.14	2.25	0.92
11/30/20 15:23 11/30/20 23:25 0.20 8.05 7.92 0.02							
17111111111111 7 A1UL UAVI UAVA UALA UAUA				0.01	0.02	0.25	0.00
Maximum Value: 5.41 26.66 7.97 1.59							
Mean Value: 0.44 4.57 1.76 0.25							

TABLE 4-2

COMPARISON OF FIELD MEASURED RAINFALL
AND "NORMAL" RAINFALL FROM MAY-NOVEMBER 2020

	RAINFALL (inches)					
MONTH	Measured (2020)	1991-2020 Normals				
May	4.45	3.38				
June	12.83	8.36				
July	8.80	6.60				
August	5.88	9.16				
September	11.08	9.92				
October	2.77	3.21				
November	3.99	2.02				
TOTAL:	49.80	42.65				

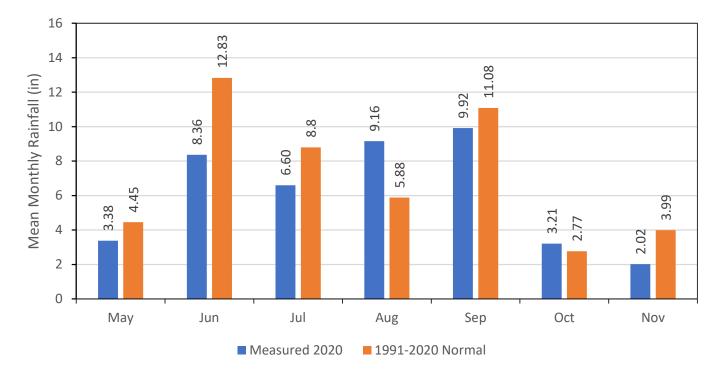


Figure 4-3. Graphical Comparison of Field Measured and "Normal" Rainfall from May-November 2020.

4.1.1.2 Historical Rainfall Characteristics

For purposes of developing the average annual hydrologic budgets, hydrologic inputs from direct precipitation to Marco Island waterways are calculated based upon historical mean monthly precipitation measured at the Marco Island meteorological site from 1991-2020. A summary of mean monthly rainfall at the Marco Island meteorological station from 1991-2020 is given in Table 4-3. Mean monthly rainfall depths range from a low of 1.91 inches during February to a high of 9.92 inches in September, with an annual total of approximately 53.30 inches. The monthly rainfall amounts summarized in Table 4-3 are assumed to be similar to rainfall which occurs on an annual basis on Marco Island.

TABLE 4-3

SUMMARY OF MEAN MONTHLY RAINFALL AT THE MARCO ISLAND METEOROLOGICAL SITE (USC00085359) FROM 1991-2020

MONTH	RAINFALL DEPTH (inches)	MONTH	RAINFALL DEPTH (inches)	MONTH	RAINFALL DEPTH (inches)
January	2.50	May	3.38	September	9.92
February	1.91	June	8.36	October	3.21
March	2.05	July	6.60	November	2.02
April	2.48	August	9.16	December	1.71
				TOTAL:	53.30

4.1.1.2.1 <u>Annual Hydrologic Inputs</u>

Estimated monthly hydrologic inputs to Marco Island waterways from direct precipitation were calculated by multiplying the mean monthly rainfall measured at the Marco Island meteorological monitoring site (as summarized in Table 4-3) times the waterway surface areas summarized in Table 3-3. A summary of estimated mean monthly hydrologic inputs to Marco Island waterways from direct precipitation is given in Table 4-4. During an average annual rainfall year, direct precipitation contributes from 336.0-2,511.8 ac-ft to the 5 sub-basin waterways.

TABLE 4-4

MEAN MONTHLY PRECIPITATION
INPUTS TO MARCO ISLAND WATERWAYS

	MEAN	MONTHLY PRECIPITATION INPUTS (ac-ft)							
MONTH	RAINFALL (inches) ¹	Sub-basin 1 (565.61 ac)	Sub-basin 2 (75.65 ac)	Sub-basin 3 (227.87 ac)	Sub-basin 4 (374.28 ac)	Sub-basin 5 (281.65 ac)			
January	2.50	117.8	15.8	47.5	78.0	58.7			
February	1.91	90.0	12.0	36.3	59.6	44.8			
March	2.05	96.6	12.9	38.9	63.9	48.1			
April	2.48	116.9	15.6	47.1	77.4	58.2			
May	3.38	159.3	21.3	64.2	105.4	79.3			
June	8.36	394.0	52.7	158.7	260.7	196.2			
July	6.60	311.0	41.6	125.3	205.9	154.9			
August	9.16	431.7	57.7	173.9	285.7	215.0			
September	9.92	467.5	62.5	188.4	309.4	232.8			
October	3.21	151.3	20.2	61.0	100.1	75.3			
November	2.02	95.2	12.7	38.4	63.0	47.4			
December	1.71	80.6	10.8	32.5	53.3	40.1			
TOTAL:	53.30	2,511.8	336.0	1,012.1	1,662.4	1,251.0			

^{1.} Mean monthly precipitation at the Marco Island meteorological site from 1991-2020

4.1.2 Stormwater Runoff

Estimates of hydrologic inputs to Marco Island waterways from stormwater runoff were calculated for Sub-basin areas 1-5 using an average annual rainfall of 53.30 inches and runoff calculations based upon measured historical rain event characteristics. Individual estimates of runoff inputs were generated for each of the sub-basin areas discharging to Marco Island waterways which are used for development of both hydrologic and nutrient budgets. Details of evaluation methods and results of the runoff modeling efforts are given in the following sections.

4.1.2.1 <u>Computational Methods</u>

Estimates of volumetric inputs from direct stormwater runoff were generated for Sub-basins 1-5 using the methodology developed by Harper and Baker (2007) for FDEP as part of the Statewide Stormwater Rule process during 2010. The estimated runoff volumes were calculated for average annual rainfall conditions based upon hydrologic modeling of individual rain events measured in the South Florida area over the period from 1942-2010.

The standard SCS model calculates runoff volumes using a weighted CN value for each land use type present in the sub-basin area. However, the relationship between CN values and runoff volumes is an exponential function, and large errors in runoff estimation can occur by averaging CN values, especially if the values are widely different in magnitude. To reduce this error, ERD developed a modification to the standard SCS CN model which reduces the need to average CN values by calculating separate runoff volumes for DCIA and non-DCIA portions of each sub-basin. Under this modified approach, the runoff volume for each rainfall event is calculated by adding the rainfall excess from the non-directly connected impervious area (non-DCIA) portion to the rainfall excess created from the DCIA portion for the basin. Rainfall excess from the non-DCIA areas is calculated using the following set of equations:

Soil Storage (S) =
$$\frac{1000}{nDCIA CN} - 10$$

$$nDCIA\ CN = \frac{[CN*(100-IMP)] + [98\ (IMP-DCIA)]}{(100-DCIA)}$$

$$Q_{nDCIAi} = \frac{(P_i - 0.2S)^2}{(P_i + 0.8S)}$$

where:

CN = curve number for pervious area

IMP = percent impervious area

DCIA = percent directly connected impervious area

nDCIA CN = curve number for non-DCIA area

P_i = rainfall event depth (inches)

 Q_{nDCIAi} = rainfall excess for non-DCIA for rainfall event (inches)

For the DCIA portion, rainfall excess is calculated using the following equation:

$$Q_{DCIAi} = (P_i - 0.1)$$

When P_i is less than 0.1, Q_{DCIAi} is equal to zero. This methodology is used to estimate the generated runoff volume within each of the delineated sub-basin areas for each rainfall event which occurred over the simulation period.

A continuous runoff simulation model was developed using the modified SCS Curve Number Methodology, and the available period of historical rainfall data for South Florida from 1942-2010 were used as the precipitation input data. Hydrologic characteristics of the Marco Island sub-basin areas were determined by ERD based upon aerial photography and a field reconnaissance of the watershed areas. This information was discussed previously in Section 3.10, and detailed hydrologic characteristics of the sub-basin areas by land use are provided in Table 3-15. This model is used to provide estimates of mean annual runoff volumes generated in each of the 5 sub-basins for measured rainfall events over the period from 1942-2010.

The methodology outlined above provides an estimate of the runoff volume "generated" from each of the individual rain events in each of the 5 sub-basins over the available period of record based upon a mean annual rainfall of 53.30 inches. The sum of the total generated runoff was then divided by the number of years in the historical record to obtain an estimate of the mean annual runoff volume.

The SCS model assumes that all generated runoff reaches the ultimate receiving water, but significant portions of the generated runoff volume may be attenuated by infiltration into swales, depressional areas, and in stormwater management systems within each sub-basin area. If the stormwater management system provides dry retention treatment, a large portion of the runoff volume may be infiltrating into the ground and not reach the receiving water as a surface flow. If the stormwater system provides wet detention treatment, a portion of the generated runoff volume may be lost due to evaporation within the pond or infiltration through the pond bottom.

The watershed runoff model includes information on the types of stormwater management systems utilized within each sub-basin area and the amount of developed area treated by each stormwater management type. The generated runoff volume discharging to stormwater treatment systems is reduced or attenuated for likely volumetric removal processes in the treatment system. Estimates of the amount of generated runoff volume attenuated by each type of stormwater management system and natural features, such as wetlands, are included in the model, and the attenuated volume is subtracted from the generated volume within each sub-basin. The result is an estimate of the runoff volume which actually discharges into the receiving waterbody from each sub-basin area.

A summary of estimated volumetric removal efficiencies for stormwater management systems and natural features in the Marco Island sub-basins is given in Table 4-5. These volumetric removals are based on previous hydrologic modeling of natural areas performed by ERD and extensive research on the performance efficiencies of stormwater management systems used in the State of Florida. Developed areas treated by dry retention are assumed to have a volumetric loss of approximately 80% for runoff inputs due to infiltration and evaporation within the pond, with a 20% volumetric reduction assumed for wet ponds. Runoff is also retained within drainage swales due to storage, infiltration, and evapotranspiration, with an assumed volumetric runoff reduction of 20%. The information summarized in Table 4-5 is combined with information on stormwater management systems and wetland areas (Figure 3-12) to assist in calculation of estimated runoff inflow from each sub-basin area.

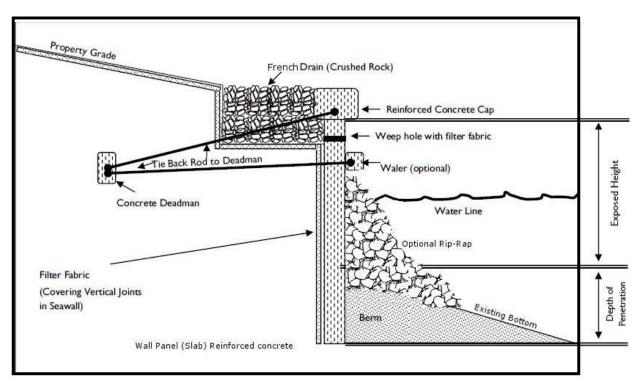
TABLE 4-5

ESTIMATED VOLUMETRIC REMOVAL EFFICIENCIES FOR WETLANDS AND STORMWATER MANAGEMENT SYSTEMS IN THE MARCO ISLAND DRAINAGE BASINS

SYSTEM TYPE	VOLUME REDUCTION (% of Annual Runoff)
Dry Pond	80
Wet Pond	20
Drainage Swales	20
Rear Yard Drains	95

According to Chapter 6, Article III, Division 2 of the Marco Island, Florida, Code of Ordinances, all properties which border salt waterbodies must have a seawall. To protect from build-up of water pressure behind the seawall, all properties with seawalls are required to install a French drain to intercept local groundwater and allow the pressure to be regulated by 2-inch weep holes in the seawall.

A photograph of a typical rear yard French drain is given on Figure 4-4a, and a schematic of construction details for the French drain is given on Figure 4-4b. Although the French drains are intended to regulate hydrostatic pressures on the seawall, the drains also serve to capture virtually all rear yard runoff from waterfront properties and infiltrate the runoff into groundwater. Since a rear yard discharge of runoff would require an extreme storm event, rear yard areas of homes adjacent to waterways with seawalls are assumed to infiltrate 95% of the generated runoff into groundwater.


The runoff models do not include runoff generation for any natural or man-made open waterbodies since the models are designed to estimate runoff on an average annual basis, and precipitation inputs and evaporation losses are approximately equal on an average annual basis. Dry ponds are also excluded from runoff generation calculations since rainfall on the pond surface is considered in the removal calculations. Wet stormwater ponds are excluded from the modeled runoff area for the same reason, although a volumetric reduction of 20% is assumed for runoff inputs entering wet detention ponds due to groundwater losses.

4.1.2.2 Modeled Runoff Volumes

Hydrologic modeling was conducted to estimate annual runoff inputs to Marco Island waterways using the methodology and assumptions discussed in previous sections. A discussion of runoff inputs to the waterways is given in the following sections. A summary of the hydrologic model used to calculate annual runoff volumes is given in Appendix D.

a. Photo of typical rear yard French drain

b. Schematic of typical rear yard French drain

Figure 4-4. Rear Yard French Drains.

A summary of estimated runoff volumes which discharge from each of the 5 modeled drainage sub-basin areas into Marco Island waterways on an average annual basis is given in Table 4-6. The generated runoff volume represents the modeled runoff volume within each sub-basin prior to volume reduction in stormwater management systems, wetlands, and ditches/swales. Estimates of the runoff volume removed in dry and wet ponds, swales, and wetlands are calculated for each sub-basin based upon the volumetric removal efficiencies summarized in Table 4-5, and subtracted from the generated runoff volume. The resulting values represent the observed mean annual runoff volume which is actually discharged to Marco Island waterways from each sub-basin. Estimates of the generated and observed runoff coefficients (C value) are also provided for each drainage sub-basin.

TABLE 4-6

SUMMARY OF GENERATED AND DELIVERED
RUNOFF VOLUMES FOR MARCO ISLAND SUB-BASIN AREAS

BASIN	AREA	GENERATED RUNOFF	GENERATED	RUNOFF ATTENUATION BY BMP (ac-ft/yr)						DELIVERED RUNOFF	DELIVERED C	
BASIN	(acres)	VOLUME (ac-ft)	C VALUE	Dry Ponds	Swales	Wet Pond	Swale- Pond	Wetland	Rear Swale	Total	VOLUME (ac-ft/yr)	VALUE
1	1,469.4	620.8	0.095	63.0	69.0	1.6	0.02		57.8	191.5	429.4	0.066
2	306.2	154.7	0.114	26.2	16.8	0.2	0.3		16.9	60.3	94.3	0.069
3	895.5	252.4	0.063	15.7	23.8	7.3	8.7		49.3	104.8	147.6	0.037
4	942.4	414.5	0.099	134.6	30.7	1.9			40.4	207.5	206.9	0.049
5	814.6	253.3	0.070	46.0	25.4	0.6	8.4	0.04	39.8	120.3	133.0	0.037
Sub- Total:	4,428.1	1,695.6	0.086	285.4	165.8	11.6	17.4	0.04	204.2	684.4	1,011.3	0.051
6	480.1	265.6	0.125							0.0	265.6	0.125
7	349.4	248.8	0.160	3.5	4.7	0.05		0.3		8.5	240.3	0.155
Sub- Total:	829.5	514.4	0.140	3.5	4.7	0.05	0.0	0.3	0.0	8.5	506.0	0.137

The generated and observed runoff coefficients are calculated as follows:

Generated C Value =
$$\frac{Generated \ Runoff \ Volume \ (ac-ft)}{Total \ Basin \ Area \ (ac) \ x \ Rainfall \ Depth \ (ft)}$$

As indicated on Table 4-6, approximately 1,695.6 ac-ft/yr of runoff is generated in Marco Island Sub-basins 1-5, resulting in a generated runoff C Value of 0.086, indicating that approximately 8.6% of the annual rainfall volume becomes runoff. This relatively low annual C value is related to the highly permeable soils in the watershed which allow most of the rainfall to infiltrate into the soil before runoff can even be generated. Approximately 684.4 ac-ft/yr of the generated runoff volume is lost in stormwater management systems and ponds, with approximately 9.8% of the generated runoff infiltrated into roadside swales.

The runoff volume which actually reaches the waterways for Sub-basins 1-5 each year is approximately 1,011.3 ac-ft/yr which corresponds to a delivered runoff coefficient of 0.051, indicating that approximately 5.1% of the annual rainfall which occurs in the Marco Island watershed actually reaches adjacent waterways as stormwater runoff on an average annual basis. A runoff delivery coefficient in this range is on the lower end of values typically observed for developed watersheds containing large areas of highly permeable soils. Calculated generated runoff coefficients (C Values) for individual sub-basins range from 0.063-0.114, with delivered runoff coefficients ranging from 0.037-0.069.

As indicated on Table 4-6, the single largest contribution of runoff to Marco Island waterways originates within Sub-basin 1 which consists of a 1,469.4-acre area (excluding stormwater management facilities) of high-density residential, medium-density residential, commercial, institutional, and natural areas located in the northwest quadrant of Marco Island. This sub-basin contributes approximately 42.5% of the annual runoff inputs into adjacent waterways. An additional 20.5% of the annual runoff inputs originate from Sub-basin 4 which consists of approximately 942.4 acres of multi-family residential, medium-density residential, commercial, and highway land uses, excluding stormwater management facilities. The third most significant source of runoff inputs is Sub-basin 3 which contributes 14.6% of the annual runoff inflows. Each of the remaining sub-basin areas contributes approximately 13% or less of the total annual inputs to Marco Island waterways from stormwater runoff.

4.1.3 Irrigation Inputs

An analysis was conducted to estimate volumetric irrigation inputs to sub-basin areas in Marco Island. Irrigation application rates to areas receiving reuse irrigation are based on the average application rates for golf courses and other public access areas summarized in Table 3-12. Irrigation on all remaining pervious areas within the drainage basins which do not receive reuse irrigation is assumed to be 0.5 inch/week.

A summary of pervious and impervious areas in sub-basins with and without reuse irrigation is given in Table 4-7. Areas of golf courses and common areas which receive reuse irrigation are divided into impervious and pervious surfaces based on an independent analysis of areas receiving reuse irrigation. The total area of parcels receiving reuse irrigation, including both on- and off-island areas, is estimated by ERD to be 1,533.20 acres, based on the parcels included in the active reuse areas and discussions with City Public Works personnel. Of the 1,533.20 acres, only pervious surfaces receive reuse irrigation, with a combined area of 628.95 acres. Information is also provided on impervious and pervious areas for portions of the watershed which do not receive reuse irrigation. An additional 1,874.55 acres of pervious surfaces are irrigated using sources other than reuse.

TABLE 4-7
PERVIOUS AND IMPERVIOUS AREAS IN SUB-BASINS WITH AND WITHOUT REUSE IRRIGATION

		I	REUSE AR	EAS (acres)	NON-REUSE AREAS (acres)		TOTAL (acres)	
AREA	SUB-BASIN	Golf Courses		Common				Areas
		Impervious	Pervious	Impervious	Pervious	Impervious	Pervious	(acres)
	1	0.88	19.14	223.40	115.97	450.03	660.0	1,469.4
	2	0	0	30.84	8.68	143.11	123.54	306.2
On- Island	3	6.92	106.85	60.68	118.90	318.49	283.70	895.5
Island	4	0	0	204.30	90.87	289.22	357.98	942.4
	5	0	0	23.71	0.00	341.58	449.33	814.6
0.00	6	0	0	0.00	5.94			
Off- Island	Marco Shores Golf Course	26.00	104.00	0.00	0.00			
isiana	Isles of Capri	0	0	328.0	59.0			
	TOTAL:	33.80	229.99	870.93	398.96	1,542.43	1,874.55	4,428.1

A summary of annual reuse and non-reuse irrigation volumes by sub-basin is given in Table 4-8. Pervious golf course areas are assumed to be irrigated at an application rate of 0.56 inch/week (as summarized in Table 3-12), while pervious common areas irrigated with reuse are assumed to have an application rate of 0.88 inches/week (as indicated in Table 3-12). All areas which do not receive reuse irrigation are assumed to be irrigated at an average rate of 0.5 inch/week. The sum of the irrigated volumes in reuse and non-reuse areas is equal to the total irrigation volume applied in each of the 5 sub-basins on an average annual basis. Overall, irrigation provides an additional hydrologic input of approximately 5,643 ac-ft/yr to the 5 Marco Island sub-basin areas. This information is used in the next section to develop an overall hydrologic budget for groundwater seepage.

TABLE 4-8

ANNUAL REUSE AND NON-REUSE IRRIGATION VOLUMES BY SUB-BASIN

		REUSE AR	EAS (acres)	NON-REU				
SUB-BASIN	Golf C	Courses	Commo	on Areas	(ac	TOTAL		
BOD BIAGITY	Rate (in/wk)	Volume (ac-ft/yr)	Rate (in/wk)	Volume (ac-ft/yr)	Rate (in/wk)	Volume (ac-ft/yr)	(ac-ft/yr)	
1	0.56	46.4	0.88	442	0.50	1,430	1,919	
2	0.56	0.0	0.88	33.1	0.50	268	301	
3	0.56	259.3	0.88	453	0.50	615	1,327	
4	0.56	0.0	0.88	347	0.50	776	1,122	
5	0.56	0.0	0.88	0.0	0.50	974	974	
TOTAL:		305.7		1,275		4,063	5,643	

4.1.4 Shallow Groundwater Seepage

Field investigations were performed by ERD to evaluate the quantity and quality of shallow groundwater seepage entering Marco Island waterbodies during the monitoring program. Groundwater seepage was quantified using a series of underwater seepage meters installed at selected locations throughout the various waterways. Seepage meters provide a mechanism for direct measurement of groundwater inflow into a waterbody by isolating a portion of the bottom so that groundwater seeping up through the bottom sediments into the surface water can be collected and characterized. Use of the direct seepage meter measurement technique avoids errors, assumptions, and extensive input data required when indirect techniques are used, such as the Gross Water Budget or Subtraction Method, as well as computer modeling and flow net analyses.

The seepage meter technique has been recommended by the U.S. Environmental Protection Agency (EPA) and has been established as an accurate and reliable technique in field and tank test studies (Lee, 1977; Erickson, 1981; Cherkauer and McBride, 1988; Belanger and Montgomery, 1992). With installation of adequate numbers of seepage meters and proper placement, seepage meters are a very effective tool to estimate groundwater-surface water interactions. One distinct advantage of seepage meters is that seepage meters can provide estimates of both water quantity and quality entering a lake system, whereas estimated methods can only provide information on water quantity.

4.1.4.1 Seepage Meter Construction and Locations

A schematic of a typical seepage meter installation used at Marco Island is given in Figure 4-5, and a generic photograph of seepage meters being prepared for deployment is given in Figure 4-6. Seepage meters were constructed from a 2-ft diameter aluminum cylinder with a closed top and open bottom. The seepage meters were inserted into the sediments to a depth of approximately 8-12 inches, isolating a sediment area of 3.14 ft². After installation, approximately 3-6 inches of water was trapped inside the seepage meter above the water-sediment interface.

A 0.75-inch PVC fitting was threaded into the top of each meter and attached to a female quick-disconnect PVC Camlock fitting. A flexible polyethylene bag, with an approximate volume of 40 gallons, was attached to the seepage meter using a quick-disconnect PVC male Camlock fitting with a terminal ball valve. Each of the collection bags was constructed of black polyethylene to prevent light penetration into the bag which could potentially stimulate photosynthetic activity within the sample prior to collection and result in an alteration of the chemical characteristics of the seepage sample.

Prior to attachment to the seepage meter, all air is removed from inside the polyethylene collection bag, and the PVC ball valve is closed so that water would not enter the collection container prior to attachment to the seepage meter. A diver then connects the collection bag to the seepage meter using the PVC camlock fitting. After attaching the collection bag to the seepage meter, the PVC ball valve is opened, and groundwater influx into the open bottom of the seepage meter is collected inside the flexible polyethylene bag.

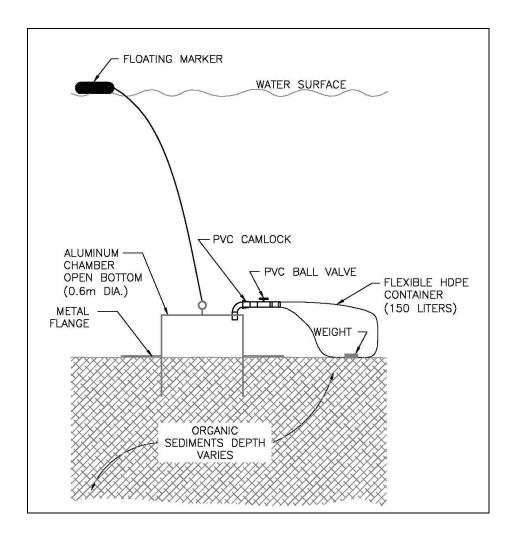
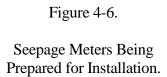



Figure 4-5.

Typical Seepage
Meter Installation.

Seepage meters were inserted through the unconsolidated and consolidated sediment layers and into the parent bottom material by repeatedly pounding around the perimeter of the meter using a 20-pound hammer weight until the seepage meter met significant resistance from the sediment material, and no additional movement of the meter was observed. Seepage meters installed in these areas were extremely stable, and additional settling of the seepage meters during the monitoring program was very unlikely.

Each seepage meter was installed with a slight tilt toward the outlet point so that any gases which may be generated inside the seepage meter would exit into the collection container. Two 10-ounce plastic-coated fishing weights were placed inside each of the collection bags to prevent the bags from floating up towards the water surface as a result of trapped gases. The location of each seepage meter was indicated by a floating marker which was attached to the seepage meter using a coated wire cable.

Seepage meters were installed at 16 locations in Marco Island waterways on April 29 and May 5, 2020. Locations for the seepage meters are indicated on Figure 4-7. The seepage meter sites are superimposed over a map of the Marco Island reuse irrigation distribution area for reference purposes. Seepage meters were installed adjacent to the seawalls at a water depth of 4-6 ft, depending on location.

4.1.4.2 Seepage Meter Monitoring

Installation of Marco Island seepage meters was conducted on April 29 and May 5, 2020. Polyethylene collection bags (200 liter) were attached at the time of installation to each of the seepage meters. The initial seepage monitoring event was conducted on May 26-27, 2020, approximately 27-32 days following installation, depending on initial installation date. During this event, the volume of seepage collected at each site was measured and recorded, but the collected sample was discarded since the initial collected seepage sample represents a combination of seepage inflow and water trapped inside the seepage meter at the time of installation.

Beginning with the second monitoring event, samples were collected and retained for laboratory analyses. Each of the 16 seepage meters was monitored on approximately a monthly basis from May-November 2020, with 6 separate monitoring conducted for evaluation of seepage quantity at each of the monitoring sites. The seepage meters were removed at the end of the monitoring program in November 2020.

4.1.4.3 Seepage Inflow

A summary of field measurements of seepage inflows at the Marco Island monitoring sites from May-November 2020 is given in Appendix E-1. During collection of the seepage samples, information was recorded on the date and time of sample collection, the volume of seepage collected at each site, general observations regarding the condition of the seepage collection bags, and replacement/repair details. The seepage inflow rate at each location is calculated by dividing the total collected seepage volume (liters) by the area of the seepage meter (0.27 m²) and the time (days) over which the seepage sample was collected.

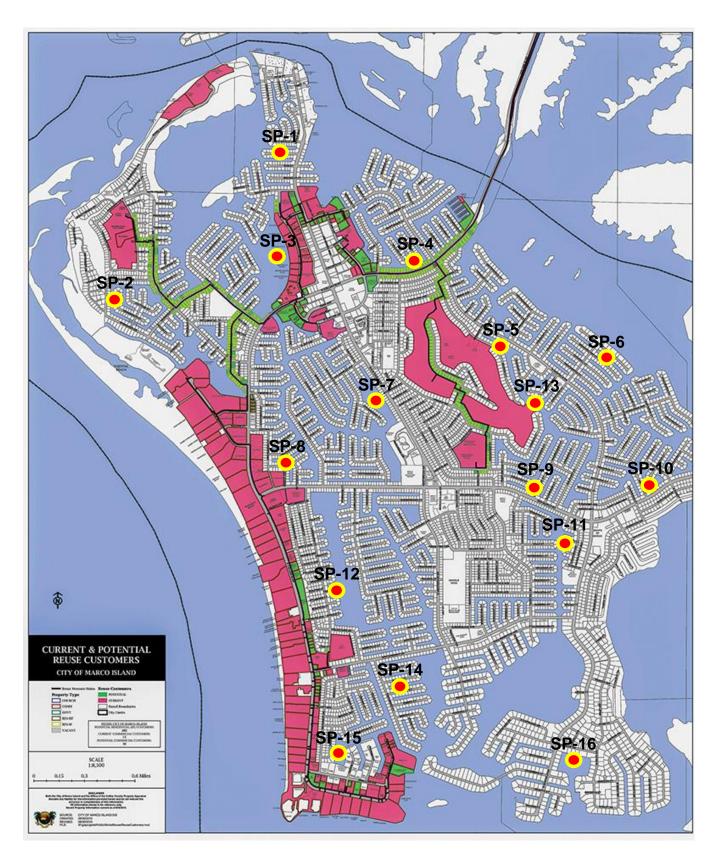


Figure 4-7. Locations of Marco Island Seepage Monitoring Sites. (Base Map Source: City of Marco Island Reuse Customer Map)

As seen in Appendix E-1, several seepage meter sites contain missing data for one or more events during the field monitoring program as a result of a damaged collection bag or missing seepage meters. In these cases, the damaged bag was replaced with a new bag, but no seepage sample was obtained for the event. A total of 6 seepage field monitoring events was conducted at the 16 seepage meter sites, with a potential of 96 field measurements overall at the 16 seepage monitoring sites. During the field monitoring program, a total of 81 seepage samples was collected out of a possible 96 samples, for a 84% sample success rate which is slightly better than typical seepage sample collection success rates of 70-75% in studies conducted by ERD.

The seepage meter initially installed at Site 16 in the rectangular cove located between S. Barfield Dr. and Inlet Dr. was missing at the time of the first monitoring event. The meter was replaced at a different location, and this meter was also missing at the time of the second monitoring event. The meter was again replaced and moved to a new location, but this meter was missing at the time of the next monitoring event. After the third missing seepage meter, attempts to monitor seepage in this area were discontinued.

A summary of mean seepage inflow measurements collected at the 16 seepage meter monitoring sites is given in Table 4-9. Mean seepage values measured at the Marco Island monitoring sites ranged from 1.46-13.07 liters/m²-day, with a majority of measured values ranging from approximately 1-10 liters/m²-day. A similar degree of variability was observed in the measured minimum and maximum seepage influx rates during the field monitoring program.

For comparison purposes, mean seepage values are summarized by drainage sub-basin in Table 4-10. Measured seepage values in most sub-basins exhibit a high degree of variability in measured values as a result of variability in the transmissivity of rear yard soils adjacent to the seawalls. However, in spite of the individual variability between sites, the overall sub-basin mean values are remarkably similar, ranging from 6.11-8.14 liters/m²-day.

Since seepage inputs have a potential to introduce large loadings of nutrients to Marco Island waterways, and is likely a significant loading source, a hydrologic mass balance for seepage inflows was developed to corroborate the field measured values. The hydrologic balance estimates groundwater inputs which become seepage using the following equation:

$$Seepage = (Rainfall + Irrigation) - (Runoff + Evapotranspiration)$$

For this analysis, the annual rainfall volume is assumed to equal the sub-basin area (minus stormwater ponds) times the assumed annual average rainfall of 53.3 inches/year. Runoff volumes are based on the delivered runoff values summarized in Table 4-6. Irrigation volumes are based on the values summarized in Table 4-8. Evaporation from impervious areas is based on the methodology developed for FDEP by Harper and Baker (2007), and evapotranspiration from pervious surfaces is assumed to be 3.15 mm/day for St. Augustine grass (Source: IFAS).

TABLE 4-9

FIELD MEASURED HYDROLOGIC INPUTS TO MARCO ISLAND WATERWAYS FROM GROUNDWATER SEEPAGE FROM MAY-NOVEMBER 2020

SITE	NUMBER OF SAMPLES	MINIMUM VALUE (liters/m²-day	MAXIMUM VALUE (liters/m²-day	MEAN VALUE (liters/m²-day	BASIN
1	5	0.48	17.72	4.64	1
2	6	0.68	4.62	2.40	1
3	6	0.68	2.66	1.46	1
4	5	2.26	14.72	8.14	2
5	5	0.31	14.00	4.14	3
6	5	7.68	17.75	13.07	3
7	4	11.57	14.69	12.57	1
8	6	4.03	17.75	9.47	1
9	5	0.77	15.65	6.08	3
10	5	0.68	14.72	4.63	3
11	6	0.69	14.48	7.07	5
12	6	4.23	14.48	8.86	4
13	5	1.60	17.75	9.76	3
14	6	0.45	9.31	3.99	4
15	6	1.02	13.07	5.66	4
16	0	0.00	0.00		5

TABLE 4-10

MEAN SEEPAGE VALUES BY SUB-BASIN

BASIN	SITE	MEAN VALUE BY SUB-BASIN	BASIN MEAN
	1	4.64	
	2	2.40	
1	3	1.46	6.11
	7	12.57	
	8	9.47	
2	4	8.14	8.14
	5	4.14	
	6	13.07	
3	9	6.08	7.54
	10	4.63	
	13	9.76	
	12	8.86	
4	14	3.99	6.17
	15	5.66	
_	11	7.07	5.05
5	16	-	7.07

A summary of the hydrologic mass balance for seepage inflows is given on Table 4-11 for Sub-basins 1-5. The annual total seepage volume is calculated for each sub-basin based on the hydrologic budget equation and assumptions. The annual seepage volume is divided by the waterway area for each sub-basin, resulting in seepage influx values ranging from 6.6-10.7 liters/m²-day, indicating relatively close agreement between measured and calculated values, especially when the field measured values only reflect a portion of an annual cycle. For purposes of this project, the calculated annual seepage volumes listed in Table 4-11 for Sub-basins 1-5 are used for development of the hydrologic and nutrient budgets.

TABLE 4-11

HYDROLOGIC BALANCE FOR SEEPAGE
INFLOWS TO MARCO ISLAND WATERWAYS

	PARAMETER										
Sub-Basin	Sub-Basin Area (acres)	Delivered Runoff Volume (ac-ft)	Impervious Area (acres)	Pervious Area (acres)	Irrigation Volume (ac-ft)	ET from Impervious Area (ac-ft)	ET from Pervious Area (ac-ft)	Rainfall Volume (ac-ft)	Seepage Volume (ac-ft)	Waterway Area (acres)	Seepage Inflow (liters/m²-day)
1	1,469.43	429	674.31	795.11	1,919	530	2,999	6,527	4,487	565.51	6.6
2	306.16	94.4	173.95	132.22	301	137	499	1,360	931	75.65	10.3
3	895.53	148	386.09	509.45	1,327	304	1,922	3,978	2,932	227.87	10.7
4	942.36	208	493.52	448.85	1,122	388	1,693	4,186	3,020	374.28	6.7
5	814.62	133	365.29	449.33	974	287	1,695	3,618	2,477	281.65	7.3
TOTAL:	4,428.10	1,012	2,093.16	2,334.96	5,643	1,646	8,808	19,669	13,846	1,524.96	

4.2 <u>Hydrologic Losses</u>

Hydrologic losses from Marco Island waterways occur as a result of evaporation from the water surface and discharge of excess water to tide. Estimated losses from each of these sources are discussed in the following sections.

Although daily tidal cycles can remove and replace water in areas close to off-shore open water, significant water exchange is limited in canals located in upstream areas due to geometry, long travel paths, and hydraulic limitations. In these areas, the water volume within the canals simply moves back and forth with the tidal cycle and is not replaced with the exception of excess water discharges.

4.2.1 Evaporation Losses

Long-term reliable evaporation data are relatively rare in Florida, with only a limited number of sites available. Estimates of monthly evaporation from Marco Island waterways were generated based upon mean monthly pan evaporation data collected at the Tamiami Trail monitoring station over the 39-year period from 1941-1979. The Tamiami Trail station is located approximately 25 miles east of Marco Island and appears to be the closest long-term evaporation monitoring site in the Southwest Florida area. A summary of mean monthly evaporation for this site is given in Table 4-12.

TABLE 4-12

MEAN MONTHLY LAKE EVAPORATION
AT THE TAMIAMI TRAIL STATION SITE

MONTH	MEAN PAN EVAPORATION (inches)	LAKE EVAPORATION ¹ (inches)	MONTH	MEAN PAN EVAPORATION (inches)	LAKE EVAPORATION ¹ (inches)
January	3.36	2.35	July	6.87	4.81
February	3.85	2.70	August	6.57	4.60
March	5.41	3.79	September	5.36	3.75
April	6.31	4.42	October	5.53	3.87
May	6.83	4.78	November	3.81	2.67
June	6.15	4.31	December	3.20	2.24
			TOTAL:	63.25	44.29

^{1.} Assumed to be 70% of pan evaporation (Jones, 1992)

Pan evaporation rates are used to estimate water surface evaporation by multiplying the measured pan evaporation by a factor called the "pan coefficient". The pan coefficient is a factor less than one which corrects for heat exchange through the sides and bottom of the pan which are not available to the water in a lake. The pan coefficient commonly used to compute free water surface evaporation from pan evaporation is 0.7 (Jones, 1992).

For purposes of this project, the mean evaporation measured at the Tamiami Trail site is assumed to be similar to evaporation at the Marco Island waterways. The recorded data at the Tamiami Trail site reflects pan evaporation, with lake evaporation assumed to be equal to 70% of the pan evaporation values.

A summary of estimated monthly evaporation losses from Marco Island waterways in Subbasins 1-5 is given in Table 4-13. The values summarized in this table were obtained by multiplying the surface areas for waterways in each of the 5 sub-basins (Table 3-3) times the estimated monthly lake evaporation values (listed in Table 4-12). Mean annual volumetric losses from evaporation remove approximately 279.2-2,087.2 ac-ft/yr from the sub-basin areas.

TABLE 4-13

MEAN MONTHLY AND ANNUAL EVAPORATION LOSSES FROM MARCO ISLAND WATERWAYS

MONTH	MEAN		MONTHLY	PRECIPITATI (ac-ft)	ON INPUTS	
MONTH	EVAPORATION (inches) ¹	Sub-basin 1 (565.51 ac)	Sub-basin 2 (75.65 ac)	Sub-basin 3 (227.87 ac)	Sub-basin 4 (374.28 ac)	Sub-basin 5 (281.65 ac)
January	2.35	110.7	14.8	44.6	73.3	55.2
February	2.70	127.2	17.0	51.3	84.2	63.4
March	3.79	178.6	23.9	72.0	118.2	89.0
April	4.42	208.3	27.9	83.9	137.9	103.7
May	4.78	225.3	30.1	90.8	149.1	112.2
June	4.31	203.1	27.2	81.8	134.4	101.2
July	4.81	226.7	30.3	91.3	150.0	112.9
August	4.60	216.8	29.0	87.4	143.5	108.0
September	3.75	176.7	23.6	71.2	117.0	88.0
October	3.87	182.4	24.4	73.5	120.7	90.8
November	2.67	125.8	16.8	50.7	83.3	62.7
December	2.24	105.6	14.1	42.5	69.9	52.6
TOTAL:	44.29	2,087.2	279.2	841.0	1,381.4	1,039.5

^{1.} Mean monthly lake evaporation at the Tamiami Trail meteorological monitoring site from 1941-1979

4.2.2 System Discharges

Discharges from Marco Island waterways occur from the canals as a result of excess water in the hydrologic budget. For purposes of this analysis, mean annual discharges from the waterways are calculated as the difference between quantified inputs and outputs for each waterway on an annual basis according to the following relationship:

Waterway Discharge =

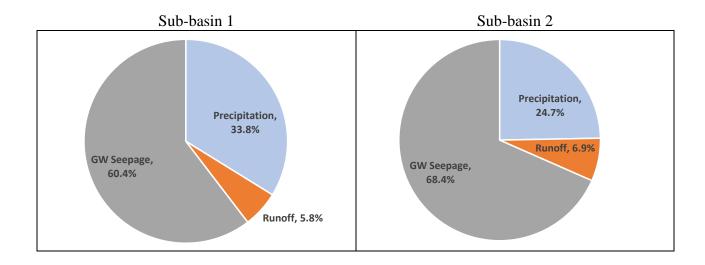
(Precipitation + Runoff Inputs + Seepage) - (Evaporation)

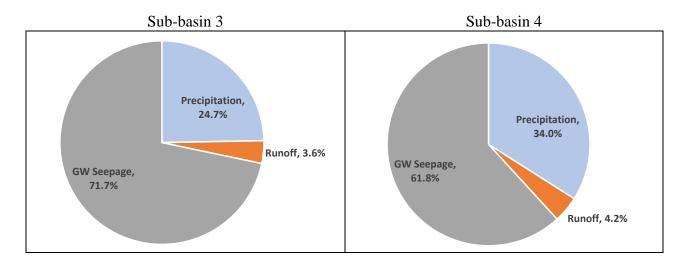
This information is calculated as part of the hydrologic budgets summarized in Section 4.3 and reflects discharges from each sub-basin waterway over a long-term annual average basis, and does not necessarily reflect or predict system discharges during any particular year.

4.3 Hydrologic Budget

A mean annual hydrologic budget was developed for each of the 5 sub-basin waterways based on the analyses provided in previous sections. A discussion of the annual hydrologic budgets is given in the following sections.

4.3.1 **Hydrologic Inputs**


A summary of calculated hydrologic inputs to Marco Island on an average annual basis under current conditions is given in Table 4-14. Estimates of hydrologic inputs are provided for direct precipitation, stormwater runoff, irrigation, and groundwater seepage.


TABLE 4-14

MEAN ANNUAL HYDROLOGIC INPUTS
TO MARCO ISLAND SUB-BASINS 1-5

	SUB-BA	SIN 1	SUB-BA	ASIN 2	SUB-BA	ASIN 3	SUB-BA	ASIN 4	SUB-BA	SIN 5
SOURCE	Annual Inflow (ac-ft/yr)	Percent of Total (%)								
Precipitation	2,512	33.8	336	24.7	1,012	24.7	1,662	34.0	1,251	32.4
Runoff	429	5.8	94.3	6.9	148	3.6	207	4.2	133	3.4
Groundwater Seepage	4,487	60.4	931	68.4	2,932	71.7	3,020	61.8	2,477	64.2
TOTAL:	7,428	100.0	1,361	100.0	4,092	100.0	4,889	100.0	3,861	100.0
Depth Over Waterway:	13.1	ft	17.8	3 ft	18.0) ft	13.1	ft	13.7	ft

The largest annual hydrologic input to the 5 waterways is groundwater seepage which contributes 60-72% of the total annual hydrologic inputs to the systems. Direct precipitation is the second most significant hydrologic input, contributing 25-34% of annual hydrologic inputs. Inputs of stormwater runoff are minimal in terms of the annual hydrologic budgets, contributing only 3-7% of the annual volumetric inflows. Graphical comparisons of annual hydrologic inputs to the Marco Island waterways are given in Figure 4-8.

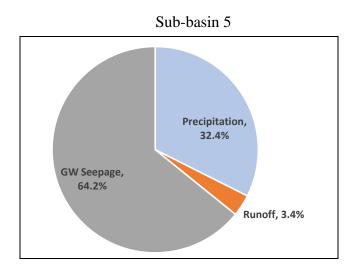
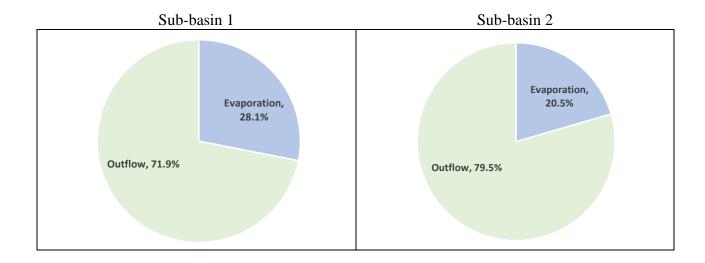


Figure 4-8. Graphical Comparisons of Annual Hydrologic Inputs to the Marco Island Waterways.

Annual volumetric inputs are also expressed as a depth over the waterway surface by dividing the surface area for each waterway by the annual volumetric inputs summarized in Table 4-14. This calculation provides a comparison of watershed inflows normalized for the surface area of the receiving waterbody. This calculation is provided in the final row of Table 4-14. The annual hydrologic inflows to the Marco Island waterways are equivalent to a depth of 13.1-18.0 ft over the waterway area, depending on the sub-basin. This inflow depth is extraordinarily high compared with annual volumetric inflows to lakes which typically range from 1-2 ft. This information can also be used to compare flushing rates in the waterways with higher depths (such as in Sub-basins 2 and 3), indicating a higher flushing frequency compared with lower hydraulic depths (such as Sub-basins 1, 4, and 5).


4.3.2 **Hydrologic Losses**

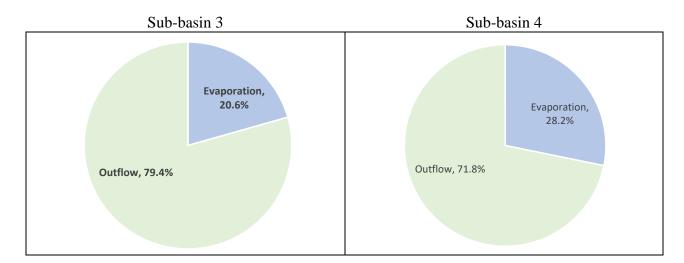

A summary of mean annual hydrologic losses from Marco Island waterways is given in Table 4-15. Approximately 78-85% of the annual hydrologic inputs are lost from discharge of excess water through the canals, with 16-23% of the annual hydrologic inputs lost through evaporation. On an annual average basis, the calculated annual outflows from the waterways to tide are equivalent to a water depth of 12.8-20.1 ft over the entire waterway surface area, depending on the sub-basin. Graphical comparisons of mean annual hydrologic inputs and losses for Marco Island waterways are given on Figure 4-9.

TABLE 4-15

MEAN ANNUAL HYDROLOGIC LOSSES
FROM MARCO ISLAND SUB-BASINS 1-5

	SUB-BA	SIN 1	SUB-BA	ASIN 2	SUB-BA	ASIN 3	SUB-BASIN 4		SUB-BASIN 5	
SOURCE	Annual Inflow (ac-ft/yr)	Percent of Total (%)								
Evaporation	2,087	28.1	279	20.5	841	20.6	1,381	28.2	1,040	26.9
Outflow	5,341	71.9	1,082	79.5	3,251	79.4	3,508	71.8	2,821	73.1
TOTAL:	7,428	100.0	1,361	100.0	4,092	100.0	4,889	100.0	3,861	100.0
Depth Over Waterway:	9.4	ft	14.1	ft	14.3	3 ft	9.4	ft	10.0	ft

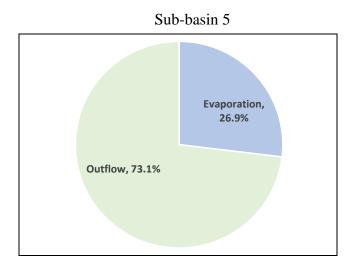


Figure 4-9. Graphical Comparisons of Annual Hydrologic Losses from the Marco Island Waterways.

4.4 Water Residence Time

For purposes of this analysis, water residence time for a waterbody is defined as the waterbody volume divided by the sum of the annual hydrologic inputs. Mean annual water residence times were calculated for each of the 5 sub-basins by dividing the estimated waterbody volume by the calculated mean annual hydrologic inputs for each sub-basin. However, accurate volumetric data do not appear to be available, so calculations were conducted based on assumed mean depths of 8, 10, and 12 ft for each waterway.

A summary of calculated mean annual residence time in Marco Island waterways is given in Table 4-16 for mean waterway depths of 8, 10, and 12 ft. Annual residence times as the assumed mean depth increases. The shortest annual residence times occur in Sub-basins 2 and 3, with the longest times in Sub-basins 1 and 4. Residence times range from 5-11 months, depending on sub-basin and assumed water depth.

TABLE 4-16

MEAN ANNUAL RESIDENCE TIMES
IN MARCO ISLAND WATERWAYS

SUB-BASIN	WATERWAY AREA	ANNUAL HYDROLOGIC INFLOW	MEAN ANNUAL WATER RESIDENCE TIM FOR VARIOUS MEAN DEPTHS (days)		
	(acres)	$\begin{array}{c} \text{INFLOW} \\ \text{(ac-ft/yr)} & D_{\text{mean}} = 8 \text{ ft} \end{array}$		$D_{\text{mean}} = 10 \text{ ft}$	$D_{mean} = 12 \text{ ft}$
1	565.51	7,428	222	278	333
2	75.65	1,361	162	203	243
3	227.87	4,092	163	203	244
4	374.28	4,889	224	279	335
5	281.65	3,861	213	266	320
TOTAL:	1,524.96	21,631			

SECTION 5

NUTRIENT INPUTS AND LOSSES

Marco Island waterways receive nutrient inputs from a variety of sources which include bulk precipitation, stormwater runoff, irrigation, shallow groundwater seepage, and internal recycling. Chemical characteristics of bulk precipitation, stormwater runoff, reuse irrigation, and groundwater seepage, along with inputs from internal recycling, were measured by ERD during the period from April-November 2020. A discussion of these inputs, along with calculated mass loadings, is given in the following sections. Information from each of these sources is used to generate annual average nutrient budgets for total nitrogen and total phosphorus for the waterbodies in the 5 sub-basin areas. A conceptual schematic of evaluated nutrient sources and sinks in Marco Island waterways is given in Figure 5-1.

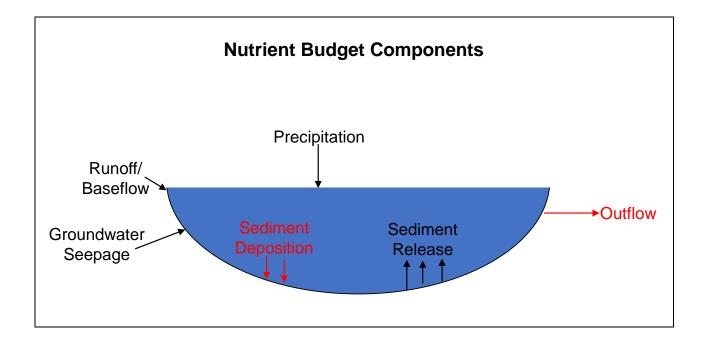


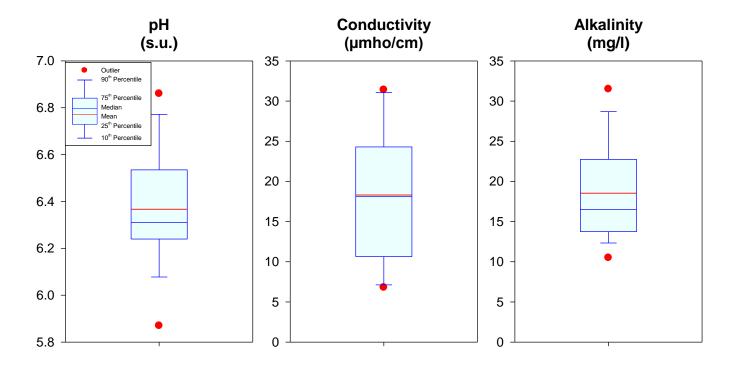
Figure 5-1. Conceptual Schematic of Evaluated Nutrient Inputs and Losses for Marco Island Waterways.

Irrigation is included as a hydrologic input on Figure 4-1, and estimates of annual volumetric inputs are developed in Section 4.1.3 to assist in calculating inputs to area waterways from groundwater seepage. However, irrigation is not included as a separate nutrient impact since the water quality impacts from irrigation are included in the measured characteristics for stormwater runoff and groundwater seepage.

5.1 Characteristics of Nutrient Inputs

5.1.1 **Bulk Precipitation**

Weekly composite samples of bulk precipitation were collected at the Public Works Yard site during the field monitoring program from May-November 2020. This site was also used to measure rainfall during the field monitoring program, as discussed in Section 4.1.1 and illustrated on Figure 4-2. Bulk precipitation samples at this site were collected as a composite of both wet and dry fallout which occurred between weekly field monitoring events. A total of 17 composite bulk precipitation samples was collected during the field monitoring program. A complete listing of laboratory analyses conducted on bulk precipitation samples is given in Appendix F-1.


5.1.1.1 Chemical Characteristics

Summary statistics for bulk precipitation samples collected at the Marco Island monitoring site from May-November 2020 are given in Table 5-1. Bulk precipitation samples were generally low in pH and poorly buffered, with low levels of conductivity. Bulk precipitation samples were also characterized by low levels of turbidity, color, and TSS, although slightly more elevated values were observed for each measured parameter on at least one occasion.

A statistical comparison of measured values for pH, conductivity, alkalinity, color, turbidity, and TSS for Marco Island bulk precipitation samples is given on Figure 5-2. Measured values for most parameters exhibited a relatively narrow range of values, although both high and low outlier values were observed for virtually all parameters. The measured values for pH, conductivity, and alkalinity in the bulk precipitation samples are higher than values observed by ERD in inland locations and may be related to impacts from ocean mist which is alkaline and well buffered.

Bulk precipitation samples contained moderate to low concentrations of nitrogen species, with the majority of nitrogen contributed by NO_x and dissolved organic nitrogen. Overall, the geometric mean total nitrogen concentration in bulk precipitation was 273 μ g/l, reflecting a low value, although a wide range of values was measured in individual samples.

A statistical comparison of measured concentrations of nitrogen species in bulk precipitation is given on Figure 5-3. Concentrations for ammonia, NO_x , and dissolved organic nitrogen exhibited a wide range of values, although the overall geometric mean concentrations were very low in value.

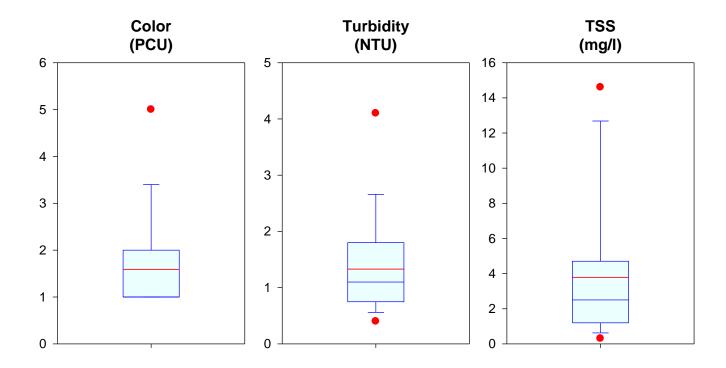
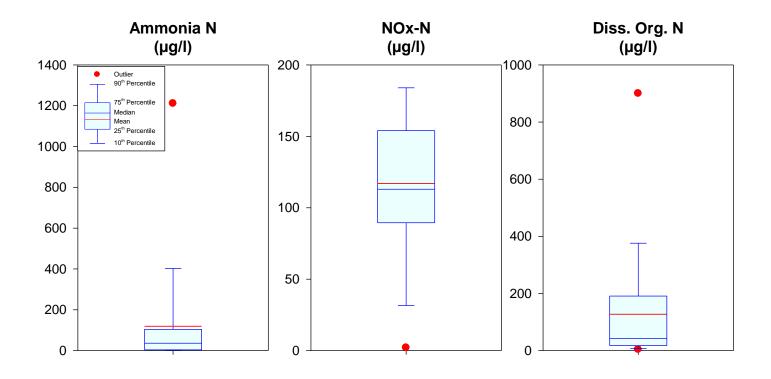



Figure 5-2. Statistical Comparison of Measured Values for pH, Conductivity, Alkalinity, Color, Turbidity, and TSS in Bulk Precipitation Samples Collected at Marco Island from May-November 2020.

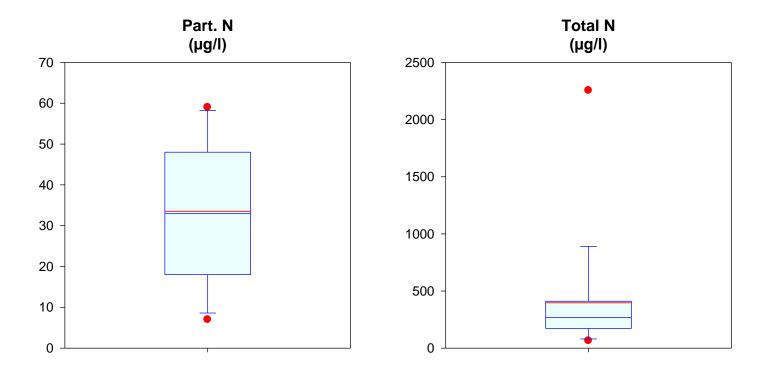


Figure 5-3. Statistical Comparison of Measured Values for Nitrogen Species in Bulk Precipitation Samples Collected at Marco Island from May-November 2020.

TABLE 5-1
SUMMARY STATISTICS FOR BULK PRECIPITATION SAMPLES
COLLECTED AT MARCO ISLAND FROM MAY-NOVEMBER 2020

PARAMETER	UNITS	MINIMUM VALUE	MAXIMUM VALUE	GEOMEAN
pН	s.u.	5.87	6.86	6.36
Alkalinity	mg/l	10.5	31.5	17.7
Conductivity	μmho/cm	7	31	16
Ammonia	μg/l	3	1,211	26
NO _x -N	μg/l	2	184	92
Dissolved Organic N	μg/l	4	900	127
Particulate N	μg/l	7	59	28
Total N	μg/l	65	2,255	273
SRP	μg/l	1	205	4
Dissolved Organic P	μg/l	6	88	30
Particulate P	μg/l	2	88	9
Total P	μg/l	11	354	43
Turbidity	NTU	0.4	4.1	1.1
Color	Pt-Co	1	5	1
TSS	mg/l	0.3	14.6	2.4
Number of Samples:			17	

Relatively low concentrations were observed for phosphorus species, although more elevated values were observed for both SRP and total phosphorus on at least one occasion. The most significant phosphorus species in bulk precipitation was dissolved organic phosphorus, with small contributions from SRP and particulate phosphorus. The overall geometric mean total phosphorus concentration of 43 μ g/l is similar to bulk precipitation characteristics in inland areas.

A statistical comparison of measured concentrations of phosphorus species in bulk precipitation is given in Figure 5-4. Similar to nitrogen, phosphorus concentrations were highly variable between events, although overall geometric mean values are low.

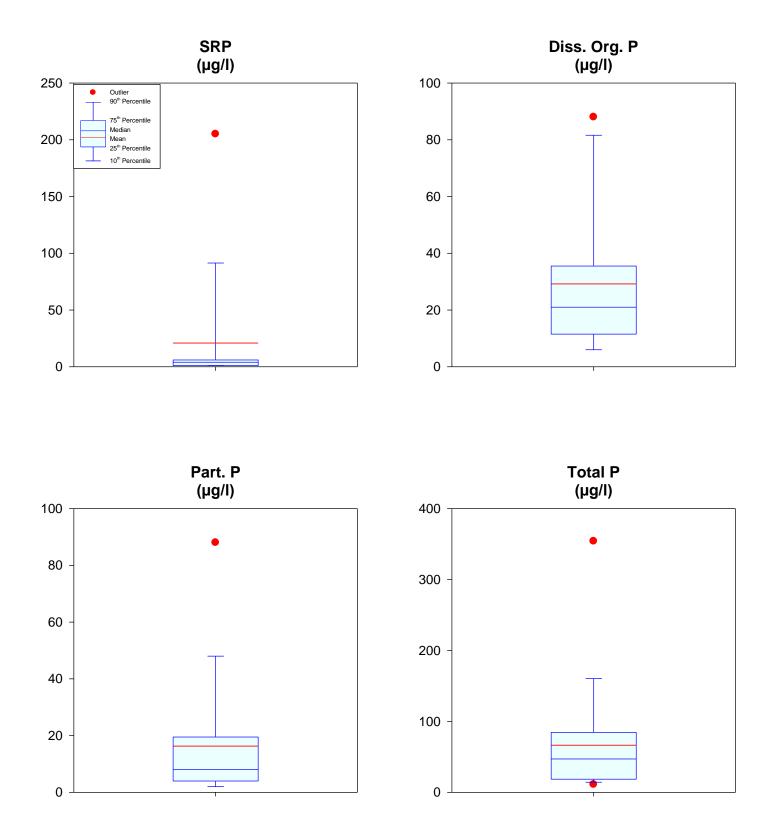


Figure 5-4. Statistical Comparison of Measured Values for Phosphorus Species in Bulk Precipitation Samples Collected at Marco Island from May-November 2020.

5.1.1.2 Mass Loadings

Estimates of annual mass loadings from bulk precipitation to the Marco Island waterways were calculated for total nitrogen and total phosphorus based upon the measured chemical characteristics for bulk precipitation listed in Table 5-1, and the estimated annual volumetric inputs from direct precipitation listed on Table 4-4. A summary of estimated loadings to Marco Island waterways from bulk precipitation is given in Table 5-2. On an average annual basis, bulk precipitation contributes approximately 2,278 kg/yr of total nitrogen and 358 kg/yr of total phosphorus to the Marco Island waterways.

TABLE 5-2

ANNUAL NUTRIENT LOADINGS TO MARCO ISLAND WATERWAYS FROM BULK PRECIPITATION

SUB-BASIN	WATERWAY AREA	ANNUAI (kg/	
Seb Briefry	(acres)	Total Nitrogen	Total Phosphorus
1	565.51	845	133
2	76.65	113	17.7
3	227.87	340	53.4
4	374.28	559	87.8
5	281.65	421	66.1
TOTAL:	1,525.96	2,278	358

5.1.2 Stormwater Loadings

Estimates of runoff generated mass loadings of total nitrogen and total phosphorus entering Marco Island waterways were calculated using the hydrologic analyses discussed in Section 4 and the results of the field runoff monitoring program. A discussion of these analyses is provided in the following sections.

5.1.2.1 Monitoring Sites

Locations of stormwater monitoring sites used by ERD to characterize stormwater runoff within Marco Island are given on Figure 5-5. Five separate monitoring sites were selected which included commercial, residential, and industrial land uses in areas with and without reuse irrigation. Drainage basin areas discharging to each of the 5 monitoring sites are also illustrated on Figure 5-5.

Figure 5-5. Locations of Stormwater Monitoring Sites.

A summary of Marco Island stormwater monitoring sites is given on Table 5-3. Information is provided for the monitoring site location, description of associated dominant land use, and whether or not reuse irrigation is applied within the basin area for the stormwater monitoring site. A discussion of each of the 5 monitoring sites is given in the following sections.

TABLE 5-3
SUMMARY OF MARCO ISLAND STORMWATER MONITORING SITES

MONITORING SITE	LOCATION	DESCRIPTION	REUSE IRRIGATION	ASSOCIATED SUB-BASIN AREA
MI-1	6 th Avenue and Yellowbird Street	Residential area with low maintenance	No	3
MI-2	W. Flamingo Circle and Maple Court	Commercial corridor	Yes	4
MI-3	Bald Eagle Drive and Hartley Avenue	Commercial area	Partial	1
MI-4	S. Barfield Drive and Watson Road	Residential with high maintenance	No	5
MI-5	E. Elkcam Circle and N. Barfield Drive	Industrial area	Yes	2

5.1.2.1.1 Site MI-1

An overview of the drainage basin areas for monitoring sites MI-1 and MI-3 is given on Figure 5-6. Drainage basins for these monitoring sites are included on the same figure due to the close proximity of the 2 drainage basin areas. Monitoring site MI-1 is located at the intersection of Yellowbird Street and 6th Avenue and monitors runoff from a 47.52-acre area of residential homes with low maintenance activities. Reuse irrigation is not available within this drainage basin area. Runoff generated in this area is collected in a series of vegetated roadside swales. Periodic stormwater inlets divert the swale flow into an underground stormsewer system which ultimately discharges northward to the canal system north of Collier Blvd.

A photograph of stormwater monitoring site MI-1 is given on Figure 5-7. An insulated equipment shelter was installed on top of a stormsewer grate and housed an ISCO Model 6712 sequential autosampler with integral area-velocity flow probe. The autosampler was powered using a deep-cycle battery which was recharged with a solar panel attached to the roof of the equipment shelter. Sample collection tubing and flow meter cables were extended into the underground stormsewer system through an opening in the top of the grate inlet. The flow sensor was used to detect runoff discharging through the system and instructed the autosampler to collect composite flow-weighted samples during each discharge event.

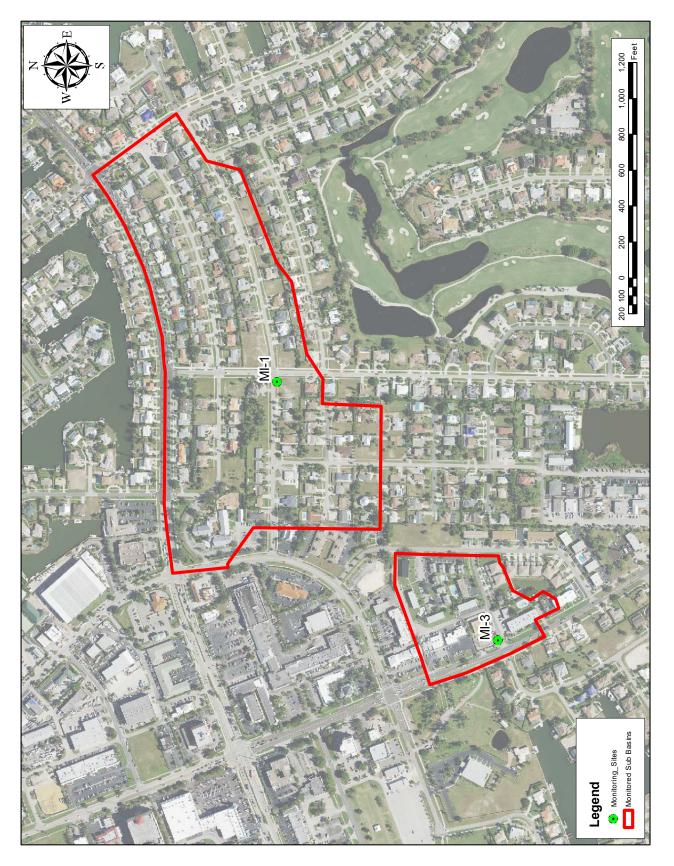


Figure 5-6. Overview of the Drainage Basin Areas for Monitoring Sites MI-1 and MI-3.



Figure 5-7.

Photograph of Stormwater Monitoring Site MI-1.

(Residential watershed with low maintenance and no reuse)

Discharge measurements at Site MI-1, as well as the other runoff monitoring sites, were conducted using an ISCO Model 750 area-velocity (AV) flow probe which provided simultaneous measurements of water depth and velocity in the 24-inch underground RCP. The measured water depth was converted into a cross-sectional area based upon the geometry of the 24-inch RCP and the depth of water. Discharge was then calculated in the flow module using the Continuity Equation:

Q = V x A

where: $Q = discharge (ft^3/sec or cfs)$

A = $\frac{1}{2}$ cross-sectional area of the water in the pipe (ft²)

V = flow velocity (ft/sec or fps)

The internal flow meter for the autosampler provided a continuous measurement of discharge through the inflow culvert, with measurements stored in internal memory at 15-minute intervals, as well as providing input for collection of flow-weighted samples of the inflow over a wide range of flow conditions. The autosampler used at this site contained a single 20-liter polyethylene bottle with 250 ml aliquots of inflow pumped into the bottle at pre-set intervals of discharge, producing a composite flow-weighted sample of the inflow over a weekly period. The 24-inch piping inside the manhole structure at Site MI-1 was partially submerged throughout the field monitoring program.

5.1.2.1.2 Site MI-2

An overview of the drainage basin area for monitoring site MI-2 is given on Figure 5-8. The drainage basin area for site MI-2 includes 28.75 acres of highway, commercial, multifamily, and residential land uses, with areas adjacent to the Collier Blvd. corridor receiving reuse irrigation. The monitoring site is located on a main stormsewer line which collects runoff along Collier Blvd. and directs it east into the adjacent waterway system. Although residential areas can also discharge into this stormsewer system, runoff inputs from residential parcels appear to be relatively rare due to rapid infiltration in the roadside swale system, and the vast majority of runoff monitored at this site is generated from properties adjacent to the Collier Blvd. corridor.

A photograph of stormwater monitoring site MI-2 is given on Figure 5-9. An insulated equipment shelter was installed on top of a grate inlet, approximately 1 block east of Collier Blvd., which is connected to the 48-inch RCP trunk line that receives runoff from Collier Blvd. Sample collection tubing flow meter sensor cables were extended from the autosampler into the 48-inch RCP. The area-velocity stormwater flow sensor measured discharge during storm events and instructed the autosampler to collect flow-weighted composite samples during runoff events. The system was operated off a 12 VDC battery which was recharged using a roof-top-mounted solar panel.

5.1.2.1.3 Site MI-3

An overview of the drainage basin area for runoff monitoring site MI-3 was given on Figure 5-6. The drainage basin discharging to monitoring site MI-3 consists of 9.78 acres of commercial and multi-family residential land use located at the corner of Bald Eagle Drive and Hartley Avenue. Reuse irrigation is available in portions of the drainage basin adjacent to Bald Eagle Drive.

A photograph of stormwater monitoring site MI-3 is given on Figure 5-10. An insulated equipment shelter was installed on top of a stormsewer grate which is connected to the primary drainage system beneath Bald Eagle Drive. Drainage in this area is collected initially in a series of roadside swales before discharging into a 24-inch RCP underground stormsewer system. An ISCO Model 6712 sequential autosampler was placed inside the insulated equipment shelter with sample collection tubing and flow meter cables extending into the stormsewer system. Flowweighted composite samples of runoff were collected during both storm and baseflow conditions during the field monitoring program.

5.1.2.1.4 <u>Site MI-4</u>

An overview of the drainage basin area for monitoring site MI-4 is given on Figure 5-11. This monitoring site receives runoff from a 6.04-acre drainage basin consisting of large residential homes with a high level of lawn care and maintenance activities. Runoff generated in this area is initially collected in a grassed roadside swale system with periodic inlet structures which collect the runoff from the swale and discharge it to an 18-inch underground stormsewer. Reuse irrigation is not available at this site, although the City applies reuse to median landscaping.

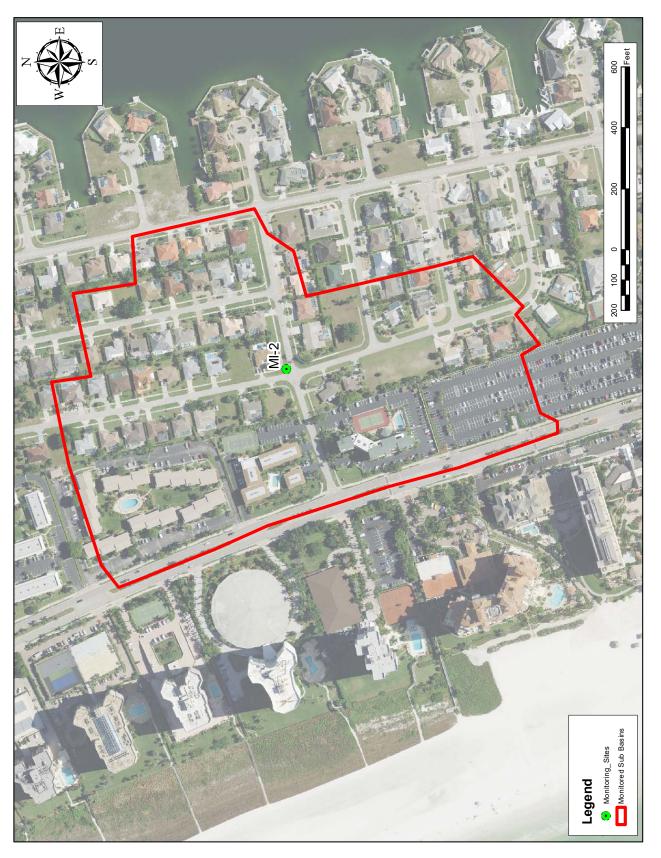


Figure 5-8. Overview of the Drainage Basin Area for Monitoring Site MI-2.

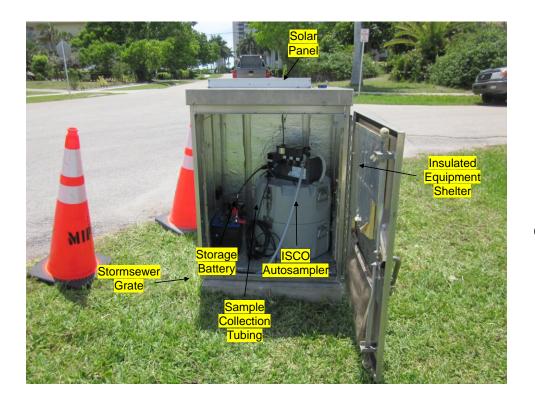


Figure 5-9.

Photograph of Stormwater Monitoring Site MI-2.

(Commercial watershed with reuse irrigation)

Figure 5-10.

Photograph of Stormwater Monitoring Site MI-3.

(Commercial watershed with partial reuse irrigation)

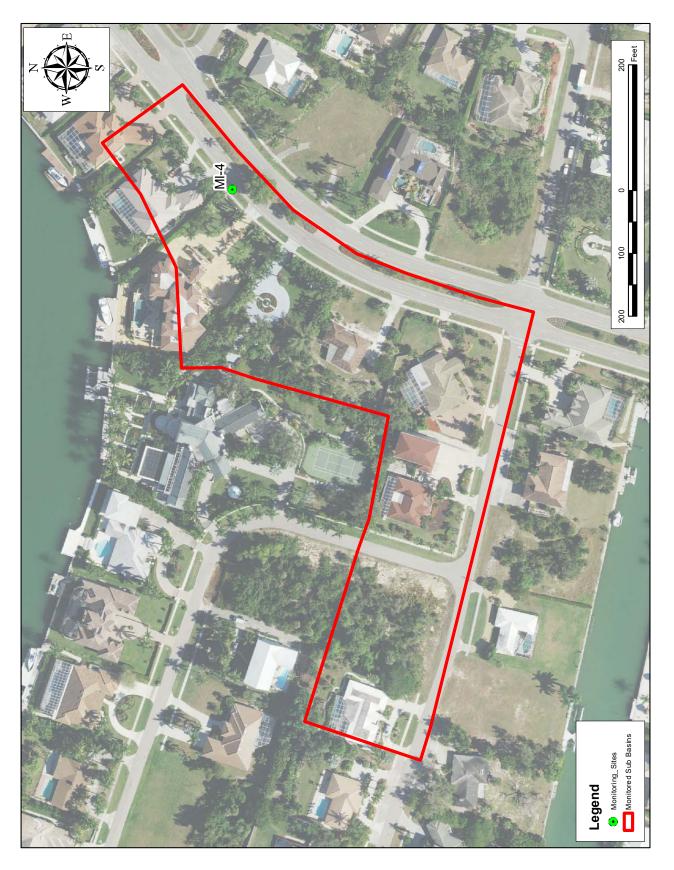


Figure 5-11. Overview of the Drainage Basin Area for Monitoring Site MI-4.

A photograph of stormwater monitoring equipment installed at site MI-4 is given on Figure 5-12. The installation is identical to equipment installed at the previously discussed sites. An insulated equipment shelter was installed on top of a stormwater inlet grate located in the roadside swale system. An ISCO Model 6712 autosampler was installed inside the insulated equipment shelter, with sample collection tubing and flow meter cables extended into the manhole structure. The area-velocity flow meter instructed the autosampler to collect the samples in a flow-weighted mode during monitoring rain events.

Figure 5-12.

Photograph of Stormwater Monitoring Site MI-4.

(Residential watershed with high maintenance)

5.1.2.1.5 <u>Site MI-5</u>

An overview of the drainage basin area for monitoring site MI-5 is given on Figure 5-13. This drainage basin consists of 3.09 acres of primarily commercial and industrial land use activities with a large amount of impervious surface. Reuse irrigation is available in this area.

A photograph of stormwater monitoring site MI-5 is given on Figure 5-14. An insulated aluminum equipment shelter was mounted on top of a grate inlet connected to the primary stormsewer system consisting of a 48-inch RCP which discharges from this area to Factory Bay. The stormwater monitoring equipment at this site was identical to the equipment used at the previous sites, consisting of an ISCO Model 6712 sequential autosampler which was programmed to collect flow-weighted composite samples during storm events.

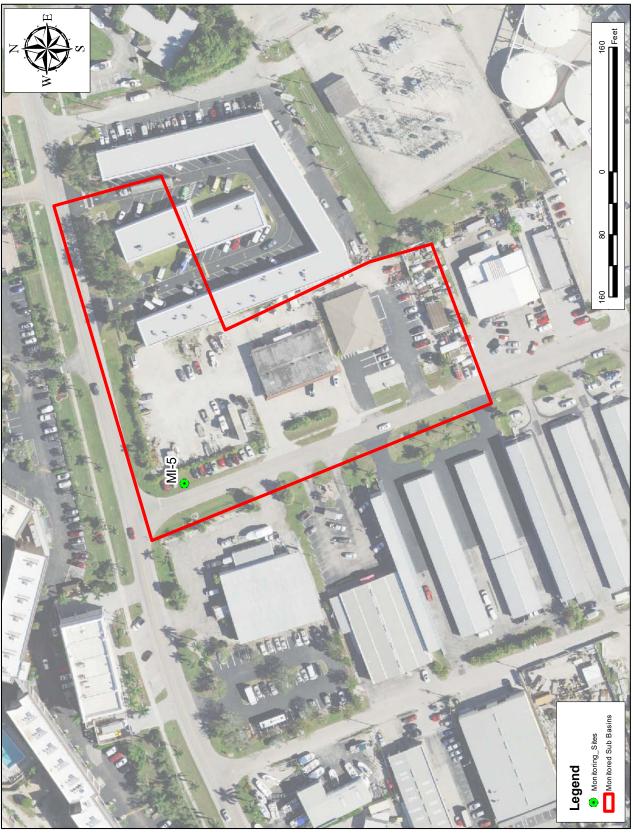


Figure 5-13. Overview of the Drainage Basin Area for Monitoring Site MI-5.

Figure 5-14.

Photograph of Stormwater Monitoring Site MI-5.

(Industrial watershed with partial reuse irrigation)

5.1.2.1.6 Reuse Monitoring Site

In addition to stormwater samples, ERD also collected weekly samples of reuse water generated by the Marco Island Reclaimed Water Production Facility. A photograph of the reuse monitoring site is given on Figure 5-15. The reuse monitoring site is located east of runoff monitoring site MI-5, and this site is used to estimate the characteristics of reuse irrigation used within the island. Samples were obtained by opening the indicated valve and, after a flushing period of approximately 30 seconds, a sample was collected from the end of the discharge hose. This location is used to fill water and irrigation trucks operated by the City.

5.1.2.1.7 <u>Land Use and Hydrologic Characteristics</u> of Monitored Stormwater Basins

A summary of land use characteristics in the monitored stormwater basins is given in Table 5-4. Sub-basins MI-1 and MI-2 consist of a mixture of commercial and medium-density residential land use, along with associated roadways and parking areas. Sub-basin MI-3 consists primarily of commercial and multi-family, with medium-density residential comprising the dominant land use at site MI-4 and commercial/industrial activities at site MI-5.

Figure 5-15.

Photograph of the Reuse Monitoring Site.

TABLE 5-4

SUMMARY OF LAND USE CHARACTERISTICS IN THE MONITORED STORMWATER BASINS

SUB-BASIN	LAND USE	AREA (acres)
	Commercial	1.14
	Highway	2.83
MI-1	Institutional	3.56
	Medium-Density Residential	39.77
	Recreational	0.23
	Commercial	4.28
MIO	Dry Ponds	0.35
MI-2	Medium-Density Residential	16.87
	Multi-Family Residential	7.26
MI 2	Commercial	4.46
MI-3	Multi-Family Residential	5.30
MI 4	Medium-Density Residential	5.47
MI-4	Upland Hardwood Forests	0.57
MI-5	Industrial	3.09
	TOTAL:	95.18

Hydrologic characteristics of the monitored stormwater basins are summarized on Table 5-5. The drainage basins have impervious areas ranging from 47.6-71.8%, although most of the impervious area is not considered to be directly connected due to the use of swale drainage systems throughout the area.

TABLE 5-5

HYDROLOGIC CHARACTERISTICS OF THE MONITORED STORMWATER BASINS

SUB- BASIN	TOTAL AREA (acres)	IMPER	evious	0 0 - 1 - 1	CTLY ECTED VIOUS	PERVIOUS		
		Area (acres)	%	Area (acres)	%	Area (acres)	%	
MI-1	47.53	22.61	47.6	0.20	0.4	24.92	52.4	
MI-2	28.76	16.33	56.8	2.90	10.1	12.43	43.2	
MI-3	9.76	5.86	60.1	0.95	9.7	3.90	39.9	
MI-4	6.04	2.89	47.9	0.00	0.0	3.15	52.1	
MI-5	3.09	2.22	71.8	0.00	0.0	0.87	28.2	
TOTAL:	95.18	49.91	52.4	4.05	4.3	45.27	47.6	

5.1.2.2 Field and Laboratory Methods

Field personnel visited each runoff site on a weekly basis, or following significant rain events (> 0.5 inch), over the period from May-October 2020. Runoff samples at each runoff site were collected using an ISCO autosampler that generated flow-weighted composite samples. Samples were collected during positive discharge conditions in each stormsewer system which included both runoff and baseflow conditions in each stormsewer system. Field personnel downloaded the hydrologic data stored in each autosampler regarding runoff discharge rates and sample collection activities, retrieved collected samples, and replaced the sample bottle with a pre-cleaned container. The battery power supplies were checked and each unit was recalibrated.

Collected samples of runoff and reuse were transported to the ERD Laboratory for analysis of general parameters and nutrients. The ERD Laboratory is NELAC accredited (#E1031026) for environmental parameters, microbiological parameters, and metals. A summary of analysis methods and minimum detection limits (MDLs) for analyses conducted in the ERD Laboratory was given in Table 2-9.

5.1.2.3 Characteristics of Monitored Runoff and Reuse Samples

A complete listing of the chemical characteristics of individual runoff samples collected at the Marco Island monitoring sites during the field monitoring program is given in Appendix F-2, including summary descriptive statistics, with the characteristics of reuse samples provided in Appendix F-3. Measured concentrations are provided for both stormwater and baseflow samples. Stormwater or runoff samples reflect the flow-weighted characteristics of water discharging through the stormsewer systems during rain events. Baseflow samples reflect a combination of tidal water inflows discharging from high to low tide plus infiltration into the stormsewer system from watershed areas. These baseflow inputs are part of the volumetric seepage inflows calculated in Section 4.1.4 except the inflows occur through a stormsewer rather than by groundwater. However, chemical characteristics of baseflow can provide additional information on groundwater impacts from watershed sources. A discussion of chemical characteristics of runoff and reuse samples collected at each of the monitoring sites is given in the following sections.

A tabular summary of geometric mean values for runoff, baseflow, and reuse samples collected during the field monitoring program from June-October 2020 is given in Table 5-6. The number of samples collected at each site is provided in the bottom row of the table. The field monitoring program generated a total of 43 baseflow samples (BF), 36 stormwater samples (SW), and 24 reuse samples (Reuse).

TABLE 5-6

GEOMETRIC MEAN VALUES FOR STORMWATER AND REUSE SAMPLES COLLECTED AT MARCO ISLAND FROM JUNE-OCTOBER 2020

	UNITS	SITE										
PARAMETER		MI-1		MI-2		MI-3		MI-4		MI-5		DELICE
		BF	SW	BF	SW	BF	SW	BF	SW	BF	SW	REUSE
pН	s.u.	7.73	6.90	7.79	7.48	7.16	7.50	7.76	7.64	7.91	7.68	7.36
Alkalinity	mg/l	125	71.8	132	67.5	183	67.3	139	98.5	169	67.4	99.1
Conductivity	µmho/cm	33,080	500	44,290	1,692	28,795	652	25,897	843	29,977	510	1,397
Ammonia N	μg/l	47	8	10	8	816	105	176	111	29	30	11
NO _x -N	μg/l	137	103	17	17	22	117	194	165	237	51	3,263
Diss. Organic N	μg/l	640	339	579	372	524	785	598	742	521	378	1,205
Particulate N	μg/l	90	156	54	71	154	121	218	80	61	62	150
Total N	μg/l	915	606	660	467	1,516	1,128	1,186	1,098	848	521	4,629
SRP	μg/l	75	122	79	89	76	76	204	228	157	66	2,300
Diss. Organic P	μg/l	22	40	22	24	49	101	71	107	45	80	845
Particulate P	μg/l	14	43	20	23	45	51	56	85	15	26	121
Total P	μg/l	110	206	121	135	170	227	331	420	218	172	3,267
Turbidity	NTU	7.2	8.3	1.4	1.9	6.7	4.4	4.6	13.8	3.3	7.0	0.3
Color	Pt-Co	22	36	11	20	46	38	31	62	31	31	5
TSS	mg/l	14.9	35.3	5.0	9.7	9.7	8.4	16.2	26.7	5.5	7.5	0.3
NUMBER OF SAMPLES:		11	3	11	5	7	10	9	8	5	10	24

Samples of baseflow, stormwater, and reuse collected at each of the monitoring sites was approximately neutral to slightly alkaline in pH, with geometric mean pH values ranging from 6.9-7.91. The collected baseflow samples exhibited elevated alkalinity values in excess of 125 mg/l, indicating well buffered conditions and likely impacts from tidal waters. Measured alkalinity values in stormwater and reuse samples ranged from approximately 60-100 mg/l, reflecting moderate to well buffered conditions.

A statistical summary of measured values of pH, alkalinity, and conductivity in baseflow, runoff, and reuse samples collected at the Marco Island monitoring sites from May-October 2020 is given on Figure 5-16 in the form of Tukey Box Plots, also often called "Box and Whisker Plots". The bottom of the box portion of each plot represents the lower quartile, with 25% of the data points falling below this value. The upper line of the box represents the 75% upper quartile, with 25% of the data falling above this value. The blue horizontal line within the box represents the median value, with 50% of the data falling both above and below this value. The vertical lines, also known as "whiskers", represent the 10 and 90 percentiles for the data sets. Individual values which fall outside of the 10-90 percentile range are indicated as red dots.

A relatively modest degree of variability was observed in measured values for pH, particularly for the reuse and baseflow samples. Variability in measured pH values was slightly higher for collected stormwater samples at sites MI-1, MI-3, and MI-5. In contrast, a much higher degree of variability was observed for measured alkalinity values, although reuse and baseflow samples at sites MI-1 and MI-2 exhibited a high concentration but a low degree of variability for this parameter. Measured alkalinity in stormwater samples ranged from approximately 50->250 mg/l, depending upon the individual sample. Overall, alkalinity measurements in baseflow exhibited a generally lower degree of variability than alkalinity values in runoff.

A large degree of variability was observed in measured conductivity values between the monitored sources. In general, conductivity values for stormwater and reuse were less than approximately 1,500-2,000 μ mho/cm. In contrast, extremely elevated levels of conductivity were observed in baseflow samples, indicating the significance of tidal flushing on baseflow characteristics. Measured geometric mean conductivity values at the 5 monitoring sites ranged from approximately 25,000-45,000, compared with values of approximately 55,000 μ mho/cm for pure sea water.

A statistical summary of measured values for turbidity, color, and TSS in baseflow, runoff, and reuse samples collected at the Marco Island monitoring sites from May-October 2020 is given on Figure 5-17. In general, measured turbidity values were low at each of the monitoring sites, although relatively extreme values were observed on occasion at certain sites. The largest degree of variability in turbidity measurements appear to occur at site MI-1 which is the low maintenance residential watershed monitored at the intersection of 6^{th} Avenue and Yellowbird Street. Construction activities were underway at this site during a portion of the field monitoring program which appears to be the likely explanation for the more elevated turbidity values measured in runoff and baseflow collected at this site. Turbidity values in the reuse samples were consistently less than 1 NTU.

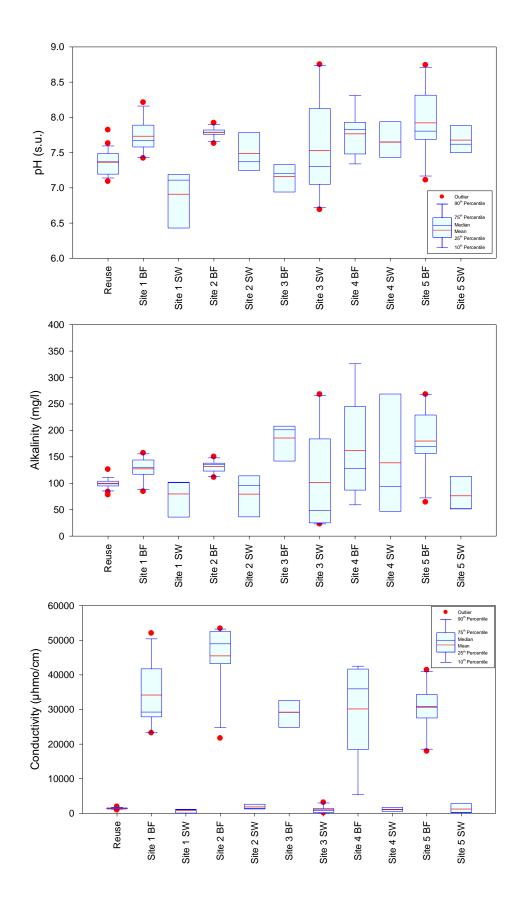


Figure 5-16. Statistical Summary of Measured Values for pH, Alkalinity, and Conductivity in Baseflow, Runoff, and Reuse Samples Collected at Marco Island Monitoring Sites from May-October 2020.

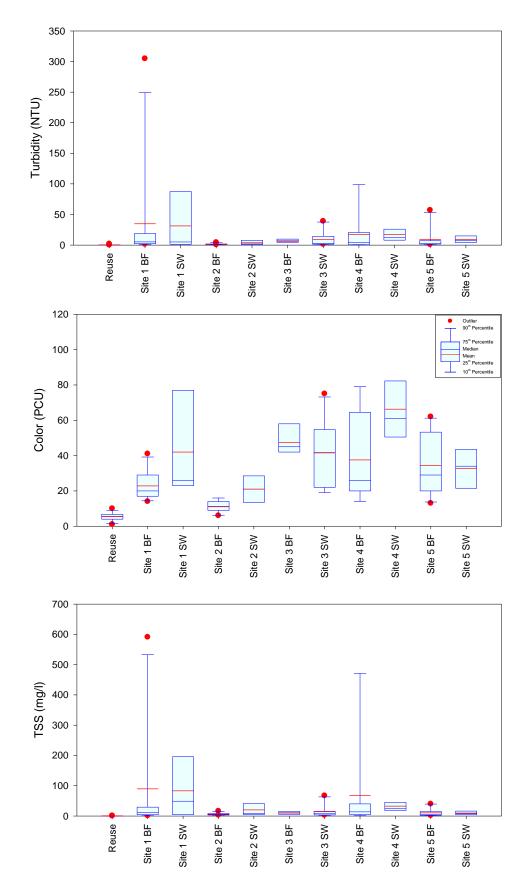


Figure 5-17. Statistical Summary of Measured Values for Turbidity, Color, and TSS in Baseflow, Runoff, and Reuse Samples Collected at Marco Island Monitoring Sites from May-October 2020.

A relatively high range of color values was observed at the monitoring sites, with overall color values ranging from low to slightly elevated. Reuse samples were generally characterized by low levels of color less than approximately 5 Pt-Co units. Geomean color concentrations exceeding 40 Pt-Co units were observed in baseflow samples at site MI-3 and stormwater samples at site MI-4. The somewhat elevated values for color observed in some of the stormwater and baseflow samples is unusual, since urban runoff is typically characterized by relatively low color values.

Measured concentrations of TSS at the Marco Island monitoring sites exhibits a trend similar to that observed for turbidity. In general, the vast majority of measured TSS concentrations were low in value, although more elevated values were observed on some occasions at certain sites. The most elevated TSS values appear to occur for both baseflow and stormwater at site MI-1 which was impacted by construction activities during a portion of the field monitoring program. However, excluding site MI-1, TSS concentrations measured at the remaining sites appear to be low in value compared with concentrations commonly observed in urban runoff. The observed lower values for TSS are likely related to the existing swale drainage system present in many portions of the island which serves as a pre-treatment for runoff, particularly for suspended solids, prior to reaching the stormsewer system.

A statistical summary of measured concentrations of ammonia, NO_x, and dissolved organic nitrogen in baseflow, runoff, and reuse samples collected at Marco Island monitoring sites from May-October 2020 is given on Figure 5-18. A wide range of ammonia concentrations was observed between the individual monitoring sites. Relatively low levels of ammonia were measured in the reuse samples as well as baseflow and stormwater samples collected at sites MI-1, MI-2, and to a lesser degree at site MI-5. More elevated values for ammonia were observed in baseflow and stormwater samples collected from sites MI-3 and MI-4 which reflect a commercial area with partial reuse and a highly maintained residential community. The elevated values for ammonia in baseflow samples collected at sites MI-3 and MI-4 suggest watershed sources of ammonia are entering the stormsewer system through groundwater.

Relatively low concentrations of NO_x were observed at each of the runoff and baseflow monitoring sites, with the possible exceptions of baseflow samples collected at sites MI-4 and MI-5, which also exhibited elevated ammonia concentrations. Substantially elevated concentrations of NO_x were measured in the collected reuse samples, with a geometric mean concentration of 3,263 $\mu g/l$, a value which is 1-2 orders of magnitude greater or more than geometric mean values at the remaining sites.

Measured concentrations of dissolved organic nitrogen were relatively similar between the individual monitoring sites, with the vast majority of measurements ranging from 100-800 μ g/l. No distinct trends are apparent in either baseflow or stormwater samples. However, reuse samples exhibited a higher degree of variability in measured values for dissolved organic nitrogen although the mean value of 1,205 μ g/l is greater than mean values measured at the runoff sites.

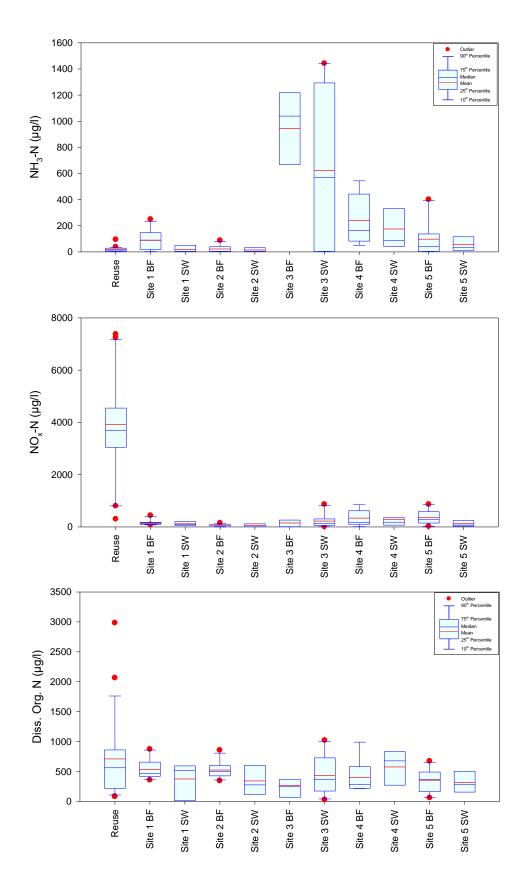
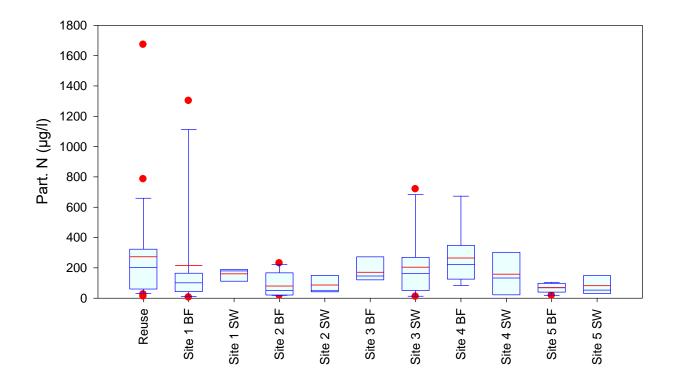


Figure 5-18. Statistical Summary of Measured Values for Ammonia, NO_x, and Dissolved Organic Nitrogen in Baseflow, Runoff, and Reuse Samples Collected at Marco Island Monitoring Sites from May-October 2020.


A statistical summary of measured values for particulate nitrogen and total nitrogen in baseflow, runoff, and reuse samples collected at Marco Island monitoring sites from May-October 2020 is given on Figure 5-19. Measured concentrations of particulate nitrogen were generally low to moderate in value, although more elevated values were observed on several occasions at some sites. Geometric mean particulate nitrogen concentrations were generally 150 μ g/l or less, with the exception of baseflow samples collected at site MI-4 which had a geometric mean of 218 μ g/l. The geometric mean values for particulate nitrogen are somewhat lower than values commonly observed in urban runoff, and these lower values are likely due to pre-treatment impacts from the roadside swale drainage system.

Total nitrogen concentrations at the monitoring sites exhibit a moderate degree of variability although a higher degree of variability was observed in measured total nitrogen concentrations in the reuse samples and stormwater collected at site MI-3. Measured total nitrogen concentrations in stormwater samples appear to be substantially lower in value than total nitrogen concentrations commonly observed in urban runoff from similar land use types, and these lower observed values are likely related to the swale pre-treatment system. The most elevated total nitrogen concentrations were observed at sites MI-3 and MI-4, with site MI-3 representing a commercial area with partial reuse and site MI-4 reflecting a high maintenance residential community. Total nitrogen concentrations in reuse samples ranged from 1,633-8,507 μ g/l, with an overall geometric mean value of 4,629 μ g/l.

A statistical summary of measured values of SRP and dissolved organic phosphorus in baseflow, runoff, and reuse samples collected at Marco Island monitoring sites from May-October 2020 is given on Figure 5-20. In general, measured concentrations of SRP were low to moderate in runoff and baseflow samples, with the most elevated SRP values for both baseflow and stormwater measured in the high maintenance residential area monitored at site MI-4. SRP concentrations in reuse were highly variable, ranging from 531-4,708 μ g/l, with an overall geometric mean of 2,300 μ g/l.

A similar pattern is also apparent for measured concentrations of dissolved organic phosphorus, with relatively low measured values at each of the baseflow and stormwater monitoring sites, and a higher overall geometric mean value in reuse samples. The measured concentrations of dissolved organic phosphorus in the reuse samples were often an order of magnitude greater than concentrations measured in baseflow or reuse.

A statistical summary of measured values of particulate phosphorus and total phosphorus in baseflow, runoff, and reuse samples collected at Marco Island monitoring sites from May-October 2020 is given on Figure 5-21. Measured concentrations of particulate phosphorus in baseflow and stormwater samples were generally low in value and lower than concentrations commonly observed in urban runoff from similar land use categories. The lower observed values for particulate phosphorus are thought to be a direct result of pre-treatment and removal of particulate matter in the swale drainage system prior to reaching the stormsewer. Measured concentrations of particulate phosphorus were highly variable in stormwater at site MI-3 and in baseflow at site MI-4, with a variability similar to that observed in reuse samples, although the geometric mean for the reuse samples is substantially higher.

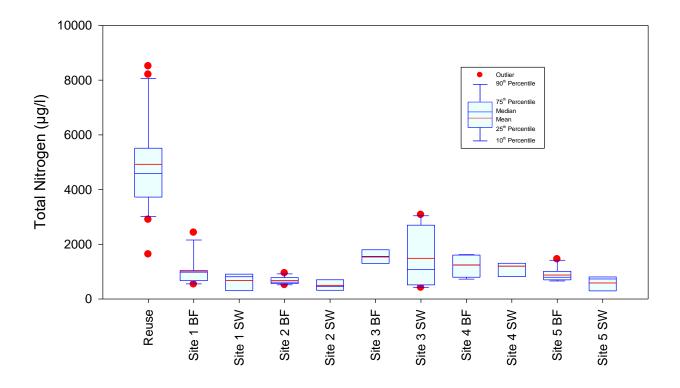
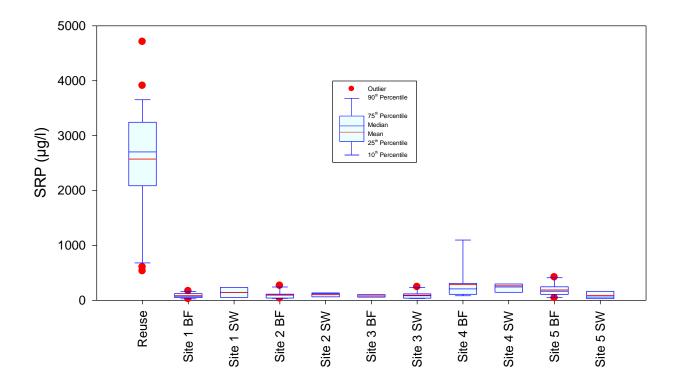



Figure 5-19. Statistical Summary of Measured Values for Particulate Nitrogen and Total Nitrogen in Baseflow, Runoff, and Reuse Samples Collected at Marco Island Monitoring Sites from May-October 2020.

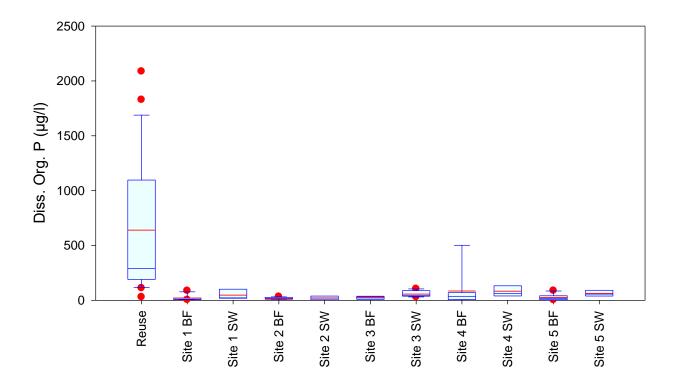
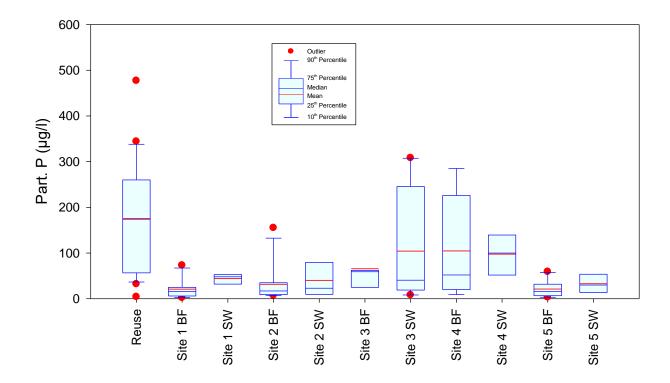



Figure 5-20. Statistical Summary of Measured Values for SRP and Dissolved Organic Phosphorus in Baseflow, Runoff, and Reuse Samples Collected at Marco Island Monitoring Sites from May-October 2020.

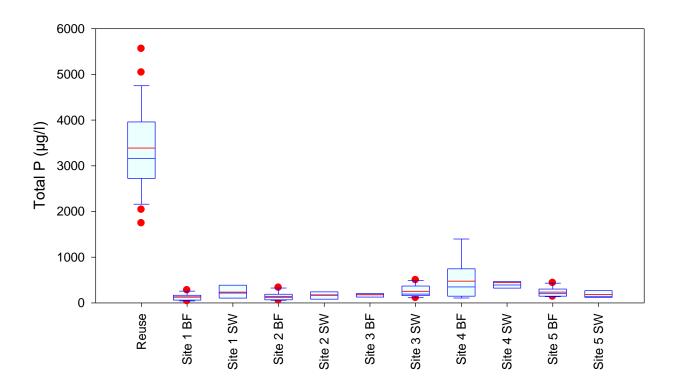


Figure 5-21. Statistical Summary of Measured Values for Particulate Phosphorus and Total Phosphorus in Baseflow, Runoff, and Reuse Samples Collected at Marco Island Monitoring Sites from May-October 2020.

Relatively low concentrations were also observed for total phosphorus concentrations in baseflow and stormwater samples, with geometric mean values at most sites less than values commonly observed in urban runoff from similar land uses. The most elevated levels of total phosphorus were observed in baseflow and stormwater collected in the high maintenance residential watershed at site MI-4, and measured values at these sites exceed typical runoff concentrations observed in residential areas. Substantially higher total phosphorus concentrations were observed in the reuse samples as well as a high degree of variability between individual measurements. Overall, the geometric total phosphorus concentration of 3,267 μ g/l in reuse water is an order of magnitude or more greater than total phosphorus concentrations observed at most sites.

5.1.2.4 Selection of Runoff Characterization Data

The primary objective of the field monitoring program is to provide site-specific information on concentrations of total nitrogen and total phosphorus from stormwater runoff to adjacent waterways to assist in calculating annual mass loadings. Runoff loadings to receiving waters are calculated using the simple relationship below:

Annual Runoff Loading = Delivered Runoff Volume x Assumed Runoff Concentration

Calculations of annual runoff volumes discharging from sub-basin areas to Marco Island waterways were previously provided in Section 4.

Direct field monitoring for runoff characteristics were conducted in each of the 5 sub-basin areas identified in Section 3 which discharge to Marco Island waterways, with 1 monitoring site located in each of the 5 sub-basin areas. Although the 5 sub-basin areas contain a variety of land use categories, as discussed in Section 3.2, it is not feasible to monitor all of the combinations of land use categories present within the various drainage sub-basin areas.

A tabular comparison of geometric mean values for parameters measured in stormwater samples collected at each of the 5 monitoring sites is given in Table 5-7, based upon the information provided in Table 5-6. Geometric mean values for total nitrogen in runoff samples collected in subbasins 2, 3, and 4 are very similar in value and approximately one-half to one-third of total nitrogen concentrations typically observed in similar land use categories, presumably due to the large amount of swale drainage systems present within the island. It is interesting to note that the most elevated levels of ammonia, NO_x , dissolved organic nitrogen, and total nitrogen were observed in Sub-basin 1 (monitoring Site MI-3) located in a commercial corridor along Bald Eagle Drive with partial reuse irrigation, and in Sub-basin 5 (Site MI-4) located in an area of large residential homes with well maintained lawns. Concentrations of these same parameters at monitoring sites in Sub-basins 2 and 4 which had reuse irrigation were much lower in value and similar to nitrogen concentrations measured in Sub-basin 3 which has no reuse irrigation.

With the exception of the enrichment in ammonia, NO_x , dissolved organic nitrogen, and total nitrogen observed in Sub-basin 1, application of reuse irrigation does not appear to have significant direct impacts on runoff characteristics which suggests that excess reuse irrigation rapidly infiltrates into groundwater and is unavailable for transport during rain events. The most elevated values for ammonia, NO_x , dissolved organic nitrogen, and total nitrogen were observed in Sub-basin 5 in an area with large homes and well maintained lawns. These data appear to suggest that landscaping activities may have a more significant impact on runoff concentrations of total nitrogen than reuse applications, although the data set is fairly limited.

TABLE 5-7
SUMMARY OF GEOMEAN VALUES FOR STORMWATER MONITORING SITES

DADAMETER	INITE		RUNOFF CO	ONCENTRATIO	ON BY SITE	
PARAMETER	UNITS	MI-1	MI-2	MI-3	MI-4	MI-5
pН	s.u.	6.90	7.48	7.50	7.64	7.68
Alkalinity	mg/l	71.8	67.5	67.3	98.5	67.4
Conductivity	μmho/cm	500	1,692	652	843	510
Ammonia N	μg/l	8	8	105	111	30
NO _x -N	μg/l	103	17	117	165	51
Diss. Organic N	μg/l	163	267	308	494	261
Particulate N	μg/l	156	71	121	80	62
Total N	μg/l	606	467	1,128	1,098	521
SRP	μg/l	122	89	76	228	66
Diss. Organic P	μg/l	35	14	51	65	57
Particulate P	μg/l	43	23	51	85	26
Total P	μg/l	206	135	227	420	172
Turbidity	NTU	8.3	1.9	4.4	13.8	7.0
Color	Pt-Co	36	20	38	62	31
TSS	mg/l	35.3	9.7	8.4	26.7	7.5
NUMBER OF SAMPLES:		3	5	10	8	10
ASSOCIATED SU	UB-BASIN:	3	4	1	5	2
REUSE IRR	REUSE IRRIGATION:		Yes	Partial	No	Yes

A similar situation appears to also exist for total phosphorus. Measured concentrations of total phosphorus in Sub-basins 2, 3, and 4 are relatively similar in value, with more elevated concentrations observed in Sub-basins 1 and 5, with the highest value of 420 μ g/l observed in Sub-basin 5. Stormwater samples collected from Sub-basin 5 also had substantially higher levels of SRP, dissolved organic phosphorus, and particulate phosphorus than observed at the remaining sites, including those with reuse irrigation. Phosphorus data also appear to suggest that landscaping activities have more of an impact on phosphorus runoff concentrations than reuse application.

For purposes of estimating annual runoff generated loadings of nitrogen and phosphorus to area waterways, the geometric mean values for total nitrogen and total phosphorus (summarized on Table 5-7) are assumed to reflect typical runoff characteristics generated within each associated subbasin area. The geometric mean concentrations for nitrogen and phosphorus listed in Table 5-7 are multiplied by the applicable delivered runoff volumes (summarized in Table 4-6) to obtain estimates of annual nutrient loadings from runoff to Marco Island waterways.

5.1.2.5 Runoff Loadings

A tabular summary of runoff generated nutrient loadings to Marco Island waterways, based on the methodology outlined previously, is given in Table 5-8. Estimated mass loadings for total nitrogen and total phosphorus are calculated by multiplying the assumed sub-basin runoff characteristics (summarized in Table 5-7) times the delivered runoff volume reaching each of the 5 waterways on an annual basis. The lowest annual loading of nitrogen and phosphorus from runoff to area waterways occurs in Sub-basin 2 which only generates approximately 4-5% of the total annual runoff loadings. The largest runoff generated contribution of total nitrogen originates within Sub-basin 1, which contributes 45% of the annual nitrogen load from runoff. The largest contribution of total phosphorus occurs from Sub-basin 5 which generates 33% of the total annual runoff generated phosphorus loading.

TABLE 5-8

CALCULATED ANNUAL AND AREAL LOADINGS
OF TOTAL NITROGEN AND TOTAL PHOSPHORUS FROM
SUB-BASIN AREAS TO MARCO ISLAND WATERWAYS

SUB-BASIN	AREA (acres)	DELIVERED RUNOFF VOLUME	ASSUMED RUNOFF CONCENTRATION (µg/l)		MASS LOADING (kg/yr)		ANNU	ENT OF AL LOAD (%)	AREAL LOADING (kg/ac-yr)		
		(ac-ft/yr)	Total Nitrogen	Total Total		Total Phosphorus	Total Nitrogen	Total Phosphorus	Total Nitrogen	Total Phosphorus	
1	1469.4	429.4	1,128	227	2,043	411	45	32	1.39	0.28	
2	306.2	94.3	521	172	197	65	4	5	0.64	0.21	
3	895.5	147.6	606	206	669	227	15	18	0.75	0.25	
4	942.4	206.9	467	135	543	157	12	12	0.58	0.17	
5	814.6	133.0	1,098	420	1,103	422	24	33	1.35	0.52	
TOTAL:	4,428.1	1,011.3			4,555	1,282	100	100	1.03	0.29	

Calculated areal loading rates for each sub-basin are provided in the final column of Table 5-8. The values were obtained by dividing the annual mass loadings for each sub-basin by the sub-basin area which provides a comparison of pollutant loadings which is independent of the size of an individual sub-basin. The highest annual areal loadings of both total nitrogen and total phosphorus occur from Sub-basins 1 and 5 which are located on opposite ends of the island. Areal loading rates in the remaining 3 sub-basins are relatively similar in value for both total nitrogen and total phosphorus, with loading rates lower than those observed in Sub-basins 1 and 5. The information summarized in Table 5-8 is used in a subsequent section to generate nutrient budgets for the 5 sub-basins and adjacent waterway areas.

5.1.3 Groundwater Seepage

5.1.3.1 Chemical Characteristics of Seepage Inflows

Nutrient influx to Marco Island waterways from groundwater seepage was quantified using a series of underwater seepage meters installed throughout the various waterways. A discussion of the hydrologic inputs to adjacent waterways from groundwater seepage is given in Section 4.1.4. Each of the collected groundwater seepage samples was analyzed in the ERD Laboratory for pH, alkalinity, conductivity, and significant species for nitrogen and phosphorus using the analytical methods outlined in Table 2-5 for surface water samples. A summary of geometric mean characteristics of seepage inflows at the Marco Island monitoring sites from April-November 2020 is given in Table 5-9, and a complete listing of laboratory measurements conducted on seepage samples collected from Marco Island waterways is given in Appendix E-2.

TABLE 5-9

GEOMETRIC MEAN CHARACTERISTICS OF SEEPAGE
INFLOWS AT MARCO ISLAND FROM APRIL-NOVEMBER 2020

					PAR	AMETER					
SITE	NUMBER OF SAMPLES	pH (s.u.)	Alkalinity (mg/l)	Conductivity (µmho/cm)	Ammonia N (µg/l)	NO _x -N (μg/l)	Diss. Org. N (µg/l)	Total N (μg/l)	SRP (µg/l)	Diss. Org. P (µg/l)	Total P (µg/l)
SP-1	4	7.45	139	46,091	128	542	365	1,035	96	56	152
SP-2	5	7.72	143	43,563	183	240	738	1,161	97	54	151
SP-3	5	7.56	138	46,034	145	147	737	1,030	84	52	136
SP-4	5	7.70	145	46,971	360	217	696	1,272	209	50	259
SP-5	4	7.72	136	45,106	161	167	810	1,137	85	17	101
SP-6	4	7.49	302	41,872	2,139	106	570	2,814	171	43	214
SP-7	3	7.80	149	44,913	43	280	712	1,035	51	115	166
SP-8	5	7.61	159	44,813	296	308	938	1,542	220	39	259
SP-9	4	7.89	143	46,596	49	218	484	751	109	18	127
SP-10	5	7.65	165	47,028	1,061	497	887	2,445	303	70	373
SP-11	5	7.73	145	46,895	67	159	680	905	59	61	119
SP-12	5	7.87	155	44,045	77	193	500	770	79	85	164
SP-13	4	7.82	153	43,526	278	216	523	1,017	119	56	175
SP-14	5	7.69	145	48,479	450	536	449	1,436	194	75	269
SP-15	5	7.76	154	47,288	123	261	688	1,072	120	44	164
TOTAL:	68										

During the field monitoring program, a total of 68 individual seepage samples was collected for analysis of chemical characteristics at each of the 15 monitoring sites where seepage samples were collected. As discussed in Section 4.1.4, no seepage samples were collected at seepage site SP-16 due to vandalism of the multiple seepage meters installed at this site. The number of seepage samples collected at other monitoring sites ranged from 3 to the maximum number of 5.

In general, groundwater seepage entering Marco Island waterways is slightly alkaline in pH, with geometric mean pH values ranging from 7.45-7.89. Seepage samples were extremely well buffered, as would be expected given the proximity to ocean water, with geometric mean alkalinity values at most sites ranging from 136-165 mg/l, reflecting a narrow range of values. A somewhat higher mean alkalinity of 302 mg/l was measured at seepage site SP-6 which is located in a canal system adjacent to East Marco Bay.

Measured conductivity values between the individual monitoring sites were extremely close in value, with the vast majority of mean values ranging from 43,000-47,000 µmho/cm. A somewhat lower conductivity of 41,872 µmho/cm was observed at seepage site SP-6.

Measured concentrations of nitrogen species were generally low in value at a majority of the seepage monitoring sites. Relatively low levels of ammonia were observed at all seepage sites with the exception of sites SP-6 and SP-10 which are also located in a canal system adjacent to East Marco Bay. Ammonia concentrations at these sites were approximately one order of magnitude greater than values measured at the remaining sites.

Relatively low concentrations were observed in seepage for both NO_x and dissolved organic nitrogen, with similar values for each parameter between the individual monitoring sites. The uniformity in values for these parameters is somewhat unusual based on the extensive previous experience of ERD in measuring seepage inflows to Florida waterbodies.

Overall, measured concentrations of total nitrogen in seepage inflows were low to slightly elevated in value. Mean total nitrogen concentrations at all sites except SP-6 and SP-10 were equal to or less than approximately 1,500 μ g/l, with values at site SP-6 and SP-10 approximately 50-70% higher.

Measured concentrations of SRP, dissolved organic phosphorus, and total phosphorus were low in value at each of the seepage monitoring sites compared with concentrations observed by ERD in other waterbodies. The similarity in measured concentrations between the seepage monitoring sites and the degree of variability in measured values is unusual compared with previous monitoring conducted by ERD.

Overall, seepage inflows to Marco Island waterways contains low to moderate concentrations of both total nitrogen and total phosphorus compared with seepage values measured in other waters, although the concentrations for these parameters in seepage is much higher than concentrations measured in surface water samples.

A comparison of mean seepage characteristics by sub-basin is given in Table 5-10. Seepage characteristics appear to be similar between the individual sub-basins for each of the measured parameters, particularly for parameters such as NO_x , dissolved organic nitrogen, dissolved organic phosphorus, and total phosphorus. The geometric mean values summarized in Table 5-10 are assumed to reflect the characteristics of seepage inflows to waterbodies associated with each of the 5 sub-basin areas.

TABLE 5-10

MEAN SEEPAGE CHARACTERISTICS BY SUB-BASIN

			PARAMETER									
SUB- BASIN	NUMBER OF SAMPLES	pH (s.u.)	Alkalinity (mg/l)	Conductivity (µmho/cm)	Ammonia N (µg/l)	NO _x -N (μg/l)	Diss. Org. N (µg/l)	Total N (µg/l)	SRP (µg/l)	Diss. Org. P (µg/l)	Total P (µg/l)	
1	22	7.63	145	45,083	159	303	698	1,160	109	63	173	
2	5	7.70	145	46,971	360	217	696	1,272	209	50	259	
3	21	7.72	180	44,826	737	241	655	1,633	157	41	198	
4	15	7.77	151	46,604	217	330	546	1,093	131	68	199	
5	5	7.73	145	46,895	67	159	680	905	59	61	119	

A comparison of mean seepage characteristics in areas with and without reuse irrigation is given on Table 5-11. As indicated on Figure 4-7, seepage monitoring sites designated as SP-3, SP-5, SP-8, and SP-13 are located in the vicinity of upland areas which receive reuse irrigation. Mean seepage characteristics at these sites with reuse irrigation are compared to the remaining sites which are not impacted by reuse irrigation activities. Chemical characteristics of seepage inflows in these areas are virtually identical, suggesting that the monitoring sites did not receive significant reuse inputs.

TABLE 5-11

MEAN SEEPAGE CHARACTERISTICS IN AREAS WITH AND WITHOUT REUSE IRRIGATION

	MANDED		PARAMETER									
AREA	NUMBER OF SAMPLES	pH (s.u.)	Alkalinity (mg/l)	Conductivity (µmho/cm)	Ammonia N (µg/l)	NO _x -N (μg/l)	Diss. Org. N (µg/l)	Total N (µg/l)	SRP (μg/l)	Diss. Org. P (µg/l)	Total P (µg/l)	
With	18	7.68	146	44,870	220	210	752	1,181	127	41	168	
Without	50	7.06	149	41,979	390	271	564	1,225	124	56	180	

5.1.3.2 Mass Loadings from Seepage Inflows

Estimates of annual loadings of total nitrogen and total phosphorus entering Marco Island waterways from groundwater seepage were calculated by multiplying the modeled seepage volumetric inflows to waterways associated with each sub-basin (as discussed in Section 4.1.4.3) times the mean seepage characteristics for total nitrogen and total phosphorus (summarized in Table 5-10). A summary of this analysis is given in Table 5-12. Seepage inflows contribute approximately 1,460-6,418 kg/yr to Marco Island waterways, depending upon the individual sub-basin. Total phosphorus contributions to the Marco Island waters from groundwater seepage ranged from 297-957 kg/yr, depending on sub-basin area. This information is used in a subsequent section to develop mean annual nutrient budgets for the waterways.

TABLE 5-12

CALCULATED ANNUAL SEEPAGE LOADING
TO MARCO ISLAND WATERWAYS

SUB-BASIN	SEEPAGE INFLOW		NCENTRATION g/l)	MASS LOADING (kg/yr)			
565 511511	(ac-ft/yr)	Total N	Total P	Total N	Total P		
1	4,487	1,160	173	6,418	957		
2	931	1,272	259	1,460	297		
3	2,932	1,633	198	5,905	716		
4	3,020	1,063	199	3,959	741		
5	2,477	905	119	2,764	363		
TOTAL:	13,847			20,506	3,074		

5.1.4 <u>Internal Recycling</u>

Quantification of sediment nutrient release as a result of internal recycling in waterbodies is difficult, and a variety of methods have been used by researchers to estimate this loading. One method which has been used in reservoirs is called the Mass Balance Method. This method is best suited to a waterbody with well defined inputs and outputs. A mass balance is then conducted on the waterbody over a one- to two-week period. An increase of nutrient mass within the waterbody, after accounting for inputs and losses, would suggest that a net internal loading has occurred. However, this method is inappropriate for use on Marco Island waterways since the waterways are tidally influenced which masks the concentration increases required for this method.

A method which has been used extensively in deep waterbodies is to measure changes in nutrient content in the hypolimnion of a stratified waterbody over an extended period of anoxia. The increase in nutrient mass within the stratified hypolimnion can then be directly correlated with sediment release rates. However, this method also appears inappropriate for use in Marco Island waterbodies since the waterbodies are relatively shallow, and development of a well-defined hypolimnion does not occur.

A third method of quantifying the internal loadings is through trophic state modeling. Using this approach, hydrologic and nutrient inputs are estimated from all quantifiable sources. A trophic state model is then developed to predict water column concentrations of nutrients. If the model underestimates nutrient concentrations, then a missing nutrient load may be present which can be attributed to internal recycling. However, this methodology can be highly inaccurate, is dependent upon the accuracy of the estimated loadings for other variables and the accuracy of the predictive model, and is difficult in a tidally influenced waterbody.

The final method used for quantification of internal loadings is to perform sediment release experiments. In this method, large diameter sediment cores are collected from various locations within the waterbody and incubated in the laboratory under a variety of conditions to simulate variability in the waterbody throughout the year. Changes in nutrient concentrations are measured in the overlying sediments, and this information is extrapolated to an areal release rate within the waterbody. This is the only method of estimating internal loadings which provides a direct measurement of nutrient release. This method has been used by ERD in more than 60 Florida waterbodies in previous work efforts and was selected as the quantification method for the Marco Island study.

Field and laboratory investigations were performed by ERD to quantify the mass of nitrogen and phosphorus released as a result of internal recycling from the sediments to the overlying water column in Marco Island waterbodies under both aerobic and anoxic conditions. Large diameter sediment core samples were collected at multiple locations in the waterbodies and incubated under anoxic and aerobic conditions. Periodic measurements of orthophosphorus, total phosphorus, ammonia, NO_x, and total nitrogen were used to estimate sediment nutrient release under the evaluated conditions. This information is used to provide an estimate of the significance of mass loadings of nutrients from sediments as part of the overall nutrient budgets for the waterbodies.

5.1.4.1 Field and Laboratory Procedures

Large diameter sediment core samples were collected at 9 locations in Marco Island waterways using 4-inch diameter clear acrylic core tubes. Locations used for collection of the sediment core tubes are indicated on Figure 5-22 and reflect selected locations where the regular sediment core samples were collected as discussed in Section 2.4. In general, the sample locations reflect the major areas of each sub-basin. Each of the acrylic tubes was driven into the sediments to the maximum possible depth using a 20-pound hammer weight. A 4-inch x 4-inch wooden beam was placed on top of the acrylic core tubes to evenly distribute the force of each hammer blow and to prevent direct contact between the hammer weight and the acrylic tube. Large core sites designated as S-3, S-5, and S-22 are located in areas with reuse irrigation, while the remaining sites are located in areas without reuse irrigation.

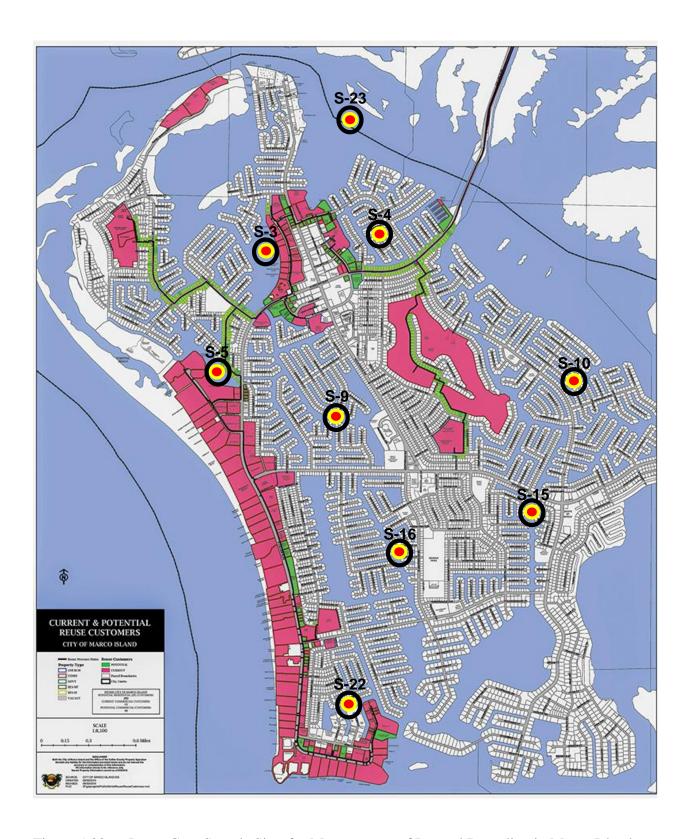


Figure 5-22. Large Core Sample Sites for Measurement of Internal Recycling in Marco Island Waterways. (Map Source: City of Marco Island Reuse Customer Map)

The acrylic tubes were penetrated into the sediments to depths ranging from approximately 2-4 ft, depending upon the physical characteristics of the sediments at each of the selected monitoring sites or until a firm bottom material was encountered. Each of the core tubes was retrieved intact, along with the overlying water column present at each of the collection sites. Upon retrieval, a rubber cap was attached to the bottom of each core tube using a stainless steel band to prevent loss of sediments and water. A 4-inch PVC cap was then placed on the top of each collected core tube, and the core tubes were transported to the ERD laboratory in a vertical position to avoid mixing of the sediment layers.

After return to the laboratory, the sediment depth in each of the 9 core samples was adjusted to a uniform 24-30 inches by releasing sediment as necessary from the bottom of each core tube. The collected water volume above the sediments was carefully siphoned off and replaced with a 24-inch layer of surface water collected at each site. Each of the acrylic core tubes was then cut to a uniform height of 54 inches, leaving a 6-inch air space between the water level and the top of the column. Three separate 0.25-inch diameter holes were then drilled into the PVC cap attached to the top of each core sample. A 0.25-inch diameter semi-rigid polyethylene tube was inserted through one of the holes to a depth of approximately 2-3 inches above the sediment surface, and an air stone diffuser was attached to the end of the tubing inside each core tube. This system was used to introduce selected gases into the core tubes to create aerobic or anoxic conditions.

A separate piece of polyethylene tubing was inserted into the second hole in the top of each core tube, approximately 1 inch below the level of the cap, but above the water level contained in each tube. The other end of the tubing was connected to a water trap to minimize loss of water from each column as a result of evaporation. This tubing also provided a point of exit for gases which were bubbled into each core tube. The rate of gas addition was monitored by observing the rate of bubbles introduced into the water trap. A third 0.25-inch polyethylene tube was inserted through the top cap of the 4-inch cap and extended to approximately mid-way into the overlying water column for sample collection. The 4-inch core tubes were placed inside a 6-inch Sch. 40 PVC pipe to provide a dark controlled environment for creating either aerobic or anoxic conditions. The 6-inch PVC chambers were attached to a laboratory work bench for support. Schematics of the sediment incubation apparatus are given in Figures 5-23 and 5-24.

After initial set-up of the incubation apparatus, a compressed stream of air was introduced into each of the core tubes through a manifold system with attachments to each of the individual air stone diffusers to create aerobic conditions within the core tubes. At the conclusion of the experimentation under aerobic conditions, the compressed air source was replaced with a compressed argon source. The gas addition was used to ensure that water within each of the core tubes was well mixed without disturbing the sediments, so that the nutrient mass released from the sediments could be quantified as a function of changes in concentrations within the water column of each core tube. On approximately a 1-2 day interval, 20 ml of water was withdrawn from each of the columns through the 0.25-inch polyethylene tube using a plastic laboratory syringe. Each of the collected samples was immediately filtered using a 0.45 micron syringe type membrane filter and analyzed for ammonia, NO_x, total nitrogen, orthophosphorus, and total phosphorus using the analytical methods outlined in Table 2-9.

Figure 5-24. Schematic of Sediment Core Incubation System.

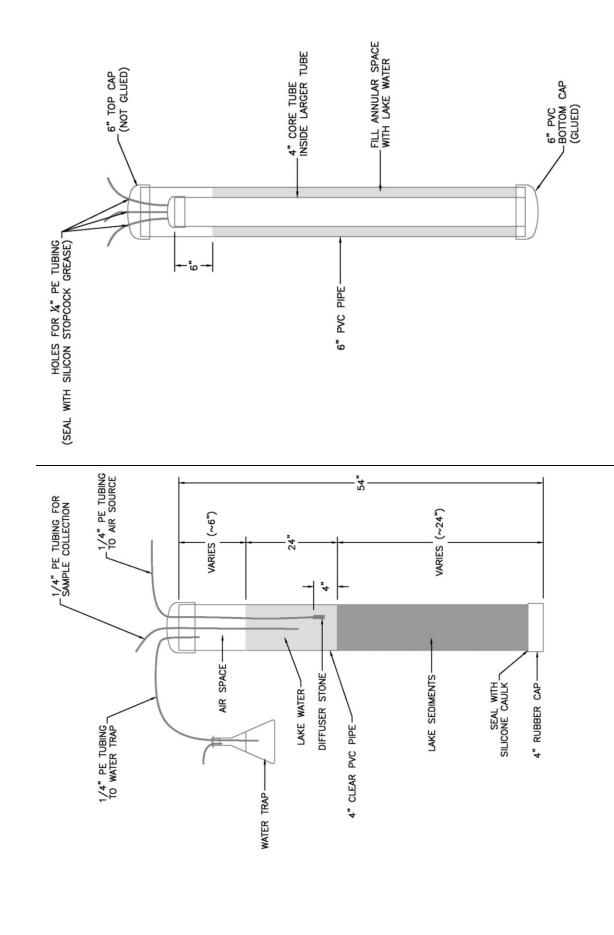


Figure 5-23. Schematic of Sediment Incubation Apparatus.

After anoxic conditions were established, as verified by an H_2S smell in the outflow from the water trap, the argon gas addition was reduced to 1-2 hours per day, generally in association with a sampling event, to ensure completely mixed conditions within each tube prior to sample collection. This process was continued in each of the core tubes for a period of approximately 30 days. Compressed air was gently bubbled continuously through each of the columns to increase dissolved oxygen and create aerobic conditions within each tube. In general, creation of aerobic conditions, as indicated by measurements of redox potential (> 200 mv) within each of the columns, occurred within approximately 24-36 hours. At the onset of aerobic conditions, sample collection was conducted at a 1-2 day interval from each of the columns using the method previously outlined for aerobic conditions.

Collection of the large diameter (4-inch) sediment core samples was conducted on June 2, 2020 for sites S-3, S-4, S-5, S-9, and S-23, and on July 29 for sites S-10, S-15, S-16, and S-22. Experimentation under aerobic conditions was conducted in each core tube for a period of 40-42 days. Anoxic experimentation was initiated at the end of the aerobic experiments and was continued for a period of 31-42 days.

5.1.4.2 Calculation of Mass Release

A summary of the laboratory results of samples collected during the sediment release experiments is given in Appendix G-1. Changes in concentrations of nitrogen and phosphorus over time are provided for each of the isolation chamber experiments under both aerobic and anoxic conditions. The measured concentrations of total nitrogen, SRP, and total phosphorus from each sampling date (in μ g/l) are multiplied by the volume of water in each large core cylinder (liter), corrected for volume losses due to sample collection, to obtain the mass of each measured parameter in the overlying water column at the time of each monitoring event (mass in μ g). The measured values reflect <u>net</u> sediment release since some of the released nutrients are likely taken up by biological processes in each tube, although this uptake is probably less than 5-10% of the total released nutrients.

The mass release rate in the incubation experiments is defined as the slope of the rising limb of the total nitrogen, SRP, and total phosphorus release plots presented in Appendix G-2. The mass of nitrogen and phosphorus is plotted as a function of time to evaluate the rate of change in mass over time, and the best-fit regression line through the points is used to calculate the release rate in terms of µg/day. In some chambers, an initial delay in nutrient release occurred as anoxic or aerobic conditions were established within each chamber. In these cases, the release rate is calculated using the data obtained between the start of the upward release trend and the maximum nutrient concentrations measured within a sample. In some experiments, nutrient concentrations began to decrease after reaching the maximum concentration, presumably due to biological uptake within the chamber, and these data are also excluded from estimation of the release rate. Regression relationships developed for estimation of sediment nutrient release rates in the incubation experiments under aerobic and anoxic conditions are included in Appendix G-2.

A summary of calculated sediment nutrient release rates in Marco Island core samples during the isolation chamber experiments is given in Table 5-13. Release rates are provided for total nitrogen, SRP, and total phosphorus at each of the 9 isolation chamber core samples under both aerobic and anoxic conditions. The release rates reflect the slope of the release rate plots for total nitrogen, SRP, and total phosphorus provided in Appendix G-2. The calculated release rates are converted into a mass release per day by dividing by the surface area of the 4-inch diameter incubation chambers resulting in an areal mass release in terms of mg/m²-day.

TABLE 5-13

MEASURED EXPERIMENTAL SEDIMENT RELEASE RATES AT MARCO ISLAND

CONDITION	SITE	M	ASS RELEAS (mg/day)	SE	M	ASS RELEAS (mg/m²-day)	SE
001(211101)		SRP	Total P	Total N	SRP	Total P	Total N
	S-3	35.7	35.7	107	4.46	4.46	13.4
	S-4	20.2	22.4	226	2.53	2.80	28.3
	S-5	29.8	29.8	157	3.73	3.73	19.6
	S-9	41.8	43.7	168	5.23	5.46	21.0
A 1. 1 .	S-10	12.8	17.1	418	1.60	2.14	52.3
Aerobic	S-15	7.55	8.46	268	0.94	1.06	33.5
	S-16	10.2	11.3	90.6	1.28	1.41	11.3
	S-22	16.4	18.1	175	2.05	2.26	21.9
	S-23	70.6	71.8	214	8.83	8.98	26.8
	MEAN:	23.51	25.35	233.1	2.94	3.17	29.1
	S-3	70.7	70.8	193	8.84	8.85	24.1
	S-4	44.6	46.0	141	5.58	5.75	17.6
	S-5	25.3	26.0	90.5	3.16	3.25	11.3
	S-9	47.9	44.4	47.4	5.99	5.55	5.9
	S-10	14.8	16.3	247	1.85	2.04	30.9
Anoxic	S-15	101	103	404	12.63	12.88	50.5
	S-16	37.7	55.9	135	4.71	6.99	16.9
	S-22	55.0	60.5	241	6.88	7.56	30.1
	S-23	155	156	328	19.38	19.50	41.0
	MEAN:	61.33	64.32	203.0	7.67	8.04	25.4

A summary of measured experimental sediment release rates at the Marco Island large core sites by sub-basin is given in Table 5-14. This table provides mean release rates for each sub-basin area under aerobic and anoxic conditions based upon the sediment core samples included in each sub-basin area. Under aerobic conditions, mass release rates for SRP in the 5 sub-basins ranged from 0.94-4.43 mg/m²-day, with total phosphorus release rates ranging from 1.06-4.49 mg/m²-day, and total nitrogen release rates ranging from 15.7-52.3 mg/m²-day. The highest aerobic release rates for phosphorus were observed in Sub-basins 1 and 2, with somewhat lower values observed in the remaining sub-basins. For total nitrogen, the largest aerobic sediment release rate was observed in Sub-basin 3, with substantially lower values in the remaining sub-basins.

TABLE 5-14

MEASURED EXPERIMENTAL SEDIMENT RELEASE RATES AT MARCO ISLAND BY SUB-BASIN

CONDITION	SUB-BASIN	SITES	M	ASS RELEAS (mg/m²-day)	SE
CONDITION	SOD-BASH (INCLUDED	SRP	Total P	Total N
	1	S-3, S-5, S-8	4.43	4.49	17.7
	2	S-4	2.53	2.80	28.3
	3	S-10	1.60	2.14	52.3
Aerobic	4	S-16, S-22	1.62	1.79	15.7
	5	S-15	0.94	1.06	33.5
		MEAN:	2.22	2.46	29.5
	BACKGROUND SITE:	S-23	8.83	8.98	26.8
	1	S-3, S-5, S-8	5.51	5.42	11.7
	2	S-4	5.58	5.75	17.6
	3	S-10	1.85	2.04	30.9
Anoxic	4	S-16, S-22	5.69	7.27	22.5
	5	S-15	12.63	12.88	50.5
		MEAN:	6.25	6.67	26.7
	BACKGROUND SITE:	S-23	19.38	19.5	41.0

Under anoxic conditions, sediment release rates for total phosphorus increased substantially at most sites, particularly in Sub-basin 5 where anoxic release rates were approximately 10 times greater than aerobic release rates. In contrast, sediment release rates for total nitrogen under anoxic conditions were lower in value in most sub-basins than observed under aerobic conditions.

It is interesting to note that the sediment release rates for total phosphorus at the background monitoring site (S-23) are substantially higher in value for both SRP and total phosphorus than values measured within the waterway areas. Although this site was intended to reflect background conditions, the data suggest that the Marco Bay area may serve as a depositional area for nutrient loadings discharging from the waterways, eastern creeks, and channels rather than providing a truly undisturbed background site. In contrast, sediment release rates for total nitrogen appeared to be more similar between sub-basin and background monitoring sites, although a slightly higher total nitrogen release was observed at the background site under anoxic conditions.

The observed nutrient release rates in Marco Island waterways reflect a combination of release rates occurring under aerobic and anoxic conditions. Based on the field monitoring program conducted by ERD from April-September 2020, the Marco Island waterways maintained aerobic conditions throughout the water column during virtually all monitoring events to a depth of 5-6 m. In areas where the waterbody depth exceeded 6 m, anoxic conditions were routinely observed in lower portions of the water column. However, these deeper areas are relatively rare within the waterways, and for purposes of this analysis, sediments are assumed to maintain aerobic conditions approximately 90% of the time, with anoxic conditions occurring during the remaining 10% of the time. These ratios are used to calculate weighted release rates using the measured releases under aerobic and anoxic conditions.

A summary of calculated annual sediment release of total nitrogen and total phosphorus in Marco Island waterways is given in Table 5-15. This analysis assumes aerobic release rates occurred during 90% of the time, with anoxic release rates occurring during the remaining 10% of the time. Weighted release rates are calculated using this assumed distribution of aerobic and anoxic events for each sub-basin area. The weighted release rates are multiplied by the area of each waterbody to obtain estimates of overall mass release of phosphorus and nitrogen from sediments into the overlying water column on an annual basis.

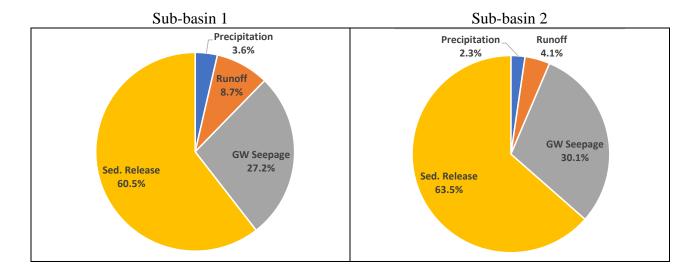
Annual loadings of total phosphorus from sediment nutrient release ranged from 351 kg/yr in Sub-basin 2 to 3,884 kg/yr in Sub-basin 1, with an overall total of 7,125 kg/yr of total phosphorus generated through sediment release. Measured nitrogen release from sediments ranges from 3,080 kg/yr in Sub-basin 2 to 16,876 kg/yr in Sub-basin 3. Overall, sediment nutrient release contributes approximately 57,958 kg/yr of total nitrogen to Marco Island waterways. The information summarized in this table is used in a subsequent section to generate annual nutrient budgets for each sub-basin area.

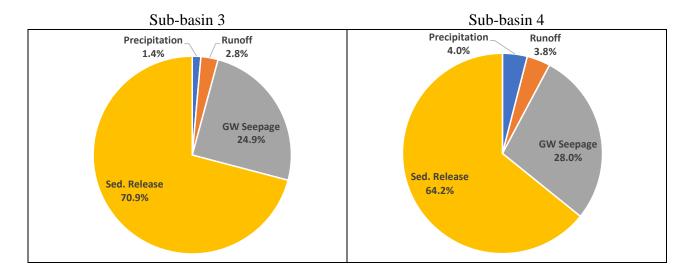
TABLE 5-15

CALCULATED ANNUAL SEDIMENT RELEASE OF TOTAL NITROGEN AND TOTAL PHOSPHORUS IN MARCO ISLAND WATERWAYS

SUB- BASIN	FREQU OF CON			GHTED N RELEASE (mg/m²-day		ASSUMED AREA	MASS RELEASE (kg/yr)			
	Aerobic	Anoxic	SRP	Total P	Total N	(acres)	SRP	Total P	Total N	
1	90	10	4.54	4.59	17.1	565.5	3,792	3,834	14,268	
2	90	10	2.83	3.10	27.2	76.7	321	351	3,080	
3	90	10	1.63	2.13	50.1	227.9	547	716	16,876	
4	90	10	2.02	2.34	16.4	374.3	1,120	1,292	9,083	
5	90	10	2.11	2.24	35.2	281.7	879	932	14,652	
GE	COMETRIC	C MEAN:	2.46	2.46 2.75						
					TOTAL:	1,526.1	6,659	7,125	57,959	

5.2 Annual Nutrient Budgets


Mean annual mass budgets were developed for total nitrogen and total phosphorus for each of the 5 Marco Island waterways based upon the analyses presented in previous sections. A discussion of annual mass loadings of total nitrogen and total phosphorus is given in the following sections.


5.2.1 <u>Nitrogen Loadings</u>

A tabular summary of calculated mean annual mass loadings of total nitrogen to Marco Island waterways is given in Table 5-16. Estimated annual mass loadings are provided for precipitation, runoff, groundwater seepage, and sediment internal recycling.

The most significant annual mass loadings of total nitrogen to Marco Island waterbodies originates from sediment nutrient release which contributes 60.5-77.4% of the annual nitrogen loadings, depending upon sub-basin. The second most significant nitrogen loading to Marco Island waterbodies is groundwater seepage which contributes 14.6-30.1% of the estimated annual loadings. Combined together, sediment nutrient release and groundwater seepage contribute approximately 90% or more of the annual nitrogen loads for most sub-basins.

Annual mass loadings of total nitrogen from stormwater runoff to Marco Island waterbodies are low in comparison to other sources, contributing only 2.8-8.7% of the annual nitrogen inputs. The smallest annual contribution of total nitrogen originates from bulk precipitation which contributes 1.4-3.6% of the annual nitrogen loadings, depending upon the particular sub-basin. A graphical comparison of nitrogen sources for each of the 5 sub-basin areas is given on Figure 5-25.

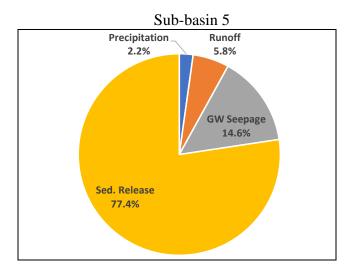


Figure 5-25. Graphical Comparison of Nitrogen Sources for the Five Marco Island Sub-basin Waterways.

TABLE 5-16

ESTIMATED ANNUAL MASS LOADINGS OF TOTAL NITROGEN TO MARCO ISLAND WATERBODIES

	SUB-B	SUB-BASIN 1		ASIN 2	SUB-B	ASIN 3	SUB-BA	ASIN 4	SUB-BASIN 5	
INPUT SOURCE	Annual Loading (kg/yr)	Percent of Total (%)								
Precipitation	845	3.6	113	2.3	340	1.4	559	4.0	421	2.2
Runoff	2,043	8.7	197	4.1	669	2.8	543	3.8	1,103	5.8
Groundwater Seepage	6,418	27.2	1,460	30.1	5,905	24.9	3,959	28.0	2,764	14.6
Sediment Release	14,268	60.5	3,080	63.5	16,876	70.9	9,083	64.2	14,652	77.4
TOTAL:	23,574	100.0	4,850	100.0	23,790	100.0	14,144	100.0	18,940	100.0
Waterway Area (acres):	565	5.5	76	.7	227	7.9	374	1.3	281	1.7
Areal Loading (g/m²-yr):	10	.3	15	.6	25	.8	9.	3	16	.6

A comparison of annual areal loadings of nitrogen to Marco Island waterbodies associated with each of the 5 sub-basin areas is provided at the bottom of Table 5-16. This evaluation allows a comparison of relative loadings between the individual sub-basin areas based upon the area of the receiving waterbody. Areal nitrogen loadings to the 5 waterbodies range from 9.3-25.8 g N/m²-yr. Typical areal nitrogen loading rates to relatively undisturbed marine systems are substantially less than 10 g N/m²-yr. Based upon this guideline, Marco Island waterbodies receive annual nitrogen inputs which are somewhat higher than relatively undisturbed marine systems. A further analysis of areal loadings is given in Section 5.2.3.

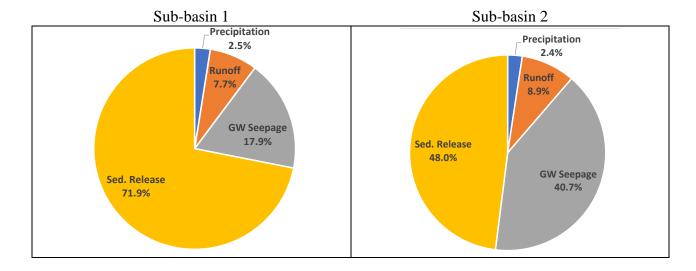
5.2.2 Phosphorus Loadings

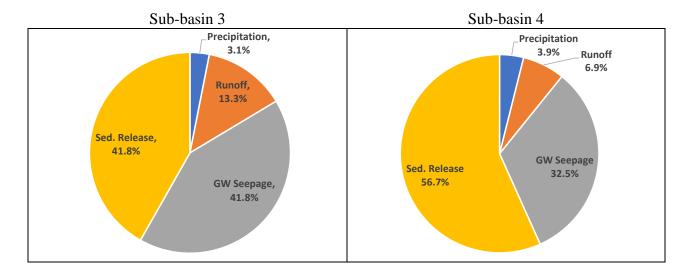
A tabular summary of calculated mean annual phosphorus loadings to Marco Island waterbodies is given in Table 5-17. Estimated annual mass loadings are provided for the same input sources previously discussed for total nitrogen.

On an average annual basis, the most significant loadings of total phosphorus to Marco Island waterbodies originates from sediment nutrient release which contributes 41.8-71.9% of the annual phosphorus loadings, depending upon sub-basin area. Groundwater seepage is the second most significant loading source for phosphorus in Sub-basins 1, 2, 3, and 4, contributing 17.9-41.8% of the annual phosphorus loading to adjacent waterbodies. However, for Sub-basin 5 waterways, stormwater runoff is the second most significant loading source, contributing 23.7% of the annual phosphorus loading to this waterway.

TABLE 5-17

ESTIMATED ANNUAL MASS LOADINGS OF TOTAL PHOSPHORUS TO MARCO ISLAND WATERBODIES


	SUB-B	SUB-BASIN 1		SUB-BASIN 2		ASIN 3	SUB-BASIN 4		SUB-BASIN 5	
INPUT SOURCE	Annual Loading (kg/yr)	Percent of Total (%)								
Precipitation	133	2.5	18	2.4	53	3.1	88	3.9	66	3.7
Runoff	411	7.7	65	8.9	227	13.3	157	6.9	422	23.7
Groundwater Seepage	957	17.9	297	40.7	716	41.8	741	32.5	363	20.4
Sediment Release	3,834	71.9	351	48.0	716	41.8	1,292	56.7	932	52.2
TOTAL:	5,335	100.0	731	100.0	1,712	100.0	2,278	100.0	1,783	100.0
Waterway Area (acres):	563	5.5	76	.7	227	7.9	374	1.3	281	1.7
Areal Loading (g/m²-yr):	2.	3	2.	4	1.	.9	1.	5	1.	6


Stormwater runoff is the third most significant phosphorus source to Sub-basins 1, 2, 3, and 4, contributing 6.9-23.7% of the annual phosphorus loadings. Groundwater seepage is the third most significant phosphorus loading to Sub-basin 5. Phosphorus loadings to Marco Island waterbodies from bulk precipitation are relatively minimal, contributing only 2.4-3.8% of the annual average phosphorus inputs. A graphical comparison of phosphorus inputs to each of the 5 waterbodies is given on Figure 5-26.

A comparison of average annual areal loadings of phosphorus to Marco Island waterbodies is given in the final row of Table 5-17. Areal loading rates for phosphorus range from 1.5-2.4 g P/m^2 -yr. Typical areal phosphorus loading rates to a relatively undisturbed marine system ranges from 1-2 g P/m^2 -yr, with waterways for Sub-basins 3, 4, and 5 in this range and somewhat higher loading rates in Sub-basins 1 and 2.

5.2.3 Comparison with Other Marine Systems

A summary of annual areal nitrogen loading rates for selected marine and estuarine systems is given in Table 5-18 (Bovnton et al., 1995) as a comparison with areal nitrogen loading rates measured at Marco Island and summarized in Table 5-16. Areal nitrogen loading rates for the waterways associated with the 5 sub-basins range from 9.3-25.8 g TN/m²-yr. Areal nitrogen loading rates for Sub-basins 1 and 4 range from 9.3-10.3 g N/m²-yr which is similar to values in the North Sea and Pamlico River in North Carolina. Sub-basins 2 and 5 have nitrogen loading rates ranging from 15.6-16.6 g N/m²-yr which is similar to Mobile Bay in Alabama. The highest areal loading rate of 25.8 g N/m²-yr was measured in Sub-basin 3 which is similar to San Francisco Bay and Narragansett Bay in Rhode Island.

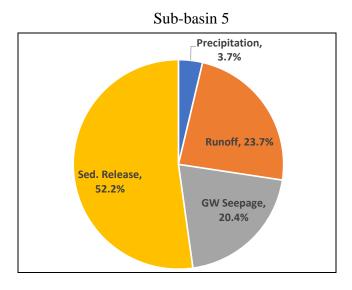


Figure 5-26. Graphical Comparison of Phosphorus Sources for the Five Marco Island Subbasin Waterways.

TABLE 5-18

SUMMARY OF ANNUAL AREAL TOTAL NITROGEN
LOADING RATES FOR ESTUARINE AND COASTAL SYSTEMS

LOCATION	TOTAL NITROGEN LOADING RATE (g N/m²-yr)
Kaneohe Bay (Hawaii)	2.2
Maryland Coastal Bays (lower bays)	2.4-3.1
Baltic Sea (Sweden)	3.0
Choptank River (Maryland)	4.3
Maryland Coastal Bays (upper bays)	4.1-6.5
Albermarle Sound (North Carolina)	7.1
Apalachicola Bay (Florida)	7.8
North Sea	9.4
Pamlico River (North Carolina)	12.0
Patuxent River (Maryland)	12.7
Mobile Bay (Alabama)	17.9
Delaware Bay (Delaware)	18.2
Mainstem Chesapeake Bay (Maryland)	20.5
South San Francisco Bay (California)	22.6
Narragansett Bay (Rhode Island)	27.6
Maryland Coastal Bays (tributaries)	15.7-39.7
Potomac River (Maryland)	29.3
Patapsco River (Maryland)	49.0
Tokyo Bay (Japan)	89.1

Source: Bovnton, et al. (1995)

SECTION 6

ISOTOPE ANALYSIS OF INPUTS TO MARCO ISLAND WATERWAYS

6.1 Introduction

Isotopes are atoms of an element that differ in mass due to differing numbers of neutrons in the atoms' nucleus. Some isotopes are unstable and are referred to as radioisotopes. Other isotopes have no known decay constants and are referred to as stable isotopes. Isotopes of the same element have the same numbers of protons and electrons, thereby having similar chemical properties and similar chemical reactions. However, because of the difference in bond strength due to differing numbers of neutrons, different stable isotopes react at slightly different rates. In general, molecules containing heavier isotopes react more slowly. Differences in reaction rates give rise to "fractionation", such that isotopes are distributed unevenly in natural systems. Biological systems often exhibit strong fractionation effects, such that molecules containing the light isotope of an element react more quickly with a biological enzyme than do molecules containing the heavier isotope. Thus, molecules from different sources in the environment often exhibit isotopic "fingerprints" which can be useful in source partitioning studies.

There are two stable isotopes of nitrogen, ¹⁴N and ¹⁵N, where the superscripts describe the atomic mass of the isotope. ¹⁴N contains seven protons and neutrons, whereas ¹⁵N contains seven protons but eight neutrons. ¹⁴N is the more abundant isotope of nitrogen since most nitrogen reservoirs in nature (e.g., the atmosphere) contain approximately 99.6% ¹⁴N and only 0.4% ¹⁵N. Fractionation processes cause very slight variations in this composition, differences that can be detected using isotope-ratio mass spectroscopy, routinely distinguishing samples that differ by as little as 0.0001 atom percent ¹⁵N.

Nitrate (NO₃⁻) in surface waters can originate from multiple sources, including fertilizer application, animal waste, septic systems, and soil and natural deposition. Stable isotope analysis can help distinguish which of the sources is more likely to contribute to contamination in a given site because these multiple sources often differ in isotope composition. Organisms preferentially use the light isotope (¹⁴N) over the heavy isotope (¹⁵N) so that mass created by organisms is isotopically lighter than mass created by other processes.

A summary of nitrogen sources and typical isotope signatures is given in Table 6-1. For example, high $\delta^{15}N$ values can be traced to animal waste and sewage inputs (e.g., Wassenaar, 1995; Kendall, 1998; Kendall, et al. 1996), since biological processes preferentially use the lighter ¹⁴N leading to enrichment of ¹⁵N. Atmospheric N deposition as NO_3^- or NH_4^+ , N derived from synthetic fertilizers, and soil-derived N typically differ in $\delta^{15}N$ and $\delta^{18}O$. Stable isotopes of oxygen are also useful in source partitioning, in some cases increasing resolution when combined with $\delta^{15}N$. Atmospherically derived NO_3^- is enriched in $\delta^{18}O$ compared to synthetic fertilizer, and both tend to be enriched compared to NO_3^- produced in soils through microbial nitrification.

TABLE 6-1

TYPICAL VALUES AND RANGES FOR $\delta^{15}N$ AND $\delta^{18}O$ FROM VARIOUS SOURCES OF NITROGEN LOADING (10-90% Confidence Limits)

SOURCE	SPECIES	δ ¹⁵ N ‰	δ ¹⁸ O ‰
Fertilizer	Ammonium	-1.0 (-5.6 to 4.8)	
retiffzer	Nitrate	1.0 (-4.4 to 6.1)	22.1 (15.5 to 25.6)
Precipitation	Ammonium	-1.6 (-13.4 to 12.8)	
	Nitrate	0.2 (-7.8 to 8.7)	57.9 (25.6 to 77.2)
Manure	Ammonium	10.5 (5.3 to 25.3)	
Sewage	Ammonium	10.0 (4.3 to 19.6)	
Nitrification	Nitrate	3.5 (-4.1 to 7.9)	7.4 (0.4 to 15.1)**
Soils	Bulk	4.0 (-2.0 to 8.0)*	

^{*}Unpublished data of Hungate et al. from Florida spodosols shows typical values of -6 to -2 for soil organic nitrogen in the region. Negative $\,\delta^{15}N$ values are typical of surface horizons with low clay content.

** For the region in question, the δ^{18} O of precipitation is -2 to -6 ‰ vs SMOW (GNIP, www-naweb.iaea.org/napc/ih/GNIP/). In nitrification, two atoms of oxygen are derived from local water, and one from atmospheric O₂ (22.5 ‰), allowing theoretical prediction of the δ^{18} O of nitrate derived from nitrification, after allowing for 5 per mil enrichment of local water due to evaporative enrichment (Mayer et al. 2001). Therefore, the expected δ^{18} O of nitrate produced by nitrification is 3.8 to 11.5 ‰. Values within this range are consistent with *in situ* microbial origin.

In the Marco Island study, samples of bulk precipitation, stormwater runoff, reuse irrigation, reuse pond, and groundwater seepage were analyzed for $\delta^{15}N\text{-NO}_3^-$ and $\delta^{18}O\text{-NO}_3^-$ in addition to NO_x . It is preferred that samples submitted for isotopic analysis typically have measured NO_x concentrations of 100 µg/l or more to enhance the accuracy of the analysis, although many of the collected Marco Island samples had NO_3^- concentrations less than this value. Two general questions were addressed with these data: (1) Are there changes in NO_3^- , $\delta^{15}N$, and $\delta^{18}O$ signatures within Marco Island samples that are consistent with internal microbial processing, and if so, is it possible to constrain the $\delta^{15}N$ and $\delta^{18}O$ signature of NO_3^- within the system?; and (2) What sources of nitrogen loading are consistent with the observed $\delta^{15}N$ and $\delta^{18}O$ signatures of NO_3^- in Marco Island samples.

ERD has previously used stable isotopes on multiple projects to identify sources of nutrients from groundwater seepage and runoff in urban areas and golf courses receiving reclaimed water for irrigation. The isotopic signature of nitrogen derived from golf courses and fertilizers is often unique, but $\delta^{15}N$ can only be used as a tracer if large verifiable differences in $\delta^{15}N$ exist between the potential nitrogen sources. For example, the fertilizer applied to golf courses is commonly derived from atmospheric nitrogen, and this causes golf course runoff to contain nitrate with ^{15}N values similar to those of atmospheric N_2 (0-3‰). However, golf course areas which irrigate with reclaimed water derived from sewage often exhibit a sewage signal (i.e., 12-20‰).

6.2 Theory of Measurement

Stable isotopes of carbon, nitrogen, sulfur, oxygen, and hydrogen, which are the most commonly used isotopes in ecological and environmental research, are measured by gas isotoperatio mass spectroscopy. The sample is converted into a gas, such as N₂O, CO₂, N₂, SO₂, or H₂, and the gas molecules are ionized in the Ion Source (Figure 6-1) which strips an electron from each of them, causing each molecule to be positively charged. The charged molecules then enter a flight tube. The flight tube is bent, and a magnet is positioned over it such that the charged molecules separate according to their mass, with molecules containing the heavier isotope bending less than those containing the lighter isotope.

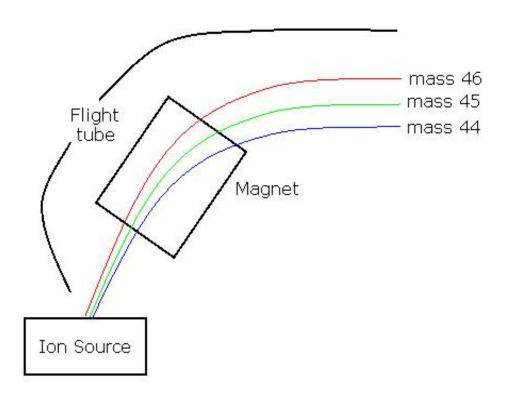


Figure 6-1. Separation of Isotopes by Gas Isotope-Ratio Mass Spectrometry.

Faraday collectors are present at the end of the flight tube to measure the intensity of each beam of ions of a given mass after they have been separated by the magnet. For N_2O , three faraday collectors are set to collect ion beams of masses 44, 45, and 46. Several masses are collected simultaneously, so that the ratios of these masses can be determined very precisely.

In the flight tube, the magnet causes the ions to be deflected, with a radius of deflection that is proportional to the mass-to-charge ratio of the ion. Heavier ions are deflected less than lighter ions. For example, N_2O , mass 46 has the largest radius of deflection, mass 44 has the smallest, and mass 45 is intermediate. Charge also affects the radius of deflection but, for the most part, this is held constant because the ion source strips only one electron from most molecules.

Stable isotope abundances are expressed as the ratio of the two most abundant isotopes in the sample compared to the same ratio in an international standard, using the "delta" (δ) notation. Because the differences in ratios between the sample and standard are very small, they are expressed as parts per thousand or "per mil" (%) deviation from the standard:

$$\delta X \text{ sample } = \{ ({}^{H}X/{}^{L}X \text{ sample}) / ({}^{H}X/{}^{L}X \text{ standard}) - 1 \} \times 100$$

Where "HX and LX" are the heavy and light stable isotopes of element X, "sample" refers to the environmental sample being analyzed, and "standard" refers to the international standard for element X. This equation defines the delta value of the standard as 0‰. For carbon, the international standard is Pee Dee Belemnite, a carbonate formation, with a generally accepted absolute ratio of $^{13}\text{C}/^{12}\text{C}$ equal to 0.0112372. Materials with ratios of $^{13}\text{C}/^{12}\text{C}$ greater than 0.0112372 have positive delta values, and those with ratios less than 0.0112372 have negative delta values.

Stable isotope techniques rely on natural differences in the ways that "heavy" and "light" isotopes are processed in the environment through chemical, biological, and physical transformations. These are referred to as "natural abundance isotope techniques". Stable nitrogen isotopes of dissolved nutrients also provide specific information about the origin of nutrients. Pastureland, residential communities, and golf courses all produce nitrogen with unique isotopic signatures (Kendall, 1998). Land that is covered with a significant amount of cattle often produce nitrate with very heavy $\delta^{15}N$ values. This isotopic signature is due to the large amount of $^{14}NH_3$ released during ammonia volatilization of animal wastes which leaves the remaining material enriched in the heavier nitrogen isotope, ^{15}N .

Nitrogen derived from treated sewage undergoes similar biogeochemical processing through denitrification, which is the heterotrophic breakdown of organic matter. Denitrification produces N_2 with a high concentration of ^{14}N , leaving the remaining bulk waste material concentrated in ^{15}N . Consequently, nitrate that originates from pastureland and sewage have similar $\delta^{15}N$ values (12- 20‰). Contrastingly, nitrate derived from residential soils often has an intermediate nitrogen isotopic range (3-8‰). Possible contributions to the residential signal may include nitrogen derived from septic tanks, fertilizer application, or soil redistribution and relocation. Residential land development may also transport the ^{15}N -enriched organic matter that normally occurs in deeper soil layers to the surface.

6.3 Analyses

Collected samples of bulk precipitation, stormwater runoff, reuse, reuse pond, and groundwater seepage from Marco Island were filtered using a 0.2 micron filter, frozen to halt microbial processes, and shipped to the Stable Isotope Facility (SIF), based at the University of California-Davis (UC Davis) for isotope analyses. This laboratory is designed to serve students, researchers, and faculty at UC Davis who require stable isotope analyses for their research, although analyses are also conducted for researchers outside the university. All isotope analyses were overseen by Kate Ewert with SIF. Information concerning sample collection, preservation, and shipping were provided to ERD by SIF.

A summary of isotope analyses conducted on Marco Island samples is given in Table 6-2. Overall, a total of 235 separate samples was submitted to SIF for analysis.

TABLE 6-2
SUMMARY OF ISOTOPE ANALYSES
CONDUCTED ON MARCO ISLAND SAMPLES

SAMPLE TYPE	NUMBER OF SAMPLES SUBMITTED FOR ISOTOPE ANALYSES
Bulk Precipitation	23
Runoff	97
Reuse Irrigation	27
Reuse Pond	14
Groundwater Seepage	74
TOTAL:	235

Samples selected for isotopic analyses were measured for NO_3^- concentrations in the ERD Laboratory, and the data were provided to SIF to determine appropriate volumes for isotope analyses. The denitrifier method was used by SIF to measure the $\delta^{15}N$ and $\delta^{18}O$ composition of nitrate in each water sample (Sigman, et al., 2001; Casciotti et al., 2002; Révész and Casciotti, 2007). In this method, isotopes of both elements are measured simultaneously after the nitrate is converted to nitrous oxide (N_2O). Mass ratios of 45:44 and 46:44 distinguish $\delta^{15}N$ and $\delta^{18}O$ signatures, respectively.

Pseudomonas aurefaciens cultures were grown in tryptic soy broth, centrifuged to concentrate bacterial cells, and then concentrated suspensions of cells are added to sealed vials with headspace. Pseudomonas aurefaciens lacks N_2O reductase, the enzyme that converts N_2O to N_2 during denitrification, so the reaction stops at N_2O , unlike normal denitrification which converts most of the NO_3^- to N_2 . The headspace vials were purged with helium gas to promote the anaerobic conditions suitable for denitrification, and the environmental samples containing NO_3^- were added to the vials and the volume of sample adjusted to obtain sufficient N_2O for analysis. Several drops of anti-foaming agent were added to each vial to reduce bubble formation during the reaction. The vials were allowed to incubate for 8 hours, during which time NO_3^- is converted completely to N_2O . After the 8-hour period, 0.1 ml of 10N NaOH was added to each vial to stop the reaction and to absorb CO_2 which can interfere with N_2O analysis. The samples were then placed on an autosampler tray interfaced with the mass spectrometer, and interspersed with standards with known $\delta^{15}N$ and $\delta^{18}O$ composition.

6.4 Results

A summary of the results of isotope analyses conducted on Marco Island samples by the UC Davis SIF is given in Appendix H, with laboratory documentation provided in Appendix H-1 and sample results provided in Appendix H-2. Selection criteria for sample analysis of stable isotopes were developed jointly by ERD and SIF and generally required a minimum NO_x concentration of 100 μ g/l. Groundwater seepage samples are used to assist in identifying impacts from reuse irrigation and fertilization within the drainage basin.

6.4.1 Bulk Precipitation

A listing of the results of isotope analyses for nitrogen and oxygen conducted on bulk precipitation samples is given in Appendix H-2, and summary statistics for isotope analyses conducted on bulk precipitation is given in Table 6-3. Virtually all measured $\delta^{15}N$ values were near or less than zero while enriched in $\delta^{18}O$, indicating a lack of significant biological process as would be expected for an atmospheric source.

TABLE 6-3
SUMMARY STATISTICS FOR ISOTOPE ANALYSES
CONDUCTED ON BULK PRECIPITATION SAMPLES

SAMPLE	$\delta^{15} N_{AIR}$ (%)		$\delta^{18} O_{VSMOW}$ (%)	
ID	Range	Average	Range	Average
Bulk Precipitation	-4.02 – 1.18	-0.86	55.90 - 67.66	62.82

A graphical summary of relationships between $\delta^{15}N$ and $\delta^{18}O$ for bulk precipitation samples is given on Figure 6-2. All collected samples are located in the range of $\delta^{15}N$ and $\delta^{18}O$ values characteristic of atmospheric deposition. The observed isotopic signatures for atmospheric deposition can be used to partition samples impacted by multiple sources.

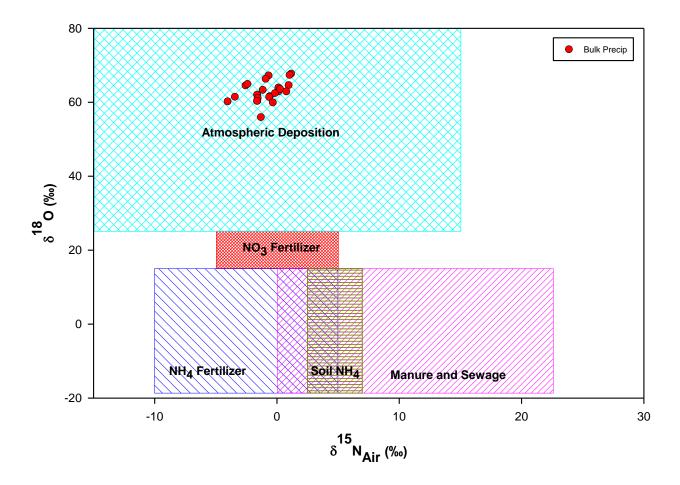


Figure 6-2. Relationships Between $\delta^{15}N$ and $\delta^{18}O$ for Bulk Precipitation Samples Collected at Marco Island.

6.4.2 Reuse Irrigation and Reuse Pond

A listing of the results of isotopic analyses for nitrogen and oxygen conducted on reuse irrigation samples and the golf course pond used to store reuse prior to use is given in Appendix H-2, and summary statistics for isotopic analyses on reuse irrigation and golf course pond samples is given in Table 6-4. Reuse samples contained moderately elevated values for both $\delta^{15}N$ and $\delta^{18}O$. Values of $\delta^{15}N$ are greater than values in atmospheric deposition, an indication of biological transformation of atmospheric nitrogen.

A graphical summary of relationships between $\delta^{15}N$ and $\delta^{18}O$ in reuse water is given on Figure 6-3. Virtually all reuse samples are constrained within typical reuse values for $\delta^{18}O$, while enrichment of $\delta^{15}N$ often exceeds typical limits for manure and sewage. However, the ranges for the boxes shown on Figure 6-3 are based on typical literature values, and the data suggest that the $\delta^{15}N$ values should be extended to include higher values of $\delta^{15}N$ for the Marco Island Water Reclamation Facility.

TABLE 6-4

SUMMARY STATISTICS FOR ISOTOPE ANALYSES
CONDUCTED ON REUSE IRRIGATION AND REUSE POND SAMPLES

SAMPLE	$\delta^{15}N_{AIR}$ (‰)		$\delta^{18} { m O_{VSMOW}}$ (%)	
ID	Range	Average	Range	Average
Reuse Irrigation	15.76 - 31.41	22.89	4.62 - 14.79	9.73
Reuse Pond	2.90 - 16.53	12.20	-0.69 – 18.38	11.22

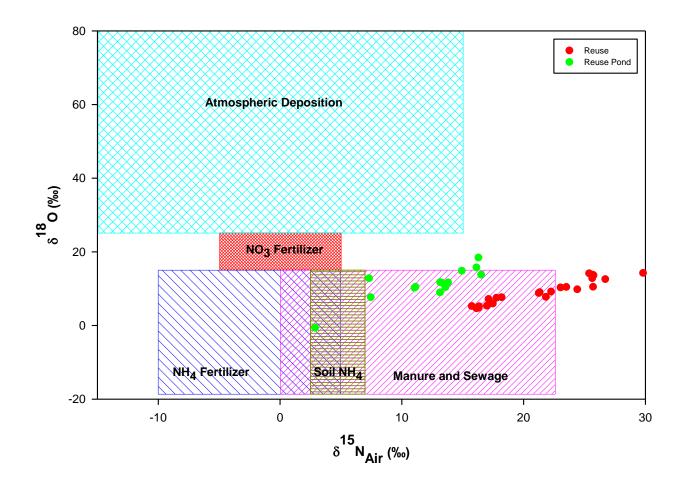


Figure 6-3. Relationships Between $\delta^{15}N$ and $\delta^{18}O$ for Reuse Irrigation and Reuse Pond Samples Collected at Marco Island.

The golf course reuse pond is used to store treated reuse water prior to use for irrigation. The pond contains an outfall structure which can be used to discharge excess reuse inflow to tide, and discharge conditions were observed by ERD on many occasions. As indicated in Table 6-4 and on Figure 6-3, water in the reuse pond has lower values for $\delta^{15}N$ and higher values for $\delta^{18}O$ than reuse samples which is likely due to dilution of the pond water by precipitation and groundwater inflows.

6.4.3 **Runoff Samples**

A listing of the results of isotope analyses for nitrogen and oxygen conducted on runoff and baseflow samples at the Marco Island monitoring sites is given in Appendix H-2, and summary statistics for isotope analyses conducted on runoff and baseflow samples is given in Table 6-5. Many of the measured $\delta^{15}N$ values were less than zero for the runoff samples, suggesting an inorganic fertilizer source. In contrast, the measured $\delta^{18}O$ samples exhibited a wide range of mostly positive values, reflecting samples with and without impact from biological processes.

TABLE 6-5
SUMMARY STATISTICS FOR ISOTOPE ANALYSES
CONDUCTED ON RUNOFF/BASEFLOW SAMPLES

SAMPLE	$\delta^{15}N_{AIR}$ (%)		$\delta^{18} O_{\mathrm{VSMOW}}$ (%)	
SITE	Range	Average	Range	Average
MI-01	-3.82 – 13.24	2.37	1.44 - 37.5	6.99
MI-02	-6.08 – 9.69	3.51	-0.69 – 31.98	11.49
MI-03	-3.76 – 11.30	2.43	-16.18 – 52.3	7.91
MI-04	-12.17 – 16.29	1.41	-5.74 – 30.98	7.41
MI-05	-0.38 – 19.15	7.00	-7.62 – 43.6	13.0

A graphical summary of relationships between $\delta^{15}N$ and $\delta^{18}O$ for the runoff and baseflow samples is given on Figure 6-4. A small portion of the nitrogen measured in runoff samples appears to be related to atmospheric deposition which is constrained by $\delta^{15}N$ values ranging from -20 to +15 and $\delta^{18}O$ values ranging from +25 to +80, as indicated on Table 6-1, suggesting that nitrogen concentrations in these samples primarily originate from nitrogen entrained in precipitation. The runoff samples collected as part of the Marco Island project were generated as a flow-weighted composite throughout the storm event. Runoff samples collected in this manner for small rain events generally show an isotopic signature of atmospheric deposition since atmospheric sources dominate early portions of a runoff event, and watershed sources do not begin contributing until later portions of a runoff event.

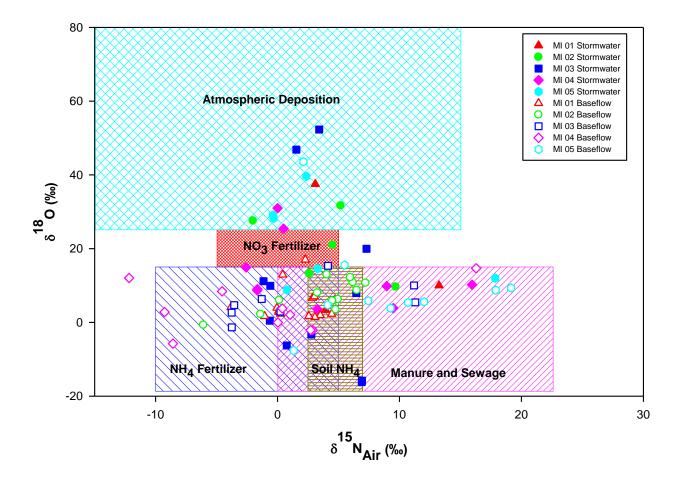


Figure 6-4. Relationships Between $\delta^{15}N$ and $\delta^{18}O$ for Stormwater and Baseflow Samples Collected at Marco Island.

However, the vast majority of collected runoff and baseflow samples indicated nitrogen signatures for NH₄ fertilizer, soil NH₄, and manure and sewage. Nitrogen concentrations in baseflow samples appear to be dominated by NH₄ fertilizer, soil NH₄, and manure and sewage. Signatures for NH₄ fertilizer and manure and sewage are present in some of the runoff and virtually all of the baseflow samples collected from Sub-basins 2, 3, and 5 which have reuse irrigation. Signatures from fertilizers and soil appear to be more common than reuse, suggesting that landscaping activities may be a more significant source of runoff nitrogen than reuse, although reuse impacts were observed in baseflow and runoff samples in Sub-basins 2, 3, and 5.

6.4.4 Groundwater Seepage

A listing of the results of isotope analyses for nitrogen and oxygen conducted on groundwater seepage samples is given in Appendix H-2, and summary statistics for seepage isotope analyses is given in Table 6-6. In general, seepage samples were characterized by low, and often negative, values for both $\delta^{15}N$ and $\delta^{18}O$.

TABLE 6-6
SUMMARY STATISTICS FOR ISOTOPE ANALYSES
CONDUCTED ON GROUNDWATER SEEPAGE SAMPLES

SAMPLE	SAMPLE $\delta^{15}N_{AIR}$ (%0)		$\delta^{18} O_{VSM}$	OW (%)
SITE	Range	Average	Range	Average
SP-1	-0.5 - 3.22	0.91	-6.81 – 1.87	-1.69
SP-2	-2.84 - 5.51	2.98	0.50 - 5.96	2.75
SP-3	-1.34 – 3.62	1.18	1.04 - 6.54	3.98
SP-4	9.87 – 3.92	-4.34	2.0 - 3.2	0.70
SP-5	-6.74 – 4.83	-3.35	-3.90 - 6.41	-0.16
SP-6	-25.7 – 3.38	-2.55	-2.46 – 6.76	3.54
SP-7	-6.51 - 6.09	1.17	-1.55 – 2.27	0.57
SP-8	-5.97 – 5.61	-0.03	0.86 - 7.93	4.43
SP-9	-1.91 – 3.23	1.38	-8.65 - 3.22	-1.83
SP-10	-19.63 – 3.23	-4.53	-12.6 – 1.96	-3.17
SP-11	-5.34 - 5.43	1.31	-7.32 - 8.50	1.90
SP-12	-1.15 – 9.77	3.93	-11.8 – 2.58	-0.67
SP-13	-10.32.13	-5.06	-5.26 – 4.74	-0.03
SP-14	-7.78 – 1.63	-2.81	-7.50 – 1.77	-2.82
SP-15	-2.38 – 1.46	-0.28	-5.47 – 2.26	-0.64

A graphical summary of relationships between $\delta^{15}N$ and $\delta^{18}O$ for groundwater seepage samples is given on Figure 6-5. With only one exception out of 74 seepage samples submitted for isotopic analysis, signatures for nitrogen in seepage indicated impacts from fertilizer and soil NH₄. The clustering of points on Figure 6-5 is quite conclusive and suggests that the landscaping activities are a significant source of nitrogen to groundwater.

6.5 Summary

The isotopic data make a strong case for landscaping activities and reuse irrigation as significant sources of nitrogen in groundwater seepage inflows to Marco Island waterways. An isotope signature indicating impacts from both fertilizer and reuse irrigation was observed in about 40% of the seepage samples, with the remaining samples dominated by fertilizer impacts. Nitrogen inputs to runoff and baseflow appear to be impacted by a variety of sources, including rainfall, fertilizer, and reuse activities, although the isotope data suggest that landscaping activities may be a more significant source than reuse irrigation in runoff samples, while reuse irrigation has a strong impact on baseflow characteristics. This information is used to develop nutrient management recommendations for the Marco Island waterways.

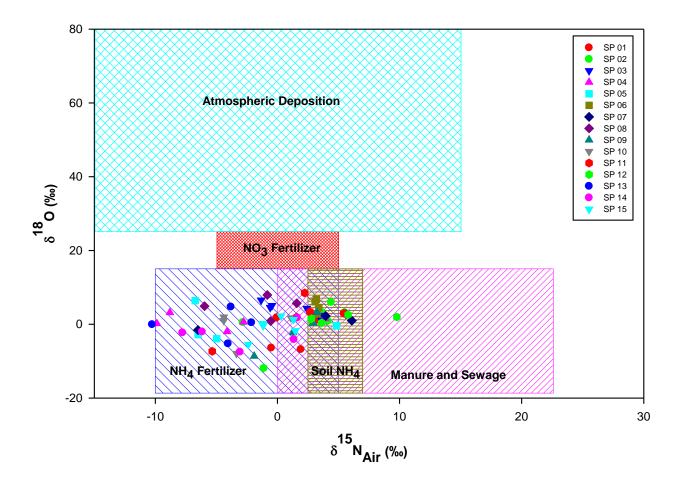


Figure 6-5. Relationships Between $\delta^{15}N$ and $\delta^{18}O$ for Groundwater Seepage Samples Collected at Marco Island.

SECTION 7

EVALUATION OF WATER QUALITY IMPROVEMENT OPTIONS

A discussion of water quality maintenance and improvement options for Marco Island waterways is presented in this section. The evaluated water quality improvement options are designed to target sources which have been identified as significant contributors of nutrient loadings to the waterways. Based on the historical and current field monitoring, it appears that nitrogen is the primary nutrient which must be controlled to maintain and improve water quality characteristics. Nitrogen inputs to the waterways occur through a wide variety of sources including bulk precipitation, stormwater runoff, irrigation water, groundwater seepage, and internal recycling, and the management plan is based upon identifying and treating the most significant treatable sources. The evaluated options include both structural and non-structural approaches to controlling and reducing nitrogen inputs.

A discussion of general management philosophy and recommended water quality improvement projects is given in the following sections. The water quality management recommendations in this section are based on over 100 years of combined experience by ERD personnel in surface water management and provide an independent, science-based approach to improving water quality in Marco Island waterways. The recommendations provide a series of guidelines for controlling existing and future nutrient loadings to the waterways but are not intended to be used for purposes of regulatory or policy decisions.

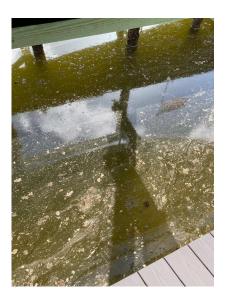
7.1 Management Philosophy

7.1.1 Water Quality Dynamics and Limitations

Marco Island is an island community located in southern Collier County about 20 miles south of Naples, and is the largest Barrier Island within southwest Florida's Ten Thousand Islands. The island is surrounded by multiple bays and islands which receive inflows from large wetland areas located west of US 41, along with portions of the Florida Everglades which are often colored and contain elevated nutrient concentrations. When these inflows combine with tidal waters, the resulting water quality characteristics represent baseline water quality in offshore areas surrounding Marco Island. This water moves into and out of the extensive canal system with each tidal cycle and creates baseline minimum water quality in the island waterways. When the tidal water enters the waterway canals, nutrient concentrations are enhanced by watershed inputs from precipitation, runoff, irrigation water, and groundwater seepage. It would be virtually impossible to improve waterway quality to levels less than present in the inflows, and the baseline conditions cannot be improved without significant regional projects to improve the characteristics of upland inflows to the off-shore waters. Therefore, the emphasis of the water quality management options discussed in this section is to reduce enhancement of loadings to the baseline conditions, realizing that the maximum achievable water quality improvement is limited by the characteristics of off-shore water.

Both Marco Island waterways and off-shore waters are currently listed as Impaired Waters by FDEP, with Marco Island waterways listed as impaired for nitrogen and off-shore water listed as impaired for nitrogen, phosphorus, and fecal coliform bacteria. Since the baseline water entering the waterways is already impaired, Marco Island waterways will continue to be impaired until the impairment is addressed in the off-shore waters, a point discussed in the Terrell Report and in multiple presentations by Mr. Eugene Wordehoff. Even if Marco Island eliminated all inputs of water and nutrients to area waterways, the water quality impairment within the waterways would remain since the incoming water is already impaired. However, although little can be done by the City to eliminate the current impairment, both historical and current monitoring efforts indicate an enrichment in nutrients within the waterways compared with off-shore waters, and the water quality management options discussed in this section are designed to reduce the enrichment processes to prevent further degradation of inflows after entering the canal systems.

A summary of geometric mean water quality characteristics at off-shore monitoring sites during the ERD field monitoring program from April-September 2020 is given in Table 7-1. Geomean concentrations are included for total nitrogen, total phosphorus, and chlorophyll-a at each of the 4 off-shore sites. The lowest concentrations of total nitrogen and chlorophyll-a occur at the Gulf of Mexico and Caxambas sites, but there are no channel locations on the west side of the island which receive direct inflows from the Gulf, although water from Caxambas Bay does flow into waterways associated with Sub-basins 4 and 5. Inflows to waterways for Sub-basins 2 and 3 come from Marco Bay and East Marco Bay where the baseline water quality already exceeds the NNC for total nitrogen and chlorophyll-a by a factor of 2 or more. Water collected from the Gulf of Mexico by ERD from April-September 2020 indicated consistent violations of the NNC for both total nitrogen and chlorophyll-a.


TABLE 7-1

GEOMETRIC MEAN CONCENTRATIONS AT OFF-SHORE MONITORING SITES FROM APRIL-SEPTEMBER 2020

SITE	LOCATION	TOTAL NITROGEN (μg/l)	TOTAL PHOSPHORUS (μg/l)	CHLOROPHYLL-A (µg/l)
M-1	Marco Bay	584	38	10.4
M-2	East Marco Bay	618	42	14.9
M-3	Gulf of Mexico	579	35	9.0
M-4	Caxambas Bay	517	43	7.8

ERD has been copied on correspondence between island residents and elected officials regarding complaints of "poor" water quality. Both historical and current monitoring efforts clearly document violations of applicable NNC which is manifested visually in the form of algal growth or blooms. Photographs of "poor" water quality have been provided to ERD by local residents, and the water quality issues have been observed directly by ERD.

Photographs of canal water, taken by local residents and ERD field personnel, are shown on Figure 7-1. Each of these photographs illustrate water quality concerns from material floating on the surface, but the floating material is not necessarily related to excessive nutrients. Some of the photos appear to show surface scum from pollen, vegetation debris, and perhaps zooplankton which feed on algae, while the floating foam results from organic molecules generated by decomposition of organic matter. Photographs taken by ERD show floating patches of vegetation and grass clippings from on-shore areas. Each of these items tends to accumulate in undisturbed or stagnant areas near boat docks. This material is visually unaesthetic and should be addressed as part of a management plan, but this type of pollution originates from issues other than elevated nutrients and chlorophyll-a.

a. Photographs provided by area residents

b. Photographs taken by ERD

Figure 7-1. Photographs of Observed Water Quality Issues.

There is no "silver bullet" that will magically solve the existing water quality issues in the Marco Island waterways. There are multiple sources impacting nutrient loadings, and water quality improvement requires removal of nitrogen which is more difficult and less predictable than removal of phosphorus. Removal of nitrogen is also considerably more expensive than phosphorus and less understood. However, this report provides a series of recommendations for options with the greatest likelihood of reducing nitrogen loadings to area waterways.

7.1.2 Significance of Nutrient Sources

7.1.2.1 <u>Sediment Nutrient Recycling</u>

Hydrologic and nutrient budgets were developed for each of the 5 sub-basin areas discharging to Marco Island waterways which included inputs from bulk precipitation, stormwater runoff, groundwater seepage, irrigation, and sediment internal recycling. The most significant source of nitrogen loading to the waterways is sediment nutrient release which contributed 60.5-77.4% of the annual nitrogen loadings. In freshwater systems where phosphorus is the limiting nutrient, sediment nutrient release can be easily and economically controlled using a targeted application of aluminum sulfate (commonly called alum) which binds sediment phosphorus in an insoluble form. However, there is no equivalent precipitating compound or technology for retaining nitrogen in the sediments. The application of alum to sediments reduces the level of microbial activity in sediments and often indirectly reduces nitrogen release simultaneously with phosphorus. The chemistry of aluminum in saltwater sediments becomes quite complex, and this technology has never been tested in marine systems. Outside of dredging, which would be prohibitively expensive and unacceptably intrusive, there is little that can be done to eliminate this significant source, although it may be possible to reduce the annual loadings.

Field monitoring conducted by ERD from April-September 2020 indicated differences in oxygen regimes at sites located in upstream and downstream portions of the canal system. In downstream areas, such as Site M-9 (Figure 2-18), relatively isograde vertical profiles were observed for temperature, pH, and dissolved oxygen during all events at this site to the bottom at a depth of 5 m (16.4 ft), indicating a well-mixed water column. However, oxygen depletion was observed at the same 5 m depth during virtually all events at Site M-11 (Figure 2-19) which is located at the terminal end of a wide deep canal with little tidal exchange. As illustrated in Table 5-13, sediment nutrient release is 2-3 times greater under anoxic conditions compared with aerobic conditions, so enhanced recirculation which maintained aerobic conditions throughout the waterways could be used to reduce sediment nutrient release

7.1.2.2 **Groundwater Seepage**

Groundwater seepage is the second most significant source of nitrogen loading to the waterways, contributing 14.6-30.1% of the annual loading depending on the individual subbasin. Seepage originates within the upland areas of each sub-basin and includes all potential groundwater inputs from precipitation, infiltrated runoff, and irrigation. Upon entering groundwater, the water moves down-gradient through the soil layer toward the closest waterway where the groundwater flow migrates beneath the seawalls and seeps up through the bottom of the canals.

There are two potential mechanisms for reducing nitrogen inputs to groundwater. The most obvious option is to reduce potential nitrogen sources before entering groundwater. Nothing can be done to reduce loadings from precipitation, but options are available to reduce loadings from runoff and irrigation, and these issues are discussed in a later section.

Nitrogen is notoriously difficult to remove in general, but recent research has indicated that denitrification walls can be effective in reducing nitrogen concentrations in seepage. These systems consist of a 1-2 ft thick vertical wall of special media containing a degradable carbon source that creates conditions conducive for denitrification, and these are currently under consideration for reducing nitrogen loadings to the Indian River Lagoon (IRL). Denitrification walls placed on the landward side of the retaining walls are a potential option which is discussed in a later section.

7.1.2.3 **Stormwater Runoff**

Stormwater runoff is the third most significant source of nitrogen loading to the waterways, but the annual contribution only accounts for 2.8-8.7% of the total annual inputs. Runoff monitoring conducted at the 5 monitoring sites indicated that Marco Island runoff already contains low levels of total nitrogen which is one-third to one-half of concentrations commonly observed in runoff from similar land use categories in other parts of Florida. Concentrations of particulate nitrogen, which often comprise the most dominant nitrogen form in runoff, are extremely low in value at Marco Island which is presumably due to the substantial pre-treatment for particulate matter achieved in the extensive grassed swale system used for runoff conveyance throughout the island.

Due to the highly permeable soils, most of the runoff is infiltrated into groundwater with only a small portion of the generated runoff reaching waterways as direct runoff. Other than a constructed stormwater pond or treatment facility, a swale drainage system is the best option for treating runoff. Therefore, ERD does not propose any significant structural stormwater projects other than routine maintenance of the existing system which is discussed in a subsequent section.

7.1.2.4 Reuse Irrigation

The ERD study devoted considerable effort to analyzing the chemical characteristics and potential impacts from reuse irrigation. As discussed in Section 3.8, an average daily quantity of approximately 2 MGD of reuse irrigation water is applied to golf courses and public access areas on Marco Island. Both the historical water quality data and independent measurements conducted by ERD indicate extremely elevated and highly variable concentrations of both nitrogen and phosphorus in reuse compared with measured characteristics in the waterways or stormwater runoff. Reuse application in the 5 sub-basins contributes approximately 1,581 ac-ft/yr which is 6% of the total annual hydrologic inputs of 27,373 ac-ft/yr to the 5 sub-basins from all sources.

A comparison of geomean concentrations for significant seepage sources is given in Table 7-2 which does not include additional nitrogen inputs from fertilizers. The primary premise behind using treated wastewater as an irrigation source is that the nitrogen will be absorbed by the surface vegetation and have no impact on groundwater characteristics. However, it is easy to see that excess reuse irrigation has the potential to significantly enhance nitrogen concentrations in groundwater and the resulting seepage to adjacent waterways.

TABLE 7-2

COMPARISON OF GEOMEAN TOTAL NITROGEN
CONCENTRATIONS IN SIGNIFICANT SEEPAGE SOURCES

SUB-BASIN	GEOMETRIC MEAN TOTAL NITROGEN CONCENTRATIONS (μg/l)					
SOB Brish	Precipitation	Runoff	Reuse	Seepage		
1	273	606	8,630	1,160		
2	273	467	8,630	1,272		
3	273	1,128	8,630	1,633		
4	273	1,098	8,630	1,063		
5	273	521	8,630	905		

The isotopic evaluation conducted by ERD indicated the presence of signatures of manure and sewage in 16 of the 48 stormwater and baseflow samples (33%) collected at Subbasins 2, 3, and 5 where reuse irrigation is applied which indicates that reuse irrigation does impact runoff characteristics. A signature of reuse irrigation was also observed in runoff and baseflow at Site 4 (residential area with high maintenance) where reuse is not available for public use, but reuse irrigation is applied to the landscaped medians on a periodic basis. Methods of reducing reuse irrigation impacts are discussed in a subsequent section.

7.1.2.5 General Management Options

In addition to the proposed management options summarized previously, recommendations are also included for non-structural techniques such as street sweeping, fertilizer and landscape management, and educational campaigns to inform homeowners about the link between homeowner activities and water quality. Although the specific benefits of these options are difficult to quantify, they reflect sound management practices which should be part of every community and, therefore, are included as part of the management plan.

7.2 Reduction of Loadings from Internal Recycling

Based upon the field monitoring and sediment incubation experiments conducted by ERD, it is apparent that the existing sediment accumulations contribute the most significant nitrogen loading to the waterways each year, and water quality within the waterways could be improved by reducing the observed internal nitrogen loadings. There are several basic methods which have been used in surface water management projects to mitigate impacts from internal recycling. Sediment dredging has been used in both marine and freshwater systems to remove the accumulated sediments and the source of nutrient release. Although sediment dredging is virtually impossible in Marco Island waterways, and ERD does not recommend dredging as a water quality management tool, a discussion of sediment dredging is given in the following sections for comparison with other options.

Inactivation of sediment phosphorus release using a phosphorus-binding agent, such as alum, is common in lakes and has been highly effective in improving water quality and reducing algal blooms but has not been tested in marine systems. Establishment of submerged vegetation has also been shown to reduce nutrient sediment release by creating a competing uptake mechanism and maintaining oxidized conditions at the water-sediment interface. Another option is to increase the oxygen content of the water and circulation rates to limit nutrient release to aerobic conditions which exhibits a much lower release rate. Options related to re-establishment of submerged vegetation and water recirculation are addressed in later sections.

7.2.1 <u>Sediment Dredging</u>

Sediment dredging is a technique which reduces internal recycling by removing the existing organic muck, leaving the original parent bottom material of the waterbody. This option is designed to reduce water quality impact from the existing sediments, with added benefits of increasing water depth and water volume.

A decision to remove accumulated bottom sediments generally occurs when there is sufficient evidence that the accumulated sediments are having an adverse impact on habitat, water quality, recreation, or navigation. The existing sediments in the Marco Island waterways do not appear to have a direct impact on recreation or navigation, but field and laboratory work conducted by ERD demonstrated an adverse impact of the sediments on existing water quality.

7.2.1.1 <u>Dredging Methods</u>

Sediment removal by dredging can be accomplished by either mechanical or hydraulic dredging methods. Mechanical dredging in canals can be accomplished using a shoreline-based dragline, but mechanical dredging in lakes most frequently involves either partially or completely draining the lake to expose the sediments to drying conditions. Conventional earthmoving equipment, such as bulldozers, scrapers, backhoes, and draglines, are then used to remove the dried sediments. The sediment material is stockpiled on the shore and then hauled away in dump trucks to a disposal location. This technique was used routinely by the Florida Fish and Game Commission during the 1970s and 1980s, but improvements in water quality were limited.

Given the size of the Marco Island waterway system, the direct hydraulic connection to tidal waters, high water table, large numbers of docks, extensive boating activities, and importance of the waterways for removing excess water, it is highly unlikely that even a relatively small portion of any waterway could be dried enough to allow mechanical dredging to occur. Even if portions of a waterway were isolated using sheetpile, continuous seepage of groundwater inflow would make adequate dewatering of these areas extremely difficult. Access to the waterways for earth-moving equipment would be nearly impossible given the dense residential development and roadway systems surrounding all waterways.

The most likely option for dredging in Marco Island waterways would be hydraulic dredging. During hydraulic dredging, a hydraulic dredge excavates and pumps material from the bottom through a temporary HDPE pipeline to an off-site location which is often several thousand feet to several miles away. The head of the dredging unit is equipped with a rotating cutter with steel blades to dislodge and homogenize the sediments, and a centrifugal pump is used to "suck up" the muck and water mixture, forming a slurry. Control of the dredging depth occurs by manipulation of the suction head in both a vertical and horizontal direction. Since water is removed along with the sediment, hydraulic dredging slurries are commonly 80-90% water. An advantage of hydraulic dredging is that it is generally faster than mechanical dredging, does not require dewatering, and creates less turbidity in the dredged waterbody. Hydraulic dredging is also often the most cost-effective method for large dredging projects. As a result, this analysis will assume that the proposed dredging is accomplished in Marco Island using a hydraulic dredge.

7.2.1.2 Containment Area Requirements

The dredged sediment material would be pumped to a disposal area where the sediments would be allowed to dewater and dry out over time, and the clarified water may or may not be returned to the place of origin, depending on the location of the containment pond. The disposal area must be sufficient in size to hold not only the dredged sediments, but also the large volume of pumped sediment/water slurry that occurs during the actual dredging process. When sediments are formed into a slurry by the dredge, the volume of the sediments tends to increase temporarily which is referred to as the "bulking factor". This additional volume must also be considered when designing the disposal basin. Bulking factors ranging from 1.2-1.5 are typical, with a factor of 1.5 assumed for Marco Island.

A summary of dredging design assumptions and containment area requirements for Marco Island sediments is given on Table 7-3. Although the sediment volume is not known, this analysis assumes a waterway area of 1,525 acres (Table 3-3) and an average sediment depth of 1.5 feet. The resulting sediment volume is approximately 2,288 ac-ft which would be removed during the dredging process, equivalent to approximately 3,690,500 yd³. Assuming a bulking factor of 1.5, the total volume of sediment/water slurry which must be contained within the containment area is 5,535,750 yd³ assuming that all waterways were dredged at the same time.

Containment areas are commonly constructed on relatively flat ground, with a berm around the perimeter to contain the dredged slurry. To minimize stability issues associated with the containment berm, the depth of the dredged slurry is frequently limited to approximately 3-4 ft. An additional freeboard of approximately 1 ft would also be incorporated into the design to provide an average berm height of approximately 5 ft with a maximum slurry depth of 4 ft. Based upon these criteria, the required containment area for hydraulic dredging of Marco Island sediments would be approximately 686 acres. Assuming an additional 20% area for roadways and access to various portions of the containment area, the total required site area would be approximately 824 acres. The containment site would ideally be located close to the waterway being dredged, although remote locations can also be utilized at an increased unit cost. Assuming 0.50-acre lots, the containment area is equivalent to approximately 1,648 residential lots.

TABLE 7-3

SUMMARY OF DREDGING DESIGN ASSUMPTIONS AND CONTAINMENT AREA REQUIREMENTS FOR MARCO ISLAND

PARAMETER	UNITS	VALUE
Existing Sediment Volume	ac-ft ft ³ yd ³	2,288 99,665,280 3,690,500
Assumed Bulking Factor		1.5
Containment Area Volume	ac-ft ft ³ yd ³	3,432 149,497,920 5,535,750
Assumed Containment Area Depth, with 1 ft Freeboard	ft	5
Required Containment Area (4-ft slurry depth)	acres	686
Disposal Site Area with 20% Buffer	acres	824

7.2.1.3 <u>Dredging Costs</u>

Costs for hydraulic dredging typically range from approximately \$15-40/yd³ which includes the actual dredging, pumping of the dredged slurry to the containment area, construction of containment area berms, construction of a return water discharge from the containment area, expenses for treatment of the dredged slurry to meet discharge requirements, and in some cases, post-dredging restoration of the containment site. The variability in cost is a function of accessibility, length of slurry pipeline required, and the composition and dewatering characteristics of the sediment material. Pumping the sediment slurry long distances to remote disposal sites often requires booster pumping systems which add substantially to the project cost.

No significant vacant parcels currently exist in the Marco Island drainage basin which could accommodate the proposed containment area, so an off-shore parcel would need to be obtained. Land costs for these parcels are assumed to be approximately \$50,000/acre, although costs could be substantially higher. For purposes of estimating dredging costs, an assumed dredging cost of \$40/yd³ is used.

A summary of estimated costs for hydraulic dredging of Marco Island sediments is given in Table 7-4 and includes costs for dredging, land costs for the disposal area, and engineering design and testing. The estimated dredging cost for removal of 3,690,500 yd³ of material from Marco Island is conservatively estimated at approximately \$147,620,000. This value does not include any cost associated with land purchase which may be required for the containment area. Assuming that land purchase is required, the estimated cost for 824 acres of vacant off-shore land at a cost of \$50,000/acre is \$41,200,000. An additional \$1,000,000 is included for engineering, design and testing during the dredging feasibility analysis phase, and dredging oversight. The estimated total project cost with land purchase is approximately \$189,820,000. However, a portion of the total cost may be recovered by restoring and selling the land required for the disposal area when dredging is completed.

TABLE 7-4

ESTIMATED COSTS FOR HYDRAULIC DREDGING OF MARCO ISLAND SEDIMENTS

PARAMETER	UNITS	VALUE
Sediment Volume	yd^3	3,690,500
Assumed Dredging Cost	yd^3	40
Dredging Cost	\$	147,620,000
Assumed Land Costs (824 acres)	\$	41,200,000
Engineering/Design	\$	1,000,000
TOTAL COST:	\$	189,820,000

It is unlikely that dredging of Marco Island sediments would completely eliminate internal recycling for several reasons. First, previous evaluations of dredging projects have indicated that dredging is rarely 100% effective in removing sediments, and isolated pockets of sediments will remain which redistribute over the bottom of the waterway, contributing a continued internal loading. Second, the parent material which is exposed as a result of the dredging may also have a limited nitrogen release in spite of sediment removal. Finally, water quality improvements from previous dredging projects have been highly variable.

7.2.1.4 **Summary**

An evaluation was conducted for hydraulic dredging of Marco Island sediments to reduce internal recycling. The anticipated dredging cost is conservatively estimated to be approximately \$190 million, assuming that additional land purchase will be required for a containment area for the dredged slurry. It is unlikely that the sediment removal project would eliminate all of the existing nutrient recycling.

7.3 Stormwater Management

As discussed in Section 7.1.2.3, direct inputs of nitrogen to the waterways from stormwater runoff are relatively minimal in comparison with other sources, and no significant structural stormwater management options are recommended. The stable isotope analyses, discussed in Section 6, indicate a signature of reuse irrigation in both runoff and baseflow even in sub-basins where reuse is used only for irrigation of landscaped street medians.

7.3.1 Nutrient Management

The primary method of conveying runoff in Marco Island is through the extensive system of grassed swales used in virtually all areas except commercial and multi-family land use. Photographs of a typical swale system under dry and wet conditions are given in Figure 7-2. Swales provide extremely good pre-treatment for runoff by removing particulate matter and slightly reducing inorganic nitrogen. Swales have a tendency to become filled over time from accumulated particles present in runoff and adjacent streets, and maintenance of swales is critical to proper conveyance and runoff attenuation. Swales are often considered to be a Low Impact Development (LID) technique to reduce runoff impacts.

a. Swale system between storm events

b. Swale system during storm events

Figure 7-2. Typical Grassed Swale Systems Used at Marco Island.

During the field monitoring program, ERD noticed a wide range of swale types on Marco Island, ranging from relatively deep systems to shallow swales with minimal depression. Much of this variability is due to changes in land use and available land area, but some of it is certainly due to gradual filling. As solids accumulate over time, swales need to be configured to maintain functionality, and ERD recommends that the City conduct an inventory of existing swales and schedule maintenance activities as necessary.

The reason why direct runoff impacts are minimal on Marco Island is that more than 90% of the generated runoff either evaporates or infiltrates into shallow groundwater and becomes part of the seepage loading, converting much of the loading from a surface water load to a groundwater load, although at a lower concentration due to uptake by vegetation and soil in the vadose zone. Since much of the runoff is infiltrated within the swale system, a treatment process could be incorporated into the swales specifically to provide additional reductions in nitrogen loadings.

7.3.1.1 Swale Blocks

Two potential methods are available to enhance the performance of the existing swale systems for retaining nutrients. The first technique is to enhance the retention and infiltration of runoff within the swale system using small grassed berms placed perpendicular to the swale flow direction. These berms, often referred to as swale blocks, provide a series of small retention areas which retain or detain runoff, increasing the opportunity for infiltration into groundwater and nutrient reduction through soil filtration and plant uptake. This is a common Low Impact Development (LID) technique. Implementation of this may require a hydrologic study to evaluate potential flooding impacts. Installation of swale blocks could be easily completed by existing Public Works personnel during swale maintenance activities.

Swale blocks are generally a few inches to more than a foot in height, depending on the swale characteristics. On Marco Island, swale blocks in most areas would be less than 6 inches tall. The swale block is constructed of compacted earth which is sodded to match the swale turfgrass. The site slopes longitudinal to the direction of flow and are tapered to facilitate mowing.

A photograph of a swale block installed in a swale drainage system in Orlando is given on Figure 7-3. The swale block was constructed at a height of approximately 12 inches but is hardly visible due to the sloping sides. Swale blocks can be constructed to accommodate virtually any swale configuration. The retained runoff receives filtration in the soil and reduces runoff loadings compared with runoff which discharges to tide.

Figure 7-3.

Example of a Typical Swale Block.

Swale blocks are inexpensive to construct and only require some fill dirt and sod. It is important to compact the earthen portion of the swale block prior to sod placement to prevent erosion and channeling. Costs for swale blocks vary depending on the type of channel, soil types, slope, and vegetation cover, but for purposes of this analysis a cost of \$250/block is assumed. This task could be easily achieved by existing personnel during maintenance activities.

7.3.1.2 Denitrification Bed

One of the most effective methods of removing nitrogen is through denitrification. Denitrification is a microbially-mediated process that occurs under anaerobic conditions and is used extensively in the wastewater industry for nitrogen removal. A schematic of the denitrification process is given in Figure 7-4. Denitrification converts inorganic forms of nitrogen into a gaseous product which is dispersed into the atmosphere. The process requires a wet environment void of oxygen with a degradable carbon source used for electron transfer.

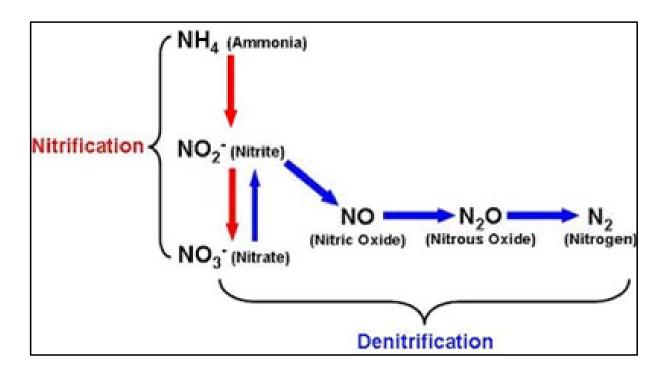


Figure 7-4. Schematic of Denitrification Process.

In recent years denitrification has been adapted for treatment of runoff and groundwater seepage. Nitrogen loadings to groundwater could be reduced by incorporating a denitrification bed into the bottom of the existing swale systems. An example of this system is given on Figure 7-5. The denitrification bed consists of a layer of media, referred to as biologically activated media (BAM), which contains a substrate to which the bacteria become attached, a degradable carbon source (such as wood chips or sawdust), and a mixture of sand to regulate permeability of the layer. The media is designed to provide a wet, anaerobic environment conducive to denitrification to occur; and saturation of the media, which would likely occur frequently under Marco Island conditions, would assist in maintaining the desired optimal environment. Multiple commercial media products are currently available.

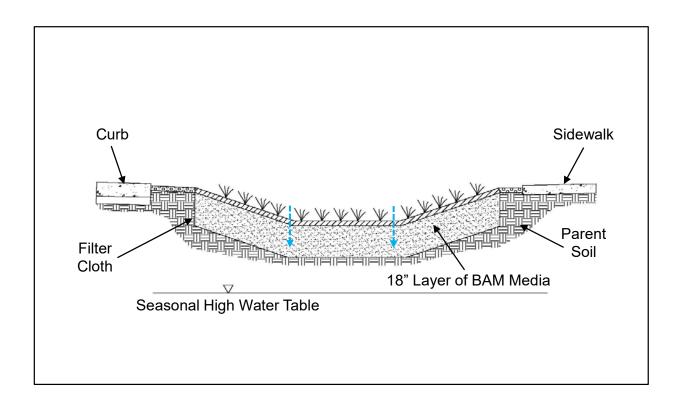


Figure 7-5. Example of Denitrification Bed Incorporated into Existing Swales.

Denitrification processes can only utilize inorganic forms of nitrogen such as ammonia (NH₄) and nitrate (NO₃), cumulatively referred to as dissolved inorganic nitrogen (DIN), so removal processes and efficiencies are limited to the amount of these forms present. Generally, denitrification only occurs at a significant rate at DIN concentrations in excess of 100 μ g/l, and minimum concentrations of DIN in runoff and baseflow samples collected during the field monitoring program exceed this value in all sub-basins except Sub-basins 2 and 5. Therefore, conditions appear to be favorable for use of denitrification beds in Sub-basins 1, 3, and 4. The proposed denitrification beds could be installed in swales as a stand-alone project or gradually incorporated into the swales during maintenance activities which require regrading.

The longevity of BAM media for removing nitrogen varies with on-site conditions and concentrations of DIN. Since nitrogen removal is achieved using a biological process, nitrogen removal can continue indefinitely as long as conditions are conducive for the required bacterial species. However, the limiting factor for longevity is often the carbon source. Carbon is used for exchange of electrons for the dentification reaction and is consumed in the process. The quality of the carbon source determines which of the gaseous nitrogen forms (illustrated on Figure 7-3) is produced. High quality carbon sources, such as methanol or acetic acid, allow conversion of the nitrogen to N₂, while less degradable sources, such as sawdust or wood chips, generate nitric oxide (NO) or nitrous oxide (N₂O), both of which are powerful greenhouse gases. Denitrification is an energy intensive and slow process, so detention times of 2-3 days are required for optimal removal.

A BAM media for nitrogen reduction was developed by the University of Central Florida Stormwater Academy and is referred to as "Bold and Gold" media. A pilot test of this material was conducted by the Stormwater Academy for a rapid infiltration basin (RIB) in Deland, Florida used to infiltrate treated wastewater into groundwater to address concerns about rising nitrate levels in adjacent springs. The 1.68-acre infiltration basin was retrofitted with a 2 ft layer of Bold and Gold consisting of a mixture of clay, tire crumb, and sand (CTS) with a measured dry bulk density of 63 pounds/cubic foot and a porosity of 32% in a dry condition without compaction. The compacted density increased to about 90 pounds/cubic foot. The average nitrate inflow concentration to the RIB from reuse was 3.62 mg/l, similar to reuse values at Marco Island, which was reduced to 0.72 mg/l (-80%) after flowing through the media. Lower nitrate concentrations, similar to those in stormwater, were reduced to concentrations less than the MDL for the laboratory. The Bold and Gold media is manufactured in Apopka and the CTS product currently costs about \$250/cubic yard plus transportation.

Assuming an average swale width of 5 ft and a Bold and Gold layer of 1.5 ft, the media requirements would be 28 yd³ per 100 ft of swale. At a cost of \$300/ yd³ (including transportation) the media cost per 100 ft would be \$8,400. The media could be added during routine recontouring and maintenance or added as a stand-alone project.

7.3.1.3 **Summary and Recommendations**

The current grassed swale drainage systems at Marco Island are ideal for infiltration which reduces the overall runoff volume and provides removal of solids in runoff. During the field monitoring program, ERD observed areas where swales had become partially filled over time which caused runoff to extend into impervious areas where infiltration cannot occur, reducing opportunities for important removal and treatment processes.

ERD recommends that swales which no longer have the desired cross-section or exhibit poor infiltration be regraded to restore both hydraulic and water quality functions. These regrading projects provide excellent opportunities to incorporate both swale blocks and BAM media into the systems to enhance nitrogen removal. Based on the discussion above, ERD recommends that the proposed regrading and/or installation of swale blocks and/or BAM media proceed as resources are available. This type of project would likely qualify for a variety of State grants designated for improving water quality.

7.3.2 <u>Inlet Systems</u>

As discussed in Section 3.5, the City has installed 1,324 inlet basket inserts to stormwater inlets which includes about 71% of the total inlets within the City. Locations of the inlet basket inserts are indicated on Figure 3-6. Many of the inlets which were not retrofitted were not suitable for the inlet basket system due to side inflows which bypass the top inlet. A schematic of the inlet filter system is given on Figure 7-6. Each system consists of a hydrocarbon adsorption mat and a basket to collect and store solids and debris. Installation of the inlet baskets was initiated during 2006, and as of 2018, the City has purchased and installed 834 inlet baskets at a cost of \$731,557, with an additional 490 filter insert baskets purchased by private and public contracts at no direct cost to the City. The City received grant funding from the SFWMD in the amount of \$740,000 to cover the cost of the inlet baskets.

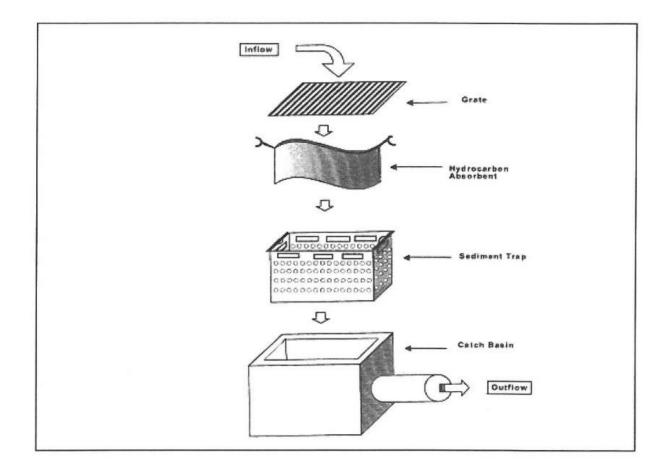


Figure 7-6. Schematic of Inlet Filter System Installed at Marco Island.

The inlet baskets are maintained on an annual basis by the City Public Works Department using the City-owned vacuum truck and current staff. Annual maintenance includes replacement of the absorbent mat and removal of collected debris in the baskets. During 2016, the City removed 13,599 lbs of debris from the 1,324 inlets, with 8,000 lbs removed during 2017 and 13,560 lbs removed during 2018. A photograph of solids collected from the units by City personnel is given on Figure 7-7.

An analysis of estimated removals for total nitrogen and total phosphorus by the inlet baskets is given in Table 7-6. Information is provided for the mass of solids removed each year in lbs and kg. Estimates of the percentage of total nitrogen and total phosphorus contained in the collected solids were obtained from the street sweeping study conducted by the Florida Stormwater Association (FSA) during 2012 which sampled street sweeping solids in municipalities throughout the State. Solids collected during this study had an average total nitrogen content of 0.105% and an average total phosphorus content of 0.0328%. Using these values, the units captured 16.7 kg of total nitrogen over the 3-year period for an annual average removal of 5.6 kg/yr for all units combined. Removal of total phosphorus was 5.2 kg over 3 years or 1.73 kg/yr. These values are a small fraction of the annual nutrient loading to area waterways.

Figure 7-7.

Solids Collected from Inlet Baskets by City Personnel.

TABLE 7-5

ANALYSIS OF NUTRIENT LOAD REDUCTIONS
BY THE INLET BASKET SYSTEMS

YEAR	INLETS	ILLIIO I LD		ТОТА	TOTAL NITROGEN		TOTAL PHOSPHORUS		
1 Little	CLEANED	lbs	kg	% by wt.	lbs	kg	% by wt.	lbs	kg
2016	1,324	13,599	6,167	0.105	14.3	6.5	0.0328	4.5	2.0
2017	1,324	8,000	3,628	0.105	8.4	3.8	0.0328	2.6	1.2
2018	1,324	13,560	6,150	0.105	14.2	6.5	0.0328	4.4	2.0
TOTAL:	3,972	35,159	15,945		36.9	16.7		11.5	5.2
	!	Per Uni	t Values:		0.0093	0.0042		0.0029	0.0013

7.3.2.1 **Summary and Recommendations**

Even though the annual solids removal per individual inlet is small, and portions of the solids which could be collected by the inlets are already retained within the swale drainage system, the inlets provide a valuable function of removing not only sand and soil but also vegetation debris (shown on Figure 7-1) which would likely be worse without the inlets. Therefore, ERD recommends that the City retain the inlet system program and extend it to include suitable inlet locations not already included in the program, if any.

7.3.3 Stormwater Management

The City currently relies on water management criteria implemented by SFWMD for construction of stormwater management facilities for development. However, SFWMD provides an exemption from stormwater criteria for single-family homes, the dominant land use category on the island, and residential homes on the island do not have stormwater treatment systems. The existing roadside swale system provides significant pre-treatment of runoff through groundwater infiltration and removal of solids during low flow conditions, but during high flow conditions most of the runoff quickly passes through the swale system with little or no change in volume or concentration. The isotopic analyses indicate that runoff is impacted by both landscaping activities and reuse application, both of which have potentially high nutrient concentrations.

To reduce runoff impacts to waterways, it is recommended that the City consider adding stormwater management requirements for future homes or re-development. Rather than the standard surface ponds used in stormwater management, proven LID systems (such as rain gardens) can be easily incorporated into the landscape and not be recognizable as a stormwater treatment system. Some systems also incorporate a filter media to improve removal of nutrients. A schematic of a typical rain garden is provided in Figure 7-8. Rain gardens consist of a depressed landscaped area which is designed to capture and treat runoff from rooftops and pervious areas such as lawns. Runoff treatment occurs during infiltration through soil or BAM media installed in the bottom of the rain garden to reduce nutrient concentrations entering groundwater.

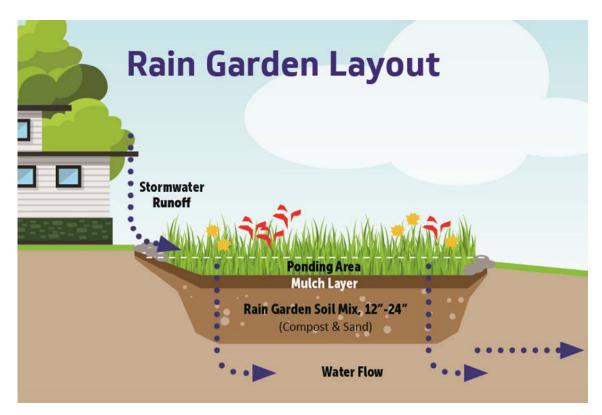


Figure 7-8. Typical Rain Garden Layout.

Rain gardens are a popular stormwater management technique, and design criteria for rain gardens are available from multiple sources. Photographs of rain gardens are provided in Figure 7-9. These systems would fit nicely into the existing landscaping themes currently used on Marco Island. The rain gardens should provide a volume capable of storing 1-inch of runoff over the contributing areas, including rooftops, which would achieve a removal efficiency of more than 85-90%.

Figure 7-9. Photographs of Rain Gardens.

7.3.3.1 Recommendations

ERD recommends that the City modify the City Development Code to require stormwater treatment for all new single-family homes and existing homes which have significant alterations. Although many options are available for the treatment systems, the most likely choice appears to be rain gardens which can be incorporated into landscaping. These systems would complement the existing Marco Island landscaping theme.

7.4 Seepage Management

7.4.1 Management Options

Management options for reducing loadings entering waterways through groundwater seepage involve reducing the volume or concentration of inflows to groundwater from runoff, irrigation water, and landscaping activities. Strategies for reducing impacts from seepage inflows include minimization of inputs from irrigation and fertilizer (discussed in a subsequent section) to interception and treatment of the groundwater prior to entering the waterways.

Options for reducing nitrogen loadings after entering groundwater are extremely limited and include ion exchange (which is prohibitively expensive) and denitrification, which appears to be the only practical option. Denitrification walls could be incorporated into the seawalls along the waterways to intercept nitrogen prior to entering the canal. This technique is gaining popularity in estuary areas to reduce nitrogen loadings from septic tanks and watershed inputs. As discussed in Section 5.1.3, seepage inflows contain more than adequate concentrations of DIN for denitrification to occur, and denitrification beds are a viable option in all waterways.

An example of a denitrification wall system is given in Figure 7-10. The bed consists of an 18- to 24-inch layer of BAM installed on the upstream side of a seawall so that the seepage must migrate through the bed before entering a waterway. The BAM layer could be identical to the material used in the swale systems. These beds could be added to existing seawall areas as a stand-alone project or incorporated into the seawalls during maintenance or replacement.

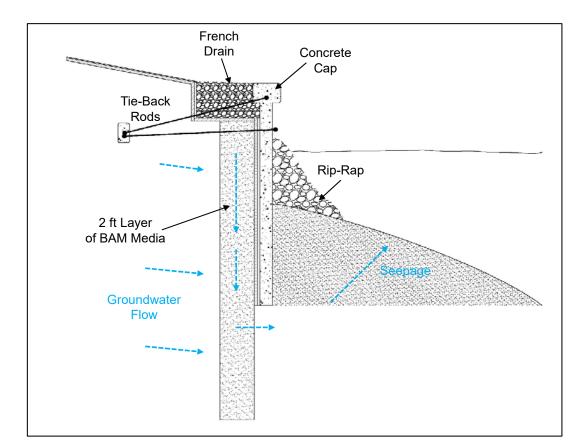


Figure 7-10.

Example of
Denitrification Bed
Incorporated into
Seawalls.

The BAM discussed in Section 7.3.1 would also be appropriate for interception of nitrogen loadings in groundwater. Assuming an average lot width (at seawall) of 100 ft, a media thickness of 2 ft, and a media wall height of 12 ft, the volume of media required per lot is 90 yd³. At a delivered cost of \$300/yd³, the media cost would be \$27,000/lot. Installation costs would vary considerably from lot to lot and will depend on the type of seawall, back yard landscaping or structures, access, and other issues. Installation would be less expensive if the media is incorporated into a repair or replacement project since excavation of all or parts of the seawall would already be included.

7.4.2 Summary and Recommendations

Due to the significance of seepage inflows as part of the overall nitrogen loadings to Marco Island waterways, ERD recommends that projects to install denitrification beds be implemented as soon as possible and as funding becomes available. Multiple grants are available from FDEP and other agencies which would fund all or portions of these projects. Installation of the recommended denitrification beds would be extremely intrusive to rear yards, and many of the waterfront homes have existing concrete surfaces or structures which extend to the seawall that would complicate installation. A pilot project is recommended for a limited area of homes to evaluate the installation process, potential issues, and effectiveness before extending the program to other areas. This appears to be the only available alternative for impacting the observed seepage loadings entering the waterways other than source control.

7.5 Reuse Irrigation

7.5.1 Overview of Issues

A discussion of the historical characteristics of reuse irrigation measured by the City was provided in Section 3.8, and characteristics of reuse water collected by ERD are provided in Section 5.1.2. Both analyses indicated extremely elevated nutrient concentrations which are often an order of magnitude greater in value than concentrations observed in stormwater runoff. Although isotopic signatures of reuse water were observed in both runoff and baseflow in virtually all sub-basins, overall nutrient concentrations in runoff samples were low in value, and reuse impacts appear to primarily be limited to groundwater.

As discussed in Section 3.8, reuse irrigation is applied at a rate of 0.56 inches/week on the golf courses and 0.88 inches to pervious surfaces in other public access areas. The Institute of Food and Agricultural Sciences (IFAS) at the University of Florida is the primary source for recommendations regarding application of fertilizers to turfgrass and agricultural areas in Florida. For decades IFAS generally ignored additional nutrients contributed by reuse irrigation, simply stating that the additional nutrients would be beneficial to the plants. However, in 2011 IFAS issued a publication titled "Urban Water Quality and Fertilizer Ordinances: Avoiding Unintended Consequences - A Review of the Scientific Literature" (IFAS Publication SL 283) which addresses the issue of nutrients in reuse irrigation:

"Reclaimed water is a nutrient solution (water plus nutrients) and should be managed to keep the solution in the root zone. Proper irrigation management with reclaimed water is required to prevent nitrogen leaching from over-application of reclaimed water. Rates of reclaimed water used in irrigation should be based primarily on the water needs of the turfgrass. Excessive irrigation with reclaimed water may result in leaching of the nitrogen contained in the reclaimed water as well as fertilizer-nitrogen previously applied to the turf grass. Irrigation with reclaimed water should be practiced with careful attention to avoid over-irrigation ...".

The report concluded that to minimize reuse generated nutrient losses to groundwater, irrigation should be used only to supplement rainfall when evapotranspiration (ET) losses exceed rainfall.

7.5.2 **Groundwater Impacts**

An analysis was conducted to compare current reuse application rates on other public access areas with evapotranspiration losses for turfgrasses. A general hydrologic budget was developed for a typical turfgrass located in the public access areas on Marco Island which are irrigated with reuse water at a rate of 0.88 inches/week, as presented in Table 3-12. A summary of this analysis is given in Table 7-6. In this analysis, hydrologic inputs are included for average rainfall and applied reuse irrigation and compared with monthly evapotranspiration for turfgrass. Average monthly rainfall is obtained from the historical rainfall summary provided in Table 4-3, and irrigation inputs are assumed to be 3.52 inches/month (0.88 inches/week x 4 weeks/month), assuming that irrigation is applied evenly throughout the year. Evapotranspiration losses are based on monthly measurements taken in the South Florida area by the Florida Automated Weather Network using satellite imagery.

TABLE 7-6
HYDROLOGIC BUDGET FOR MARCO ISLAND TURFGRASS

MONTH	AVERAGE RAINFALL (inches)	REUSE IRRIGATION INPUTS (inches)	EVAPO- TRANSPIRATION (inches)	DIFFERENCE (inches)
January	2.50	3.52	2.06	+3.96
February	1.91	3.52	2.80	+2.63
March	2.05	3.52	3.88	+1.69
April	2.48	3.52	4.82	+1.18
May	3.38	3.52	5.48	+1.42
June	8.36	3.52	5.21	+6.67
July	6.60	3.52	5.34	+4.78
August	9.16	3.52	5.11	+7.57
September	9.92	3.52	4.39	+9.05
October	3.21	3.52	3.61	+3.12
November	2.02	3.52	2.38	+3.16
December	1.71	3.52	1.88	+3.35
TOTAL:	53.30	42.24	46.95	48.58

Based on this analysis, normal monthly rainfall meets 100% of the evapotranspiration requirements of the turfgrass without supplemental irrigation during the months of January, June, July, August, and September, with supplemental irrigation requirements ranging from 0.17-2.34 inches for the remaining months. The current reuse irrigation application of 3.52 inches/month results in an exceedance of water application in excess of the turfgrass requirements ranging from 1.18-9.05 inches per month, with an annual surplus of 48.58 inches.

Over just the 398.96 acres of public access areas where reuse irrigation is applied, the excess water entering groundwater from excessive application of reuse is 1,615 ac-ft/yr, equivalent to 12% (526 million gallons or 1.44 MGD) of the total annual island annual seepage volume and a much higher percentage of seepage volume in the sub-basins where reuse irrigation is applied due to the large nitrogen concentrations in reuse compared with other sources. The volume of reuse applied in excess of the turfgrass requirements is 78% of the average annual reuse volume of 1.84 MGD from 2011-2020. In other words, approximately 78% of the applied reuse bypasses the turfgrass layer and enters groundwater with little change in nutrient content.

The primary issue with reuse irrigation is that there is a constant supply with a seasonally variable demand. The current reuse irrigation practice on Marco Island is simply a method of wastewater disposal with a constant amount applied each week regardless of the needs of the vegetation being irrigated. Other options are available for disposal of the treated wastewater which would not impact waterway loadings such as deep well injection and distribution to offisland customers.

ERD recommends that the City implement an educational program through utility bill inserts, signs, PSA adds, and other available means that explains that irrigation is only needed when rainfall is less than evapotranspiration. Constant application rates result in supplemental nutrient loadings which discharge to the island waterways through groundwater seepage.

7.5.3 <u>Impacts to Fertilizer Requirements</u>

The nutrients contained in reuse irrigation also supply necessary macro and micro elements to turfgrasses which can reduce or eliminate the need for supplemental fertilizer. The amount of nutrients supplied by reuse irrigation depends on the irrigation volume and the characteristics of the applied reuse. An analysis of nutrients generated from reuse irrigation at various weekly irrigation rates is given on Table 7-7. This analysis assumes a 1,000 ft² area irrigated at rates from 0.5-1.25 inches/week with the long-term reuse irrigation characteristics summarized in Table 3-14.

Recommendations for annual turfgrass fertilizer requirements are provided by the Florida Department of Agriculture and Consumer Services (FDACS). Annual fertilizer requirements vary depending on the type of turfgrass and location within the state. Typical values for St. Augustine grass in South Florida are given in Table 7-8. It is important to note that the FDACS recommendations are designed to provide the greenest appearance and most robust grasses, but many homeowners would be satisfied with the results provided by lower fertilization rates.

TABLE 7-7

ANNUAL MASS OF NITROGEN AND PHOSPHORUS SUPPLIED BY MARCO ISLAND REUSE IRRIGATION APPLIED AT VARIOUS WEEKLY RATES

NUTRIENT		IRRIGA	VOLUME (gallons/year) IRRIGATION RATE (inches/week)		MEAN REUSE CONCENTRATION (mg/l)	(lb/1,	,000 ft²-y RRIGAT	NT MA r) BY F ION RA es/week)	REUSE
	0.5	0.75	1.0	1.25	(mg/i)	0.5	0.75	1.0	1.25
Nitrogen	16,207	24,310	32,413	40,517	8.72	1.18	1.77	2.36	2.95
Phosphorus	16,207	24,310	32,413	40,517	3.37	0.46	0.68	0.91	1.14

1. Assumes a 1,000 ft² irrigated area

RECOMMENDED ANNUAL FERTILIZER APPLICATION RATES FOR SOUTH FLORIDA TURFGRASSES

TABLE 7-8

NUTRIENT	RECOMMENDED APPLICATION RATE ¹ (lbs/1000 ft ² -yr)		
Nitrogen	4-6 (Assume 5)		
Phosphorus	0.5 (as P ₂ O ₅) or 0.16 (as P), if soil is phosphorus deficient		

1. FDACS. <u>Urban Turf Fertilizer Rule for Home Lawn Fertilization</u>, IFAS Publication #Enh 1089, Date: February 6, 2018.

A comparison of nutrients supplied by reuse irrigation and nutrient requirements for St. Augustine grass (the dominant turfgrass on Marco Island) grown in South Florida conditions is given in Table 7-9. The values provided in this table represent the percentage of annual fertilizer requirements provided by reuse irrigation at various application rates. Reuse irrigation supplied at Marco Island provides 24-59% of the annual nitrogen turfgrass requirements. At the average applied rate of 0.88 inches/week on common areas, the reuse supplies about 40% of the annual nitrogen requirements; and if fertilizers are applied, then the application rates could be reduced by 40%. The percentage of phosphorus requirements supplied by reuse irrigation is much larger, ranging from 288-713%, depending on the applied irrigation rate. Based on this analysis, the phosphorus supplied by reuse far exceeds the grass requirements, and the vast majority of applied phosphorus leaches past the root zone into groundwater, ultimately reaching the waterway system.

ERD recommends that the City implement an educational program to inform citizens about the level of nutrients in reuse water and inform both citizen and professional applicators to reduce the nitrogen application rates to lawns by the percentages listed in Table 7-9 based on weekly application rates.

TABLE 7-9

PERCENTAGE OF ANNUAL ST. AUGUSTINE GRASS FERTILIZATION REQUIREMENTS SUPPLIED BY MARCO ISLAND REUSE IRRIGATION

NUTRIENT	ANNUAL NUTRIENT REQUIREMENT (%) SUPPLIED FROM REUSE IRRIGATION BY APPLICATION RATE (inches/week)				
	0.5	0.75	1	1.25	
Nitrogen	24	35	47	59	
Phosphorus	280	420	569	713	

7.5.4 Maintenance and Application Issues for Reuse Irrigation

In addition to indirect groundwater impacts, reuse irrigation also has significant direct impacts to stormwater loadings to receiving waters. Due to the order of magnitude difference in nutrient concentrations between runoff and reuse irrigation, only a small amount of undesired reuse overspray or discharge from broken or misdirected irrigation heads can increase loadings to waterways.

A comparison of potential loading impacts from runoff and reuse overspray is given in Table 7-10. Runoff loadings are calculated assuming a 0.25-acre pervious area with an annual runoff C-value of 0.086 which is the average C-value for Marco Island watersheds. Using the assumed annual rainfall of 53.3 inches and average field monitored runoff concentrations of 0.764 mg/l for nitrogen and 0.232 mg/l for total phosphorus, the annual runoff generated mass loadings of nitrogen and phosphorus from the 0.25-acre area are 0.090 kg/yr for total nitrogen and 0.027 kg/yr for total phosphorus. This analysis assumes 5% of the annual reuse irrigation volume is lost due to overspray or broken or misaligned spray heads. Loadings for reuse irrigation are based on irrigation of the 0.25-acre pervious surface at a rate of 0.75 inch/week at the average reuse concentrations of 8.72 mg/l for nitrogen and 3.37 mg/l for phosphorus, summarized in Table 3-14, resulting in annual overspray loadings of 0.058 kg/yr for nitrogen and 0.023 kg/yr for phosphorus.

Based on this analysis, the additional loading resulting from a routine 5% overspray of reuse irrigation is equivalent to 65% of the annual runoff nitrogen loading and 83% of the annual runoff phosphorus loading. An increase of overspray to just 8%, which is not an unlikely assumption, would increase the overspray loadings to values exceeding the runoff load. This loading is largely undocumented since the stormsewer flow rates associated with these volumes are too low to trigger sample collection using an automated sampler. A strong signature of manure and sewage was present in baseflow samples and overspray is likely the cause for this observation.

TABLE 7-10

IMPACTS FROM OVERSPRAY OF MARCO ISLAND REUSE IRRIGATION

LOADING FROM RUNOFF		LOADING FROM REUSE OVERSPRAY				
NUTRIENT	Volume ¹ (gal/year)	Annual Load (kg)	Volume ² (gal/year)	Reuse Concentration (mg/l)	Annual Load from Overspray (kg)	Percent of Runoff Load (%)
Nitrogen (as N)	31,115	0.090	35,393	8.72	0.058	65
Phosphorus (as P)	31,115	0.027	35,393	3.37	0.023	83

- 1. Based on a pervious area of 0.25-acre, annual rainfall of 53.3 inches, and runoff C-value of 0.086
- 2. Based on an irrigation area of 0.25-acres at rate of 0.75 in/week

During the field monitoring program, ERD observed multiple instances of application of reuse irrigation water which resulted in either overspray or direct runoff into stormsewer systems. Photographs of examples are given on Figure 7-11. Figure 7-11a was taken in Subbasin 5 showing a City water truck using reuse water to irrigate the landscaped median, and water flowing onto the roadway surface is clearly visible. The photograph on Figure 7-11b was taken on April 29, 2020 at approximately midnight on Collier Blvd. During this event, much of the roadway surface was wet and irrigation water was visibly running along the gutters into the stormsewer system. Even if the excess irrigation water does not enter the stormsewer system, it dries on the roadway surface and the nutrients are available for transport with the next rain event.

b. Overspray of reuse irrigation along Collier Blvd.

Figure 7-11. Reuse Water Applications.

7.5.5 Golf Course Irrigation

The Marco Island golf course, also referred to as the Island Country Club, is a significant user of reuse water for on-site irrigation with a stated capacity of 0.450 MGD. According to the analysis presented in Section 3.8, the golf course areas are irrigated at a rate of approximately 0.56 inches per week. However, unlike reuse irrigation applied to public and common areas, reuse pumped to the golf course is stored in a surface pond prior to use, and irrigation water is pumped from the surface pond rather than direct use from the reuse distribution system.

Routine samples of reuse irrigation and golf course pond water used for irrigation were collected by ERD during the field monitoring program, with 24 samples of reuse and 13 samples of golf course pond water. A comparison of geomean characteristics of reuse and pond water is given in Table 7-11. The golf course pond has an outfall to tide, and reverse flow into the pond was observed on multiple occasions during high tide conditions.

TABLE 7-11

COMPARSION OF GEOMEAN CHARACTERISTICS OF REUSE AND GOLF COURSE POND WATER USED FOR IRRIGATION

PARAMETER	UNITS	REUSE	REUSE POND OUTFALL	GOLF COURSE POND REMOVAL (%)
pН	s.u.	7.36	7.49	2
Alkalinity	mg/l	99.1	134	35
Conductivity	μmho/cm	1,397	8,789	529
NH ₃ -N	μg/l	11	286	2419
NO _x -N	μg/l	3,263	9	-99
Dissolved Organic N	μg/l	479	950	98
Particulate N	μg/l	150	361	140
Total N	μg/l	4,629	1,882	-59
SRP	μg/l	2,300	137	-94
Dissolved Organic P	μg/l	391	109	-72
Particulate P	μg/l	121	68	-44
Total P	μg/l	3,267	395	-88
Turbidity	NTU	0.3	4.1	1,079
Color	Pt-Co	5	103	2,102
TSS	mg/l	0.3	8.8	2,965
# of Samples		24	13	

Increases in alkalinity and conductivity were observed in the pond water compared with reuse irrigation, presumably due to the periodic influx of alkaline marine inflows. However, substantial reductions in measured concentrations of nitrogen and phosphorus were observed in the pond water from physical and biological removal processes common in wet pond systems. Concentrations of ammonia, dissolved organic nitrogen, and particulate nitrogen increased in the pond compared with reuse, but nitrate (which comprised the majority of nitrogen present) was reduced by 99%, with a reduction in total nitrogen of 59% and an average concentration of 1,882 μ g/l. Substantial concentration reductions were observed for SRP, dissolved organic phosphorus, and particulate phosphorus, with an overall removal of 88% for total phosphorus and an average concentration of 395 μ g/l.

The use of the storage pond provides an opportunity for nutrient removal prior to use as irrigation water. The resulting concentrations of total nitrogen and total phosphorus are similar to concentrations in runoff collected from residential communities outside of Marco Island and substantially reduces the potential impacts to groundwater from over-irrigation and unintended loadings from irrigation overspray. No significant differences were observed during the field monitoring program in characteristics of groundwater seepage collected in seepage meters located adjacent to the golf course, and the use of the storage pond may be largely responsible for the apparent lack of significant groundwater impacts.

Similar to the discussion provided in the previous section, irrigation on the golf course should only be applied as necessary to meet the monthly deficit between rainfall and evapotranspiration. A potential disadvantage of using a storage pond for reuse prior to irrigation is that the incoming flow is received at a relatively constant rate which is unrelated to potential irrigation needs. At the Marco Island golf course, pond water which is not used for irrigation is discharged to tide and becomes a direct loading source. There is currently no level recorder or flow measurement device which documents the amount of water discharged from the pond.

The use of storage ponds to pre-treat reuse irrigation prior to application has been used in other areas of Florida to address reuse impacts, and a similar regional system would be a benefit to Marco Island to reduce existing reuse impacts. However, a surface storage pond would require a multi-acre site which is likely not available on the island. One potential option could be an off-island storage pond, although this would require pumping the reuse water to the off-island pond and back to the island for use.

Golf courses in Florida generally use Bermudagrass due to the slow growth and resistance to repeated use. Recommendations for annual fertilizer requirements for Bermudagrass in South Florida is provided in Table 7-12, based on the FDACS recommendations discussed previously. The annual nitrogen application rate is 5-7 lbs/1000 ft² per year which is slightly greater than the recommendations for general turfgrasses such as St. Augustine.

TABLE 7-12

RECOMMENDED ANNUAL FERTILIZER APPLICATION RATES FOR BERMUDAGRASS IN SOUTH FLORIDA

NUTRIENT	RECOMMENDED APPLICATION RATE ¹ (lbs/1000 ft ² -yr)		
Nitrogen	5-7 (Assume 6)		
Phosphorus	0.5 (as P_2O_5) – if required based on soil test 0.16 (as P)		

1. FDACS. <u>Urban Turf Fertilizer Rule for Home Lawn Fertilization</u>, IFAS Publication #Enh 1089, Date: February 6, 2018.

A comparison of the percentage of nutrients supplied by reuse irrigation and Bermudagrass nutrient requirements is given in Table 7-13. The values provided in this table represent the percentage of annual fertilizer requirements provided by irrigation from the golf course pond at various application rates. Reuse irrigation obtained from the golf course pond provides 12-29% of the annual Bermudagrass nitrogen turfgrass requirements, depending on the weekly irrigation application rate. At the average applied rate of 0.56 inches/week at the golf course, the reuse supplies about 25% of the annual nitrogen requirements; and if fertilizers are applied, then the application rates could be reduced by 25%. Since soil phosphorus availability generally exceeds turfgrass requirements in Florida, any additional phosphorus application will increase loading to groundwater.

TABLE 7-13

PERCENTAGE OF ANNUAL BERMUDAGRASS FERTILIZATION REQUIREMENTS SUPPLIED BY GOLF COURSE REUSE IRRIGATION

NUTRIENT	ANNUAL NUTRIENT REQUIREMENT (%) SUPPLIED BY REUSE BY IRRIGATION RATE (inches/week)				
	0.5	0.75	1	1.25	
Nitrogen	12	17	23	29	

An analysis was conducted to compare current reuse application rates on the golf course with evapotranspiration losses for Bermudagrass. A general hydrologic budget was developed for Bermudagrass located on the Marco Island golf course using the methodology previously described in Section 7.5.1, and the results of this analysis are summarized in Table 7-14. The monthly rainfall and supplemental irrigation of 0.56 in/week on the golf course causes exceedances of monthly evapotranspiration rates during 11 of the 12 months on an average basis, with a deficit of -0.10 inch during April. The surplus annual water depth of 33.22 inches from excess rainfall and reuse irrigation over the 230 acres irrigated on the golf course results in an annual surplus of 637 ac-ft (208 million gallons or 0.57 MGD) which enters groundwater, although at a much lower concentration than areas with direct reuse irrigation.

TABLE 7-14

HYDROLOGIC BUDGET FOR GOLF COURSE BERMUDAGRASS

MONTH	AVERAGE RAINFALL (inches)	IRRIGATION INPUTS (inches)	EVAPOTRANSPIRATION (inches)	DIFFERENCE (inches)
January	2.50	2.24	2.06	2.68
February	1.91	2.24	2.80	1.35
March	2.05	2.24	3.88	0.41
April	2.48	2.24	4.82	-0.10
May	3.38	2.24	5.48	0.14
June	8.36	2.24	5.21	5.39
July	6.60	2.24	5.34	3.50
August	9.16	2.24	5.11	6.29
September	9.92	2.24	4.39	7.77
October	3.21	2.24	3.61	1.84
November	2.02	2.24	2.38	188
December	1.71	2.24	1.88	2.07
TOTAL:	53.3	26.88	46.96	33.22

7.5.6 Summary and Recommendations

In summary, reuse irrigation is currently applied to common areas at rates which are well in excess of the evapotranspiration rates of turfgrasses, resulting in approximately 78% of the applied reuse water leaching past the root zone and entering groundwater. The amount of reuse irrigation applied to common areas, excluding golf courses, which enters groundwater is equal to 12% of the total annual groundwater seepage entering area waterways and, due to the disproportionately higher nitrogen concentrations in reuse, the annual fraction of nitrogen loadings from reuse to seepage inflows is even higher. ERD recommends that alternative disposal options for treated wastewater be evaluated, such as additional off-island customers, which would maintain the revenue stream from sale of reuse.

One method of reducing the nutrient content in reuse water is to use a storage pond where reuse is stored prior to use. ERD recommends that the City conduct an evaluation of this potential load reduction option. Although this option would be expensive, the cost must be compared with the potential load reductions from reuse which appears to be a significant source of waterway loadings.

Reuse irrigation to the golf course comes from an on-site storage pond where physical and biological processes substantially reduce nutrient concentrations and potential groundwater impacts. However, the golf course should modify the current irrigation schedule to only apply irrigation water to meet the evapotranspiration deficit instead of a fixed schedule, and nutrients supplied by reuse should be considered in fertilizer applications.

7.6 Improved Recirculation

7.6.1 Existing Conditions and Issues

An evaluation of the hydraulic function and flushing of the waterways was not part of the work efforts conducted by ERD. However, even without a thorough analysis, it is obvious that many areas have poor to non-existent flushing during tidal events. Both the historical water quality data collected by the City and the field monitoring conducted by ERD indicated higher levels of nutrients and chlorophyll-a in stagnant dead-end canals north and south of San Marco Rd. Differences in water quality and clarity between upstream and downstream portions of canals are also readily apparent on many aerial photographs of the island, with upstream stagnant areas characterized by a darker water column. These stagnant areas have little change in water quality during tidal cycles which allows nutrients to accumulate and fuel algal growth.

There appears to be little argument that enhanced recirculation and flushing would benefit water quality in the canals, particularly in upstream isolated and dead-end areas. According to Jason Tomassetti with the City of Marco Island Public Works Department, 24-inch culverts were installed between isolated canals during the original construction to encourage flushing and water exchange between canals. However, the specific locations and conditions of the culverts are not known, and many or all may have become fully or partially blocked with sediment and debris. A separate project should be undertaken to locate and clean the existing culverts, and the resulting water quality changes should be monitored over a 6- to 12-month period.

If the restored culverts do not provide noticeable water quality improvements, then other options should be considered to improve recirculation. One possible option is to install new culverts between canal sections. The most logical locations would be beneath San Marco Rd. to connect the northern and southern canal systems. Connection of the east and west canals does not appear to be feasible due to the long distances involved and existing development.

7.6.2 Recirculation Options

The most obvious option to improve recirculation in the canals is to install new, replacement, or supplemental culvert connections between areas of good and poor flushing. Locations of potential sites for installation of flushing culverts are indicated on Figure 7-12, with 3 locations for each of the west and east side systems. A potential location for an interconnection at Site 1 on Figure 7-12 is given on Figure 7-13. Both the northern and southern canals are quite stagnant, and an interconnection at the location indicated would allow water to freely exchange between the 2 and possibly introduce cleaner water from tidal sources. Most culverts would need to be installed by horizontal directional drilling (HDD), but if the open lots in the photo are still undeveloped, the culvert could possibly be installed by open cut excavation. Any piping placed in the ground would need to be able to physically support future development.

Figure 7-12. Proposed Area Options for Recirculation Improvements.

Options for an interconnection at Site 2 are shown on Figure 7-14. Multiple locations are available at this site which would satisfy the primary objectives of increasing circulation. Given the dense development, the culvert would need to be installed using horizontal drilling.

Figure 7-13.

Proposed Location for Site 1
Interconnection.

Figure 7-14.

Proposed
Location for
Site 2
Interconnection.

An option for interconnection Site 3 is shown on Figure 7-15, and this site is an important and promising location for interconnection. The southern segment has a relatively direct connection to tidal water, while the northern pathway is more complex, and interconnection of the two would likely be effective.

Figure 7-15.

Proposed Location for Site 3
Interconnection.

Proposed interconnection Sites 4 and 5 are shown on Figure 7-16 and are similar in hydraulics to Site 3. Stagnant canal areas north of San Marco Road would be connected to southern canals which have an almost direct connection to tidal water. Proposed Site 6, shown on Figure 7-17, is also a site which would allow an almost direct tidal connection to tidal for the stagnant canal section.

Before any of these options can be further considered, a hydraulic study must be conducted to model the waterways and determine which combinations of interconnections, if any, would significantly improve water movement in the dead-end canals. The study should address required pipe sizes and installation costs.

Figure 7-16. Proposed Location for

Sites 4 and 5

Figure 7-17. Proposed Location for Site 6 Interconnection.

Another potential option to improve flushing is to use a pumping system to convey water from stagnant areas to mixed areas, or vice versa. If the existing interconnecting culverts could be located, it may be possible to install a pump station in City right-of-way (ROW) or beneath the roadway which intercepts the buried culvert and moves large volumes of water from one side to the other. The feasibility of this option could be evaluated as part of the hydraulic study which could evaluate system options such as pump size, pumping rates, and operational periods.

A preliminary cost estimate for HDD at the locations shown on Figure 7-10 is given in Table 7-15. Separate costs are provided for pipe diameters ranging from 24-60 inches, depending on the size recommended in the hydraulic study. The typical distance between the northern and southern canal segments on Figure 7-10 is 350 ft. A typical cost for HDD is \$45/inch of pipe diameter per foot of length. Estimated installation costs for a single canal interconnection range from \$378,000- 945,000. However, these costs are based on land-based installations. There would be additional costs for isolation piling, dewatering, and other issues related to the water-based site conditions which could easily increase costs by 50% or more. However, grants may be available from the State that would cover all or portions of these costs.

TABLE 7-15
ESTIMATED COSTS FOR HORIZONTAL DIRECTIONAL DRILLING FOR CANAL INTERCONNECTIONS

PIPE SIZE (inches)	ESTIMATED INSTALLATION COST (\$/inch diameter/ft)	PIPE LENGTH (ft)	ESTIMATED COST (\$)
24	45	350	378,000
36	45	350	567,000
48	45	350	756,000
54	45	350	850,500
60	45	350	945,000

7.6.3 Recommendations

Based on the discussion and analysis provided in this section, ERD recommends that the City engage a qualified consultant and conduct a hydraulic study of the Marco Island waterways to evaluate current flushing in the canals and options for improving circulation.

7.7 Landscape Activities

7.7.1 Existing Conditions and Issues

ERD personnel routinely observe instances of improper landscape and lawn maintenance activities which include blowing lawn clippings, leaves, and other vegetation debris onto paved or roadway surfaces, as well as improper application of both granular and liquid fertilizers to impervious surfaces and roadways. When grass clippings and fertilizers are introduced onto impervious surfaces, they become available for mobilization by stormwater runoff during rain events, causing them to be deposited into the nearest waterbody during storm events. These types of lawn maintenance practices are needless and irresponsible activities which have the potential to significantly increase nutrient loadings to Marco Island waterbodies. At best, these activities occur as a result of lack of information and education; while at worst, they represent a disregard for water quality consequences in a misguided attempt to reduce labor time and costs.

During the field monitoring program at Marco Island, ERD observed only a few instances of maintenance personnel discharging grass clippings and vegetation debris onto paved surfaces. The number of instances is certainly less than we have observed in other areas which suggests that Marco Island residents and maintenance personnel are mostly aware of proper landscaping activities. No instances of personnel blowing grass clippings directly onto waterways were observed, but floating grass clippings and vegetation debris, similar to the photos shown on Figure 7-1, were commonly observed within the waterways, suggesting that direct discharges onto waterways do exist. A portion of this vegetation could have been blown by wind or fallen from vegetation directly into the water, but much of the observed vegetation was likely deposited intentionally.

7.7.2 Fertilizer Ordinance

On March 7, 2016, Marco Island enacted Ordinance No. 16-02 titled "Fertilizer Regulations" which regulates application of fertilizer to lawns and turf on the island. The Ordinance was codified in Chapter 18, Article III of the City Code, Sections 18-61 through 18-100. A copy of this Ordinance is included in Appendix I. The adopted Fertilizer Ordinance is based on the FDEP Model Ordinance for Florida-Friendly Fertilizer Use which is a very basic set of guidelines that are common sense to most people.

The Fertilizer Ordinance places restrictions on the timing and amount of fertilizer which can be applied in Marco Island, and a summary of restrictions follows:

- No fertilizer containing nitrogen and phosphorus may be applied during the rainy season from June 1-September 30 or when a heavy rain event is anticipated
- Fertilizers containing phosphorus are prohibited unless soil test shows deficiency. When a deficiency is verified, phosphorus fertilizer may not be applied at rates that exceed 0.25 lbs P₂O₅/1000 ft² per application and not to exceed 0.50 lbs P₂O₅/1000 ft² per year
- Fertilizers applied to turf or landscape plants must contain no less than 50% slow-release nitrogen

- Fertilizers shall not be applied more than 4 times during one calendar year to a single area
- No fertilizer or grass clippings shall be deposited on streets, driveways, or in storm drains
- No more than 4 pounds of nitrogen per 1000 ft² shall be applied to any single area during a calendar year
- Deflector shields must be in place when broadcast spreaders are used next to Fertilizer-Free zones or impervious surfaces; prior to the use of a deflector shield, the person must apply for an e-mail permit indicating the location and type of fertilizer to be used
- No fertilizer can be applied within 10 ft from waterways
- Commercial applicators must complete the 6-hour training program in Florida-Friendly Best Management Practices for Protection of Water Resources by the Green Industries offered through FDEP

<u>Retail Businesses</u>: Retail businesses that sell fertilizer must post a notice provided by Marco Island regarding the ordinance

<u>Landscape Professional</u>: Must be registered with the State and Marco Island. Must complete 6-hour training program to receive the Limited Commercial Fertilizer Applicator Certification (LCFAC) from the State. Certificate is valid for a period of 4 years.

<u>Exemptions</u>: Bona fide farm operations, other properties covered under the Florida Right to Farm Act, compost, athletic fields, and newly planted landscaping

Consequences of Noncompliance:

First violation: up to \$150 fine

Second and subsequent violations: not to exceed \$300 fine

The Marco Island Fertilizer Ordinance is similar in many ways to ordinances adopted by Sarasota County, Pinellas County, and the City of Tampa with one significant exception. Ordinances developed by Pinellas County and Tampa during 2010-2011 include a summer ban on both use and sales of lawn fertilizers rather than a voluntary program. Some municipalities have also banned the sale of fertilizers containing phosphorus altogether. To prevent other Florida communities from following this approach, the Florida Legislature enacted F.S. 576.181 in 2013, granting FDACS the exclusive authority to regulate the sale, composition, formulation, packaging, labeling, and distribution of fertilizer, which prevented local governments from enacting sales bans, although those in effect as of 2011 were grandfathered in.

Without a sales ban during restricted periods, educational signage at the point-of-sale is critically important to make consumers aware of local ordinances and the difference between compliant and non-compliant products. Most residents are probably unaware of the specifics of the Fertilizer Ordinance, if they are aware of it at all, and educational materials at the point of sale are an easy and inexpensive method of reaching the public. Summer-safe fertilizer products containing no nitrogen or phosphorus can be promoted as alternative lawn treatments during the restricted use period.

The first step in the educational process is for the City to seek voluntary assistance from local fertilizer retailers to add educational signage on shelving and to stock only ordinance-compliant products. This could be used as a marketing tool by retailers who could announce that they are capable of assisting citizens in selecting appropriate lawn care products. The City could provide the signage free of charge. Some cities have issued Proclamations or Resolutions designating one month as fertilizer awareness month to bring attention to the issue, and others use shrink wrap signage on City or County vehicles to provide information on issues such as fertilizer use and mosquito control. Public education has a large potential to improve fertilizer use and resulting impacts.

Recommendations

ERD makes the following recommendations regarding the Marco Island Fertilizer Ordinance and sale and use of fertilizers:

- 1. Amend the existing Fertilizer Ordinance to require properties with reuse irrigation to consider the loadings provided in the reuse. The information contained in Table 7-9, or similar tables, can be used to adjust fertilizer applications. This should apply to both citizens and professional landscapers. Educational information can be included in utility bills and notices.
- 2. The City should approach fertilizer retailers on Marco Island concerning educational signage and provide educational materials concerning responsible fertilizer use. Consider using City vehicles to advertise fertilizer issues.
- 3. Increase enforcement of the Fertilizer Ordinance, beginning with warnings and citations for repeat offenses. Professional landscaping companies with multiple violations should lose the ability to work on the Island.

However, in spite of the fertilizer ordinance, the isotope analyses suggest that landscaping activities and fertilizers are currently one of the primary sources of nitrogen entering groundwater. This implies that fertilizers are currently being applied at rates which exceed the uptake capacity of the vegetation. Since the vast majority of lawn maintenance on the island is conducted by professionals, the over-application most likely originates from professionals rather than citizens. The City should provide educational materials and/or seminars to landscape professionals regarding fertilizer use. Reducing fertilizer applications will save costs for fertilizers and reduce loadings to waterways.

7.7.3 <u>Citizen Reporting</u>

The City Fertilizer Ordinance is not specific on the process of reporting and identifying instances of violations of the provisions designed to safeguard water quality. It does not appear that any City department has specific responsibility for enforcing the Ordinance. Many counties have established a reporting center for citizens to report observations of personal activities that threaten water quality. Pollution activities, unless egregious, are not issues which are suitable for reporting to police through the 911 system. Residents could also call the Public Works Department or City Hall, but this requires additional effort to obtain the proper phone number which may discourage some citizens from reporting.

Orange, Seminole, and other Florida Counties have a "311" reporting center, similar to the "911" center, for reporting local non-emergency community incidents such as activities which threaten water quality. Local residents can use this service to anonymously report improper landscaping practices, particularly those involving fertilizer and discharge of vegetation debris into roadways or stormsewer systems. This type of system would be useful in identifying professional landscapers who conduct careless activities that threaten water quality. The City should consider implementing a similar system.

7.7.4 Recommendations

Deliberate discharge of fertilizers, yard wastes, leaves, and other vegetation debris onto paved surfaces, particularly roadways, is a needless practice since it is just as easy to blow fertilizer and yard waste back onto the landscaped surfaces as it is to discharge it onto the street or waterway. Although a Fertilizer Ordinance has been adopted and implemented in Marco Island, there appear to be some homeowners and lawn care professionals who are either unaware or ignore the Ordinance, particularly commercial landscaping companies, and evidence of excess application of nitrogen was observed in the isotope samples. The current Marco Island Ordinance does not appear to impose a significant hardship on landscape companies. When the fertilizer and yard waste is returned into the landscaped areas, it will decompose and provide additional sources of nutrients to the vegetation rather than the receiving waterbody.

In spite of the current Ordinance, instances of improper fertilizer application and discharge of vegetation debris onto paved surfaces still occur, although at a lower rate than observed in other parts of the State. Therefore, ERD recommends that Marco Island and designated agencies make enforcement of the Fertilizer Ordinance a priority and issue citations when violations are observed during routine job-related activities. Professional landscapers with multiple violations or citations should be prohibited from working on the island. The City should consider implementation of a dedicated reporting center for reporting of water quality violations.

7.8 Non-Structural Techniques

A number of non-structural techniques are also available which have the potential to reduce nutrient loadings entering waterbodies. Popular non-structural techniques include street sweeping, regulations which address landscape activities (addressed in Section 7.7), and source reduction programs which attempt to reduce pollutant accumulation within the watershed. These programs have a valid potential for improving the characteristics of stormwater runoff discharged to Marco Island waterways.

Source reduction programs have the potential to provide effective reductions in stormwater concentrations, particularly for nutrients and suspended solids. Source reduction techniques, such as street sweeping and public education, are capable of reducing loadings of pollutants entering receiving waterbodies by reducing pollutant accumulation within the watershed. If properly conducted, source reduction programs can be almost as effective as changes in stormwater regulations for reducing pollutant loadings to lakes. The two most common source reduction techniques are street sweeping and public education which are discussed in the following sections.

7.8.1 Street Sweeping

7.8.1.1 Introduction

Street sweeping is an effective best management practice (BMP) for reducing total suspended solids and associated pollutant wash-off from urban streets. Street sweeping is well suited to an urban environment where little land is available for installation of structural controls. Street sweeping can be extremely effective in commercial business districts, industrial sites, and intensely developed areas in close proximity to receiving waters.

Street sweeping involves the use of machines which basically pick-up contaminants from the street surface and deposit them in a self-contained bin or hopper. Mechanical sweepers are the most commonly used sweeping devices and consist of a series of brooms which rotate at high speeds, forcing debris from the street and gutter into a collection hopper. Water is often sprayed on the surface for dust control during the sweeping process. The effectiveness of mechanical sweepers is a function of a number of factors, including: (1) particle size distribution of accumulated surface contaminants; (2) sweeping frequency; (3) number of passes during each sweeping event; (4) equipment speed; and (5) pavement conditions. Unfortunately, mechanical sweepers perform relatively poorly for collection of particle sizes <100 microns which are commonly associated with total phosphorus loadings in stormwater runoff.

Over the past decade, improvements have been made to street sweeping devices which substantially enhance the performance efficiency. Vacuum-type sweepers, which literally vacuum the roadway surface, have become increasingly more popular, particularly for parking lots and residential roadways. The overall efficiency of vacuum-type sweepers is generally higher than that of mechanical cleaners, especially for particles larger than 3 mm. Estimated efficiencies of mechanical and vacuum-assisted sweepers are summarized in Table 7-16 based upon information provided by Young, et al. (1996). Mechanical sweepers can provide approximately 40% removal of phosphorus in roadway dust and debris, while vacuum-assisted sweepers can provide removals up to 74%. Recent studies in Hamilton County, Ohio indicated a significant reduction in runoff concentrations of nutrients after implementation of a vacuum sweeper program in residential areas.

TABLE 7-16

EFFICIENCIES OF MECHANICAL (BROOM) AND VACUUM-ASSISTED SWEEPERS

CONSTITUENT	MECHANICAL SWEEPER EFFICIENCY (%)	VACUUM-ASSISTED SWEEPER EFFICIENCY (%)
Total Solids	55	93
Total Phosphorus	40	74
Total Nitrogen	42	77
COD	31	63
BOD	43	77
Lead	35	76

SOURCE: Young, et al. (1996)

A USGS-funded study performed by Breault, et al. (2005) conducted a side-by-side comparison of mechanical and vacuum-type sweepers in New Bedford, Massachusetts. A summary of the results of the street sweeper efficiency experiments is given on Table 7-17. The mechanical sweeper obtained weighted removal efficiencies of 31% and 20% in the two duplicate experiments compared with 60-92% using the vacuum sweeper. The study concluded that the vacuum sweeper efficiency was consistently greater than that of the mechanical sweeper, with the vacuum sweeper at least 1.6 times, and as much as 10 times, more efficient that the mechanical sweeper for all particle sizes. However, even though the vacuum sweeper exhibited substantially higher removal efficiencies, particularly for smaller diameter particles often associated with elevated nutrient concentrations, the mechanical sweepers still resulted in measurable removal efficiencies for all particle sizes encountered on roadway surfaces.

The efficiency of street sweepers is highly dependent upon the sweeping interval. To achieve a 30% annual removal of street dirt, the sweeping interval should be less than two times the average interval between storms. Since the average interval between storms in the South Florida area is approximately three days, a sweeping frequency of once every six days is necessary to achieve a 30% removal of street dirt. To achieve a 50% annual removal, sweeping must occur at least once between storm events. In the South Florida area, a 50% removal would require street sweeping to occur approximately once every three days.

Street sweeping activities can be particularly effective during periods of high leaf fall by removing solid leaf material and the associated nutrient loadings from roadside areas where they can easily become transported by stormwater flow. Previous research by ERD has indicated that leaves release large quantities of both nitrogen and phosphorus into surface water within 24-48 hours after becoming saturated in an aquatic environment. Loadings to waterbodies from leaf fall are often the most significant loadings to receiving waters during the fall and winter months.

Capital costs for street sweepers range from approximately \$70,000-150,000, with the lower end of the range associated with mechanical street sweepers and the higher end of the range associated with vacuum-type sweepers. The useful life span is typically 4-8 years, with an operating cost of approximately \$70/hour.

TABLE 7-17

RESULTS OF STREET SWEEPER EFFICIENCY EXPERIMENTS WITH A PELICAN SERIES P MECHANICAL SWEEPER AND A JOHNSTON 605 SERIES VACUUM SWEEPER, BY PARTICLE SIZE (Source: Breault, et al., 2005)

		SWEEPER EFF	ICIENCIES (%)	
PARTICLE SIZE	MECHA	ANICAL	VAC	UUM
SIZE	Experiment 1a	Experiment 1b	Experiment 1a	Experiment 1b
Gravel ¹	38	31	86	94
Coarse Sand ²	40	18	62	93
Fine Sand ³	9	11	38	75
Very Fine Sand ⁴	9	10	31	93
Silt and Clay ⁵	13	13	39	81
Weighted Average:	31	20	60	92

- 1. Gravel: Larger than 2.0 mm
- 2. Coarse Sand: Smaller than 2.0 mm, larger than or equal to 250 μm
- 3. Fine Sand: Smaller than 250 µm, larger than or equal to 125 µm
- 4. Very Fine Sand: Smaller than 125 μm, larger than or equal to 63 μm
- 5. Silt and Clay: Smaller than 63 μm

7.8.1.2 Current City Program

According to the Public Works Department, Marco Island currently conducts limited street sweeping of intersections on Collier Blvd, approximately 8-9 curb miles, once each month. The sweeping is conducted by a local sub-contractor, since the City does not currently own a sweeper. Recently, the City Council approved purchase of a regenerative air sweeper which is a huge improvement from standard brush sweepers used in many cities. Regenerative air sweepers use a strong forced air flow to mobilize fine particles from the pavement surface which are vacuumed up by the sweeper.

The usefulness of a particular sweeper type is determined by the typical roadway section. Standard mechanical brush sweepers require a curb and gutter system for proper operation, while regenerative air and vacuum type sweepers can operate on any style roadway, including roads without defined curb and gutter systems which exist throughout much of Marco Island. The current swale drainage system provides an opportunity for particulate matter entrained by runoff to settle and accumulate prior to entering the stormsewer system. Many of these larger particles would be removed by a mechanical sweeper which could lead some to conclude that street sweeping is not necessary in areas with swale drainage. However, some of the fine particulate matter on roadway surfaces releases nutrients rapidly during rain events, and these soluble nutrients are not significantly removed in the swale system, so a street sweeping program which relies on either regenerative air or vacuum technology could reduce runoff loadings even with the present swale system.

7.8.1.3 Recommendations

ERD concurs with the efforts by the Public Works Department to purchase a City sweeper and implement an independent street sweeping program. Given the type of sweeper purchase proposed, we recommend that the City include as many streets as possible in the sweeping program, not just roads with curb and gutter systems. Although the load reduction is difficult to quantify, the effort should measurably reduce nutrient concentrations in runoff throughout the island.

7.8.2 Public Education

Public education is one of the most important nonpoint source controls which can be used in a watershed. Many residents appear to be unaware of the direct link between watershed activities and the water quality in adjacent waterbodies. The more a resident or business owner understands the relationship between nonpoint source loadings and receiving water quality, the more that person may be willing to implement source controls.

Several national studies have indicated that it is an extremely worthwhile and cost-effective activity to periodically remind property owners of the potential for water quality degradation which can occur due to misapplication of fertilizers and pesticides. Periodic information pamphlets can be distributed by hand or enclosed with water and sewer bills which will reach virtually all residents within the watershed. These educational brochures should emphasize the fact that taxpayer funds are currently being utilized to treat nonpoint source water pollution, and the homeowners have the opportunity to reduce this tax burden by modifying their daily activities. A comprehensive public education program should concentrate, at a minimum, on the following topics:

- 1. Relationship between land use, stormwater runoff, and pollutants
- 2. Functions of stormwater treatment systems
- 3. How to reduce stormwater runoff volume
- 4. Impacts of water fowl and pets on runoff characteristics and surface water quality
- 5. County stormwater program goals and regulations
- 6. Responsible use of fertilizer, pesticides, and herbicides
- 7. Elimination of illicit connections to the stormwater system
- 8. Controlling erosion and turbidity
- 9. Proper operation and maintenance of stormwater systems

The public education program can be implemented in a variety of ways, including homeowner and business seminars, newsletters, performing special projects with local schools (elementary, middle, and high schools), Earth Day celebrations, brochures, and special signage at stormwater treatment construction sites. Many people do not realize that stormsewers eventually drain to area lakes. Many cities and counties in Florida have implemented a signage program which places a small engraved plaque on each stormsewer inlet indicating "Do Not Dump, Drains to Waterway". ERD recommends that Marco Island implement an aggressive public education program which incorporates all of the elements discussed previously.

Anticipated load reductions for implementation of public education programs are difficult to predict and depend highly upon the degree of implementation by the homeowners within the basin. The impacts of public education programs also depend, to a large extent, on the degree to which water quality within the Marco Island waterways is currently being impacted by homeowner activities. Several regional and national studies are currently being performed which will attempt to document the pollutant removal effectiveness of public education programs.

7.8.2.1 Recommendations

Based on the potential significance of public education programs for reducing nutrient loadings to waterbodies, it is recommended that public education programs be initiated for Marco Island residents. This program should include public meetings, literature, and interaction with residents. The City should develop pamphlets and brochures which address issues related to water quality management and provide information on ways to reduce homeowner impacts to waterbodies.

7.8.3 **Stormwater Utility**

Given the central water-based theme of the island, on-going concerns from residents about water quality, and the Impaired status of the waterways, it was somewhat surprising to learn that there is no dedicated funding source or Stormwater Utility to address stormwater and water quality issues. A Stormwater Utility is a funding mechanism imposed on each parcel of land within the Utility boundary, such as a city or county. The Stormwater Utility imposes an annual non-ad valorem fee which is imposed on a parcel basis. Properties that have existing permitted stormwater management facilities generally have their fee reduced or pro-rated. Rates charged by Stormwater utilities throughout Florida are highly variable and are based on the needs of each community. The fees can be used to implement programs and projects to reduce pollutant loadings to waterways.

ERD strongly recommends that the City consider implementing a Stormwater Utility to provide a dedicated and constant funding source for potential water quality improvement projects. Many State-funded grants for water quality improvement projects are available only to communities that have Stormwater Utilities, and implementation of a Utility would provide a wide range of funding opportunities.

7.8.4 Water Quality Monitoring Program

After thoroughly reviewing the historical water quality data and monitoring protocol for the Marco Island waterways, ERD offers the following recommendations to improve the quality and usefulness of the monitoring program. The current monthly monitoring efforts provide an excellent basis for a program that is capable of generating a large amount of useful data, and ERD strongly recommends that the monthly monitoring program continue. However, the program could be enhanced by implementing the following recommendations:

- 1. Conduct vertical profiles of pH, conductivity, temperature, dissolved oxygen, and ORP at each site during each monitoring event. This only adds about 10-15 minutes per site and provides a wealth of information about the health of the waterbodies and potential sources impacting water quality. In many instances, the information gathered through vertical profiles is more useful than lab analyses on collected samples.
- 2. Report all nutrients in units of μg/l (ppb) which generates integer values rather than decimals. This is an excellent common sense tool to improve the interpretative value of the data and avoid decimal errors which often occur when using units of mg/l. ERD converted all historical and current nutrient data to μg/l for purposes of this project.
- 3. The current method of determining total nitrogen concentrations in the water samples is to measure TKN and add NO_x (TN = TKN + NO_x), but the resulting calculation for TN is impacted by the inherent inaccuracies in both the TKN and NO_x methods. TKN is a wastewater parameter which measures the combination of ammonia and organic nitrogen, while providing no specific information about either parameter, and is not well suited for nutrient concentrations commonly observed in surface water samples. Versions of the TKN test generate highly toxic mercury waste. The TKN test is not highly accurate and the current method of determining TN may result in artificially elevated TN values which could indicate an impairment when none is present. TKN provides information on a portion of the TN present that is used to calculate TN, so why measure part of something when the total can be measured directly and more accurately. A more accurate direct method of determining TN is a direct measurement method (SM-22, Method 4500 N.C) that allows simultaneous determination of TN and TP at extremely low detection limits of 3 μg/l for TN and 2 μg/l for TP. ERD has been using this method for over 25 years, and this method is also used by the LakeWatch program.
- 4. Contract with a qualified water quality consultant to conduct annual reviews of collected water quality data and generate general statistics and trend analyses to confirm improving or declining water quality data.

The existing Impaired designation for Marco Island waterways will eventually lead to a TMDL developed for the waterways by FDEP or approval of a 4e Plan which allows the City to control the restoration efforts. Throughout this process the City should maintain an independent evaluation of waterway water quality to provide documentation of improving water quality and to confirm data collected by state agencies and resulting conclusions. ERD strongly recommends that the City continue the existing monthly water quality monitoring program using a qualified environmental consulting firm and laboratory.

7.9 Regulatory Issues

As discussed in Section 2, the waterways surrounding Marco Island are on the FDEP Verified List of Impaired Waters with nitrogen as the causative agent. FDEP reviews available water quality for waterbodies on a 5-year rotating cycle. The data are compared with applicable water quality standards, and waterbodies which fail to meet applicable water quality criteria are listed as Impaired. Once a waterbody is placed on the Impaired Waters list, FDEP must conduct an evaluation of pollutant sources, typically using existing available data. Sources of the impaired parameter are calculated, FDEP assigns percentage load reduction goals to achieve water quality standards, and this evaluation is referred to as the Total Maximum Daily Load (TMDL) which outlines the restoration efforts. Under this program FDEP directs the sources to be reduced and the percentage reductions required.

As an alternative, FDEP has recently implemented an alternative assessment category referred to as 4e, defined to as:

"Waterbody indicates non-attainment of water quality standards and pollution control mechanisms or restoration activities are in progress or planned to address non-attainment of water quality standards, but the Department does not have enough information to fully evaluate whether proposed pollution mechanisms will result in attainment of water quality standards."

This category allows the responsible city or county to develop an independent evaluation of sources and sinks for the Impaired Water and a water quality management plan to achieve load reductions and improve water quality. FDEP reviews water quality every 5 years, and as long as measurable improvements in water quality have been documented, the 4e designation will remain in effect and the city or county will control the improvements rather than FDEP.

This current evaluation contains more than sufficient information regarding loading sources and potential water quality improvement projects to satisfy the requirements for submittal as a 4e designation proposal. This report would be attached to the appropriate paperwork and submitted to FDEP for review. Since the Marco Island waterways have been designated as Impaired, the "do nothing" alternative is no longer an option, and water quality improvement projects must be implemented. The City must simply decide if it or FDEP controls the process.

Recommendations

ERD strongly recommends that the City pursue a 4e assessment category with FDEP. This designation will allow the City to control the restoration process rather than FDEP.

7.10 **Summary of Recommended Management Options**

Nutrient loadings to Marco Island waterways originate from a variety of sources, including sediment nutrient recycling, groundwater seepage, stormwater runoff, reuse irrigation, and bulk precipitation. A discussion of each of these inputs was provided in previous sections.

The largest annual nutrient loading to the waterways originates from internal recycling. Given the large cost for sediment removal and lack of research on effects of alum and other sediment treatments in marine environments, the only feasible management option is to improve water quality within the waterways through other mechanisms, such as stormwater management, and create a well-mixed and aerobic water column in all areas. Sediment nutrient release occurs at a faster rate when lower portions of the water column become anoxic, and this release can be minimized, but not eliminated, by maintaining aerobic conditions throughout the water column in all areas.

Direct stormwater runoff contributes a small portion of the annual loadings to waterways since virtually all runoff is infiltrated into groundwater through the highly permeable soils. Options were discussed for installation of swale blocks to increase runoff retention, and installation of a denitrification bed beneath existing swales which should be implemented during routine maintenance activities. Continuation of the existing system of inlet filter systems is also recommended.

Nutrient loadings from groundwater seepage constitute the second largest source of nitrogen to the waterways. This inflow reflects the combined inputs from direct rainfall, infiltrated runoff, irrigation water, and excess fertilizer applications. An option is presented for a denitrification wall to intercept the seepage and convert soluble nitrogen to a gaseous form. The denitrification option should be implemented to existing seawalls during replacement or repair projects, and incorporated into seawalls for all new development.

Reuse irrigation is currently being applied at a rate which exceeds the ability of turfgrasses to provide uptake of the water and nutrients which results in a large amount of the reuse leaching past the root zone into groundwater. The volume of currently applied reuse irrigation which exceeds the evapotranspiration requirements of the vegetation is 12% of the total annual seepage volume entering waterways and a much larger percentage of the annual mass loading. On an average basis, approximately 78% of the applied reuse irrigation bypasses the root zone and enters groundwater at elevated concentrations. Alternative methods of reuse disposal should be evaluated. The reuse irrigation system should also be inspected routinely to identify areas of overspray or broken irrigation heads. An educational program should be developed to inform residents about nutrient loadings in reuse and potential water quality impacts from excessive use.

Reuse irrigation is also used on the golf course, but the water is stored in a surface pond prior to application. Nutrient reduction occurs within the pond which reduces the nutrient loading to concentrations similar to urban runoff in other parts of Florida which reduces potential groundwater impacts. However, at the irrigation rates indicated by annual reuse summary forms provided to FDEP, the irrigation rates also exceed evapotranspiration requirements, although not to the extent observed by reuse application in other public areas, and irrigation reduction should be considered to meet evapotranspiration requirements. Nutrient loadings from reuse should be considered in fertilizer applications.

Both historical and current data collected by ERD indicate areas of dead-end canals with poor water quality resulting from lack of tidal flushing. These areas are easily identified on aerial photographs. General options are provided for improving recirculation by interconnecting canal sections on the north and south sides of San Marco Rd. Existing culverts, if present, should be located and cleaned, and the results should be monitored. If the culverts do not exist or do not provide sufficient recirculation, then additional culverts should be installed. A hydraulic study is recommended to identify optimum locations for additional interconnections.

Street sweeping is a low-cost alternative for reducing pollutants entrained in runoff. A limited street sweeping program is currently conducted by the City by a private contractor, with sweeping conducted only in intersections and along Collier Blvd. The City has approved purchase of a regenerative air sweeper in the 2022 budget, and the City should use this to increase sweeping to all roadways in Marco Island.

The Fertilizer Ordinance adopted in 2016 appears to contain many of the necessary elements to minimize water quality impacts from fertilizer applications, and fines are proposed for violations of the Ordinance. However, there are currently no personnel assigned to monitor infractions. Enhanced enforcement of this Ordinance is recommended, with repeat offenders losing the right to perform services on the island. The City should develop a voluntary educational program with local fertilizer retailers to inform residents of the fertilizer summer ban.

Public education is a powerful tool to inform residents about the link between watershed activities and water pollution in the waterways. Opportunities, such as pamphlets, billing inserts, billboards, and public meetings, should be used to educate residents.

The City currently has no dedicated funding source for water quality improvement projects other than general revenues. Adoption of a Stormwater Utility is recommended to provide additional funding sources. A Stormwater Utility is often required by FDEP or local governments to qualify for certain funding grants, and the cost of the Utility could easily be recovered several times over through these grants.

Marco Island waterways have been designated as Impaired by FDEP, and implementation of a TMDL will be initiated within the next 5-10 years. However, FDEP has developed an alternative assessment category (designated as 4e) which allows the responsible entity to conduct an independent evaluation of nutrient sources and management options. ERD recommends that the City pursue this designation to maintain control of the restoration process.

The current monthly water quality monitoring program in the Marco Island waterways generates a large amount of useful data and should be continued. Water quality data will become even more important in the future as water quality improvement projects are initiated. Recommendations are provided for enhancing the existing program.

Overall, a large number of factors impact water quality in Marco Island waterways, and groundwater seepage is a significant loading source. The two most significant nitrogen loadings to groundwater are reuse irrigation and over-fertilization. Reductions in fertilizer loadings can be achieved through education of both citizens and professionals. This is a low-cost activity for the City which could have a large return in reducing loadings. Reuse impacts can be reduced by reducing the current application rates and finding alternative customers or disposal methods which is also a low-cost option. Emphasis on reuse and fertilizers could provide measurable water quality improvements at low costs.

A summary of recommended water quality management options for Marco Island is given in Table 7-18. It is recommended that the management options be implemented as funding sources and opportunities become available.

TABLE 7-18

RECOMMENDED MANAGEMENT OPTIONS FOR MARCO ISLAND

ISSUE	RECOMMENDATION	COST (\$)
Internal Sediment Nutrient Recycling	Sediment removal is prohibitively expensive; most feasible option is to reduce the rate of nutrient release by improving water quality by managing other sources to maintain aerobic conditions in waterways	189,820,000
	a. Install shallow swale blocks in swales to increase retention of runoff	\$300/swale block
Stormwater	b. Install denitrification beds beneath existing swales during maintenance or regrading projects.	8,400/100 ft for media
Management	c. Continue current inlet filter system to assist in removing solids and debris from waterways	Included in current program
	d. Consider stormwater management requirements for single-family homes such as rain gardens	Low
Seepage Management	Install denitrification beds adjacent to seawalls during repair or replacement; add to new seawalls during construction	27,000 per 100 ft of seawall
	a. Evaluate alternative methods for reuse disposal which do not increase loadings to groundwater or surface water	
Reuse Irrigation	b. Conduct routine inspection and repair of the reuse irrigation system to prevent areas of overspray	Unknown
	c. Provide an educational program to inform residents about nutrients contained in reuse irrigation and potential water quality impacts	
C If C	a. Evaluate potential reduction in irrigation rates	I I 1 /I
Golf Course	b. Reduce fertilizer applications to account for nutrients in irrigation	Unknown/Low
	a. Locate and clean existing interconnecting culverts, if present	
Recirculation	b. Conduct a hydraulic study to identify optimum areas for interconnecting culverts to increase recirculation	Unknown/High
	c. Install additional culverts, as necessary	
Street Sweeping	City to purchase regenerative air sweeper in 2022; increase sweeping to all City streets.	Low
	a. Assist retailers with educational signage regarding summer season ban	
Fertilizer Ordinance	b. Increase enforcement and revoke license from repeat offenders	Low
	c. Modify ordinance to require consideration of nutrients in reuse	
Public Education	a. Conduct public education program to inform residents of link between personal activities and water pollution	Low
Tublic Education	b. Conduct a dedicated educational program regarding responsible fertilizer use.	Low
Stormwater Utility	Adopt a Stormwater Utility to provide a dedicated funding source for water quality improvement projects	Unknown/Low
Regulatory Issues	The City should submit documentation for a 4e designation which would allow the City to control the process rather than FDEP	Low
Water Quality Monitoring	 a. The City should continue the current monthly monitoring program to provide documentation on water quality improvements; improvements are recommended to enhance the existing program b. Contract with a qualified water quality consultant to conduct annual reviews of data 	Low
8	and trends and provide guidance on implementation of water quality improvement projects	

SECTION 8

REFERENCES

- Aravena, R. and Robertson, W.D. (1998). "Use of Multiple Isotope Tracers to Evaluate Denitrification in Ground Water: Study of Nitrate from a Large-flux Septic System Plume." *Ground Water 36*: 975–982.
- APHA, AWWA, and WEF. (2012). *Standard Methods for the Examination of Water and Wastewater*, 22nd Edition.
- Belanger, T.V., and Montgomery, M.E. (1992). "Seepage Meter Errors." *Limnology and Oceanography 37:* 1787-1795.
- Breault, R.F.; Smith, K.R.; and Sorenson, J.R. (2005). "Residential Street-Dirt Accumulation Rates and Chemical Composition, and Removal Efficiencies by Mechanical- and Vacuum-Type Sweepers, New Bedford, Massachusetts, 2003-04." Scientific Investigations Report 2005-5184 (U.S. Department of the Interior/USGS).
- Bovnton, W.R.; Garber, J.H.; Summers, R.; and Kemp, W.M. (1995). "Inputs, Transformations, and Transport of Nitrogen and Phosphorus in Chesapeake Bay and Selected Tributaries." *Estuaries 18*: 285-314.
- Carlson, R.E. (1977). "A Trophic State Index for Lakes." *Limnology and Oceanography 22:* 361-369.
- Casciotti, K.L.; Sigman, D.M.; Galanter Hastings, M.; Bohlke, J.K.; and Hilkert, A. (2002). "Measurement of the Oxygen Isotopic Composition of Nitrate in Seawater and Freshwater Using the Denitrifier Method." *Anal. Chem.* 74: 4905–4912.
- Cherkauer, D.A., and McBride, M.S. (1988). "A Remotely Operated Seepage Meter for Use in Large Lakes and Rivers." *Ground Water 26*: 165-171.
- Coplen, T.B. (1996). "New Guidelines for Reporting Stable Hydrogen, Carbon, and Oxygen Isotope-ratio Data." *Geochimica et Cosmochimica Acta 60*: 3359-3360.
- Dillon, P.J., and Rigler, F.H. (1974). "The Phosphorus-Chlorophyll Relationship in Lakes." *Limnol. Oceanogra.*, Vol. 19, pp. 767-773.
- Environmental Research & Design, Inc. (ERD) (2009). "Runoff Characteristics of Natural Vegetation Communities in Florida." Prepared for the Florida Department of Environmental Protection Contract No. SO108.

- Environmental Research & Design, Inc. (ERD). (January 2013). "Lake Killarney Hydrologic/Nutrient Budget Evaluation." Final Report for the City of Winter Park, FL and Orange County, FL.
- Erickson, D.R. (1981). "The Hydrology of Williams Lake, Minnesota, with Special Emphasis on Quantification of Littoral Groundwater Contributions Using Seepage Meters and Wells." Master's Thesis, University of Minnesota, 153 pp.
- FDACS. <u>Urban Turf Fertilizer Rule for Home Lawn Fertilization</u>. IFAS Publication #Enh 1089, February 6, 2018.
- Florida Department of Environmental Protection (FDEP). (1996). "Eco Summary Trout Lake Near Eustis, Lake County." Report prepared October 1996.
- Florida Department of Environmental Protection (FDEP). (2006). Map prepared 4/4/06 by the Bureau of Watershed Management, Division of Water Resource Management. Revised 8/1/06.
- Fulton, R.S., III. (1995a). "External Nutrient Budget and Trophic State Modeling for Lakes in the Upper Ocklawaha River Basin." St. Johns River Water Management District Technical Publication SJ95-6.
- Fulton, R.S., III. (1995b). "SWIM Plan for the Upper Ocklawaha River Basin." St. Johns River Water Management District.
- Fulton, R.S., III; Schluter, C.; Keller, T.A.; Nagrid, S.; Godwin, W.; Smith, D.; Clapp, D.; Karama, A.; and Richmond, J. (2003). "Interim Pollutant Load Reduction Goals for Seven Major Lakes in the Upper Ocklawaha River Basin." (Draft) St. Johns River Water Management District.
- Fukada, T.; Hiscock, K.M.; Dennis, P.F.; and Grischek, T. (2003). "A Dual Isotope Approach to Identify Denitrification in Ground Water at a River Bank Infiltration Site." *Water Res.* 37: 3070–3078.
- Harper, H.H. (1990). "Long-Term Performance Evaluation of the Alum Stormwater Treatment System at Lake Ella." Final Report to the Florida Department of Environmental Regulation for Project No. WM339.
- Harper, H.H., and Baker, D.M. (2007). "Evaluation of Current Stormwater Design Criteria within the State of Florida –Final Report." Prepared for the Florida Department of Environmental Protection Contract No. SO108.
- Huang, X., and Smith, D.R. (2015). "Lake Apopka and the Upper Ocklawaha River Minimum Flows and Levels Hydrologic Assessment Method Report" (Draft Report).
- Jones, Frank E. (1992) Evaporation of Water. Chelsea, MI: Lewis Publishers, Inc.

- Kendall, C. (1998). "Tracing Nitrogen Sources and Cycling in Catchments." *Isotope Tracers in Catchment Hydrology*, Edited by Kendall, C., and McDonnell, J.J. Amsterdam: Elsevier Science B.V., 839 pp.
- Kendall, C.; Silva, S.R.; Chang, C.C.Y.; Burns, D.A.; Campbell, D.H.; and Shanley, J.B. (1996). Use of the δ^{18} O and δ^{15} N of Nitrate to Determine Sources of Nitrate in Early Spring Runoff in Forested Catchments. In *Proceedings of the International Atomic Energy Agency, Symposium on Isotopes in Water Resources Management.* Vienna, Austria, March 20-24, 1995, v. 1, p. 167-176.
- Lee, D.R. (1977). "A Device for Measuring Seepage Flux in Lakes and Estuaries." Limnology and Oceanography 22: 140-147.
- Mayer, B.; Boyer, E.W.; Goodale, C.; Jaworski, N.A.; Van Breemen, N.; Howarth, R.W.; Seitzinger, S.; Billen, G.; Lajtha, K.; Nadelhoffer, K.; Van Dam, D.; Hetling, L.J.; Nosal, M.; and Paustian, K. (2001). "Sources of Nitrate in Rivers Draining Sixteen Watersheds in the Northeastern U.S.: Isotopic Constraints." *Biogeochemistry* 57/58: 171-197.
- McQueen, D.J., and Lean, D.R.S. (1987). "Influence of Water Temperature and Nitrogen to Phosphorus Ratios on the Dominance of Blue-Green Algae in Lake St. George, Ontario." *Can. J. Fish. Aquat. Sci.* 44: 598-604.
- Michard, J.; Aleya, L.; and Verneaux, J. (1996). "Mass Occurrence of the *Cyanobacteria Microcystis aeruginosa* in the Hypereutrophic Villerest Reservoir (Roanne, France): Usefulness of the Biyearly Examination of N/P (Nitrogen/Phosphorus) and P/C (Protein/Carbohydrate) Couplings." *Arch. Hydrobiol. 135*: 337-359.
- Miller, A.C., and Decell, J.L. (1984). "Use of the White Amur for Aquatic Plant Management." *Instruction Report A-84-1*, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Peterson, G.W., and Corey, R.B. (1966). "A Modified Chang and Jackson Procedure for Routine Fractionation of Inorganic Soil Phosphates." *Soil Sci. Soc. Am. Proc. 30*, pp. 563-565.
- Redfield, A.C. (1958). "The Biological Control of Chemical Factors in the Environment." *American Scientist*.
- Révész, K. and Casciotti, K. (2007). "Determination of the $\delta(^{15}\text{N}/^{14}\text{N})$ and $\delta(^{18}\text{O}/^{16}\text{O})$ of Nitrate in Water: RSIL Lab Code 2900." In Chapter C17 of *Methods of the Reston Stable Isotope Laboratory: Reston, Virginia*, Edited by Révész, Kinga, and Coplen, Tyler B. U.S. Geological Survey, Techniques and Methods, book 10, sec. C, chap. 17, 24 p.
- Schindler, D.W. (1977). "The Evolution of Phosphorus Limitation in Lakes." *Science 195*: 260-262.

- Sigman, D.M.; Casciotti, K.L.; Andreani, M.; Barford, C.; Galanter, M.; and Bohlke, J.K. (2001). "A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater." *Anal. Chem.* 73: 4145–4153.
- Smith, V.H. (1983). "Low Nitrogen to Phosphorus Favor Dominance by Blue-Green Algae in Lake Phytoplankton." *Science* 225: 669-671.
- Sutton, D.L., and Vandiver, V.V., Jr. (1986). "Grass Carp: A Fish for Biological Management of Hydrilla and Other Aquatic Weeds in Florida." *Bulletin No. 867*, Institute of Food and Agricultural Sciences, University of Florida, Gainesville.
- Tonno, I. (2004). Abstract: "The Impact of Nitrogen and Phosphorus Concentration and N/P Ratio on Cyanobacteria Dominance and N₂ Fixation in Some Estonian Lakes." Institute of Zoology and Hydrobiology, University of Tartu, Estonia.
- Wiley, M.J.; Tazik, P.P.; Sobaski, S.T.; and Gorden, R.W. (1984). "Biological Control of Aquatic Macrophytes by Herbivorous Carp: Part III Stocking Recommendations for Herbivorous Carp and Description of the Illinois Herbivorous Fish Simulation System." *Aquatic Biology Technical Report 1984(12)*, Illinois Natural History Survey, Champaign, IL.
- U.S. EPA. (1981). *Procedures for Handling and Chemical Analysis of Sediments and Water Samples*. EPA/Corps of Engineers, EPA/CE-81-1.
- U.S. EPA. (1983). Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020.
- U.S. EPA. (1990). Test Methods for Evaluating Solid Wastes, Physical-Chemical Methods, 3rd Ed. EPA-SW-846.
- Vollenweider, R.A. (1968). Water Management Research." OECD Paris. DAS/CSI/68.27. Mimeo. 183 pp.
- Vollenweider, R.A. (1968). "The Scientific Basis of Lake and Stream Eutrophication, with Particular Reference to Phosphorus and Nitrogen as Eutrophication Factors." Technical Report DAS/DSI/68.27, Organization for Economic Cooperation and Development, Paris, France.
- Vollenweider, R.A. (1976). "Advances in Defining Critical Loading Levels for Phosphorus in Lake Eutrophication." *Memorie dell' Istituto Italiano di Idrobiologia. 33: 53-83*.
- Vollenweider, R.A., and Dillon, P.J. (1974). "The Application of the Phosphorus-Loading Concept to Eutrophication Research." National Research Council, Canada, *Tech. Report 13690*.
- Wassenaar, L.I. (1995). "Evaluation of the Origin and Fate of Nitrate in the Abbotsford Aquifer Using the Isotopes of ¹⁵N and ¹⁸O in NO₃." *Applied Geochemistry, 10:* 391-405.

- Young, G.K.; Stein, S.; Cole, P; Kammer, T; Graziano, F; and Bank, F. (1996). "Evaluation and Management of Highway Runoff Water Quality." FHWA-PD-96-032. Federal Highway Administration, Office of Environment and Planning.
- Yousef, Y.A.; McLellon, W.M.; and Zebuth, H.H. (1980). "Changes in Phosphorus Concentrations Due to Mixing by Motorboats in Shallow Lakes." *Water Research 14*, 841-852.

APPENDICES

APPENDIX A

HISTORICAL WATER QUALITY DATA FOR MARCO ISLAND AND OFF-SHORE WATERBODIES

- A-1: Historical Water Quality Data for Marco Island Monitoring Sites
 - A-2: Mean Annual Values for Marco Island Monitoring Sites
 - A-3: Temporal Plots and Regression Analyses for Marco Island Historical Monitoring Data
- A-4: Box and Whisker Plots for Historical Marco Island Water Quality Data by Site
 - A-5: Historical Water Quality Data for Off-Shore Waterbodies
- B-6: Characteristics of Reuse Irrigation Produced by Marco Island

A-1: Historical Water Quality Data for Marco Island Monitoring	<u> Sites</u>

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Station ID	Sample Date	Sample Depth	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Diss. O ₂ (% satn.)	Cond. (µumho/cm)	Salinity (ppt)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)
Barfield Bridge	2/30/02									290						-
Barfield Bridge	7/31/07									06						က
Barfield Bridge	9/25/07									350						18
Barfield Bridge	11/27/07									570						7
Barfield Bridge	1/29/08									120						
Barfield Bridge	1/30/08															-
Barfield Bridge	3/11/08									330						6
Barfield Bridge	5/14/08									270						-
Barfield Bridge	7/22/08									610						3
Barfield Bridge	9/23/08									640						178
Barfield Bridge	12/9/08									100						က
Barfield Bridge	2/10/09									282						2
Barfield Bridge	4/28/09									219						-
Barfield Bridge	6/16/09									236						-
Barfield Bridge	8/26/09									119						19
Barfield Bridge	10/26/09									338						-
Barfield Bridge	12/21/09									385						-
Barfield Bridge	2/23/10									220						-
Barfield Bridge	4/20/10									69						2
Barfield Bridge	6/22/10									88						100
Barfield Bridge	9/1/10									724						-
Barfield Bridge	11/16/10									59						9
Barfield Bridge	1/25/11									454						7
Barfield Bridge	3/22/11									299						-
Barfield Bridge	5/17/11									313						4
Barfield Bridge	7/27/11															-
Barfield Bridge	9/27/11									434						19
Barfield Bridge	12/28/11									524						1
Barfield Bridge	4/24/12									478						-
Barfield Bridge	6/26/12									316						10
Barfield Bridge	8/21/12									535						20
Barfield Bridge	10/23/12									246						က
Barfield Bridge	12/26/12									368						10
Barfield Bridge	4/23/13									229						13
Barfield Bridge	6/19/13									284						250
Barfield Bridge	8/27/13									223						20
Barfield Bridge	10/29/13									51						86
Barfield Bridge	1/21/14									149						72
Barfield Bridge	3/25/14									116						420
Barfield Bridge	5/27/14									588						2
Barfield Bridge	7/29/14									529						10
Barfield Bridge	9/23/14									288						10
Barfield Bridge	1/27/15	s	7.63	19.0	7.1	94	51,957	34.3	23	230	253	32	3.2		1.0	10
Barfield Bridge	5/12/15	S	7.87	27.8	5.8	06	52,227	34.3	23	197	220	23	2.9		1.5	20
Barfield Bridge	8/25/15	S	7.90	31.7	5.3	87	51,327	33.5	26	627	653	53	3.7		1.6	245
Barfield Bridge	11/19/15	S	7.90	26.3	5.7	86	51,412	33.8	27	216	243	25	3.1		2.9	10
Barfield Bridge	2/1/16	S	7.79	18.9	7.1	91	44,135	28.4	35	227	262				2.2	
Barfield Bridge	5/10/16	S	7.73	25.4	5.8	85	52,423	34.5							1.9	
Barfield Bridge	8/11/16	S	7.96	29.7	6.1	94	45,232	29.2	24	689	713				1.4	
Rarfield Bridge	11/0/16	Ø	7.91	24.0	7.1	103	53.973	35.7								

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

	Date	Depth	(s.u.)	- ပွ	(mg/L)	(% satn.)	(mo/oqunn)	(ppt)	(hg/L)	(hg/L)	(µg/L)	(µg/L)	(mg/m ₃)	(NTU)	Depth (m)	(cfu/100 mL)
Barfield Bridge	2/21/17	S	7.90	24.3	8.9	66	52,864	34.9	2	546	548	20	3.5		1.8	10
Barfield Bridge	2/21/17	В	7.92	24.2	6.8	66	52,875	34.9							1.8	
Barfield Bridge	5/18/17	S	7.88	28.1	5.4	85	54,668	36.2	2	84	86	7	1.0		1.3	-
Barfield Bridge	5/18/17	В	7.85	28.0	4.9	77	55,060	36.5	2	909	809	33	5.8		1.3	
Barfield Bridge	8/16/17	S	8.05	32.6	5.8	93	46,480	30.0	2	397	399	26	3.2		2.0	
Barfield Bridge	8/16/17	В	8.01	32.8	4.2	89	48,869	31.7								
Barfield Bridge	11/13/17	S	7.70	25.5	6.1	89	50,815	33.3	2	989	638	¥	2.9		2.1	10
Barfield Bridge	11/13/17	В	7.79	25.1	6.1	88	51,431	33.8								
Barfield Bridge	2/8/18	S	7.80	22.2	6.9	96	52,714	34.8		177		10	3.4		1.6	10
Barfield Bridge	2/8/18	В	7.87	22.3	6.3	88	53,035	35.0								
Barfield Bridge	5/21/18	S	7.80	26.2	5.2	77	51,126	33.5	295	674	696	75	4.3		1.9	145
Barfield Bridge	5/21/18	В	7.85	26.0	5.0	75	53,139	35.0								
Barfield Bridge	8/16/18	S	8.03	30.8	6.7	107	52,752	34.6	7	652	663	28	5.4		1.6	74
Barfield Bridge	8/16/18	В	8.03	30.8	6.7	108	52,822	34.7								
Barfield Bridge	11/15/18	S	7.84	26.4	5.7	84	49,847	32.6	29	675	704	72	4.6		1.5	663
Barfield Bridge	2/26/19	S	7.68	25.1	6.2	91	50,953	33.4	11	230	241	71	6.4		1.3	10
Barfield Bridge	2/26/19	В	7.73	25.4	5.7	84	51,843	34.1								
Barfield Bridge	5/13/19	S	7.79	29.8	6.1	97	52,674	34.6	11	815	826	70	7.2		1.1	10
Barfield Bridge	5/13/19	В	7.80	29.8	6.1	96	52,724	34.6								
Barfield Bridge	8/7/19	တ	7.91	30.3	6.1	92	47,246	30.6	11	089	691	62	3.3		1.7	10
Barfield Bridge	8/7/19	В	7.96	29.8	5.1	80	52,099	34.2								
Barfield Bridge	10/23/19	S	7.82	29.9	9.9	105	51,623	33.8							1.2	
Barfield Bridge	10/23/19	В	7.84	29.9	6.7	106	51,638	33.8								
Barfield Bridge	11/4/19	တ	7.83	28.8	6.1	94	50,941	33.3	7	716	727	98	8.0	3.9	1.3	20
Barfield Bridge	11/4/19	В	7.84	28.4	5.4	84	51,571	33.8								
Barfield Bridge	12/18/19	S	8.01	24.0	6.5	92	52,452	34.6	11	526	537	80	8.4	10.0	1.1	74
Barfield Bridge	1/15/20	S	7.76	22.9	6.3	89	51,952	34.2	7	674	685	51	4.0	5.5	1.0	10
Barfield Bridge	1/15/20	В	7.79	22.9	6.2	88	51,978	34.2								
Barfield Bridge	2/4/20	S	7.74	20.4	9.9	88	50,221	33.0	19	688	707	31	2.5	4.7	1.6	10
Barfield Bridge	2/4/20	В	7.85	19.2	7.1	94	50,876	33.5								
Barfield Bridge	4/14/20	S	7.90	28.6	6.4	102	55,757	36.9	7	280	591	46	4.0	5.7	1.3	10
Barfield Bridge	4/14/20	Ф	7.90	28.6	6.3	100	55,821	37.0								
Barfield Bridge	5/14/20	S	7.95	25.3	6.2	92	55,081	36.5	33	460	493	88	4.0	7.2	- -	10
Barfield Bridge	5/14/20	В	7.99	25.3	6.2	92	55,099	36.5								
Barfield Bridge	6/15/20	S	7.96	30.3	5.8	93	52,556	34.5	11	647	658	36	1.7	3.9	1.4	10
Barfield Bridge	6/15/20	В	7.96	29.6	4.8	92	53,701	35.3								
Barfield Bridge	7/28/20	S	7.82	30.1	5.2	83	50,891	33.2	7	631	642	51	4.6	3.6	1.7	10
Barfield Bridge	8/25/20	S	7.90	30.7	5.9	92	50,664	33.1	-	635	646	22	2.9	2.8	1.5	10
Barfield Bridge	8/25/20	В	7.91	30.5	5.8	92	50,961	33.3								
Barfield Bridge	9/23/20	S	7.92	28.5	0.9	91	47,026	30.5	-	685	969	22	3.3	1.5	1.9	10
Barfield Bridge	10/22/20	S									350	5	4.0			20
Barfield Bridge	11/23/20	S	8.10	24.0	4.8	29	51,830	34.1	21	340	360	5	3.6	1.2	1.6	10
Barfield Bridge	11/23/20	В									360	5	3.6			
Barfield Bridge	12/10/20	တ	8.03	18.7	5.7	75	49,626	32.6	14	200	510	6	10.0	4.1	2	10

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

5/3007 S 7/3107 S 1/12008 S 1/12008 S 1/12008 S 1/12008 S 1/12008 S 1/12009 S 1/12010 S 1/12010 S 1/12010 S 1/12010 S 1/12010 S 1/12011 S 1/12012 S 1/12011 </th <th>Station ID</th> <th>Sample Date</th> <th>Sample Depth</th> <th>pH (s.u.)</th> <th>Temp. (°C)</th> <th>Diss. O₂ (mg/L)</th> <th>Diss. O₂ (% satn.)</th> <th>Cond. (µumho/cm)</th> <th>Salinity (ppt)</th> <th>NOx (µg/L)</th> <th>TKN (µg/L)</th> <th>Total N (µg/L)</th> <th>Total P (µg/L)</th> <th>Chyl-a (mg/m³)</th> <th>Turbidity (NTU)</th> <th>Secchi Depth (m)</th> <th>Entero (cfu/100 mL)</th>	Station ID	Sample Date	Sample Depth	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Diss. O ₂ (% satn.)	Cond. (µumho/cm)	Salinity (ppt)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)
1,12,12,147 S S S S S S S S S	Collier Bridge	2/30/02	S								1,030						~
142,000 S S S S S S S S S	Collier Bridge	7/31/07	S								330						16
1127001 S S S S S S S S S	Collier Bridge	9/25/07	Ø								490						26
170006 S S S S S S S S S	Collier Bridge	11/27/07	S								089						8
1,10,100 S S S S S S S S S	Collier Bridge	1/29/08	S								220						
1,11,100 S S S S S S S S S	Collier Bridge	1/30/08	တ														-
57,000 5 5 5 5 5 5 5 5 5	Collier Bridge	3/11/08	Ø								480						ဇ
77,200 5 77,00	Collier Bridge	5/14/08	Ø								280						_
1,000,000 S S S S S S S S S	Collier Bridge	7/22/08	Ø								740						-
17,0000 S S S S S S S S S	Collier Bridge	9/23/08	တ								750						140
1,2000 S S S S S S S S S	Collier Bridge	12/9/08	S								320						_
1,10,2,000 5 1,10	Collier Bridge	2/10/09	တ (387						- 8
Figure F	Collier Bridge	4/28/09	ဟ								749						59
National State	Collier Bridge	6/16/09	Ø								799						-
102/06/09 S 102/06/09	Collier Bridge	8/26/09	တ								243						-
1727109 S	Collier Bridge	10/26/09	တ								92						-
1229/10 S S S S S S S S S	Collier Bridge	12/21/09	S								240						7
Mathematical Mat	Collier Bridge	2/23/10	S								230						4
1,126/11 S 1,110,110 S	Collier Bridge	4/20/10	Ø								202						-
11/16/10 S 11/1	Collier Bridge	6/22/10	Ø								06						17
175/16/10 S S S S S S S S S	Collier Bridge	9/1/10	တ								797						-
1/25/11 S	Collier Bridge	11/16/10	S								59						-
972711 \$ \$ 313 \$ 489 \$	Collier Bridge	1/25/11	တ								477						-
STATION S	Collier Bridge	3/22/11	တ								313						-
9727111 S 1228111 S 442410 S 442410 S 442410 S 442410 S 6428112 S 1022412 S 1424013 S 142413 S 142414 S 142413 S 142413 S 142413 S 142414 S 142414 S 142413 S 142413 S 142414 S	Collier Bridge	5/17/11	တ								489						107
1928/11 S	Collier Bridge	7/27/11	S														~
1226112 S 4724121 S 4724121 S 4724112 S 4724112 S 4724112 S 487 A	Collier Bridge	9/27/11	တ								434						18
6/26/12 S 4/24/12 S S 4/24/12 S	Collier Bridge	12/28/11	S								266						2
0.726/12 S S S S S S S S S	Collier Bridge	4/24/12	တ								286						-
8/2/1/2 S 4/87 4/87 10/28/1/2 S 4/83/1 4/87 8/87 <t< td=""><td>Collier Bridge</td><td>6/26/12</td><td>Ø</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>343</td><td></td><td></td><td></td><td></td><td></td><td>7</td></t<>	Collier Bridge	6/26/12	Ø								343						7
1002312 S 306 306 830 </td <td>Collier Bridge</td> <td>8/21/12</td> <td>Ø</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>487</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>370</td>	Collier Bridge	8/21/12	Ø								487						370
1/2/26/12 \$ 483 483 8 483 8 8 4483 8 8 4483 8	Collier Bridge	10/23/12	Ø								306						10
4/23/13 S 604 </td <td>Collier Bridge</td> <td>12/26/12</td> <td>S</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>483</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>14</td>	Collier Bridge	12/26/12	S								483						14
6/19/13 S 6/19/13 S 549 549 6/19/13 S 8 </td <td>Collier Bridge</td> <td>4/23/13</td> <td>Ø</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>604</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>39</td>	Collier Bridge	4/23/13	Ø								604						39
8/27/13 S 1029/13 S 1029/13 S 11029/13 S 11029/13 S 11029/14 S 5/27/14 S 5/27/14 S 5/27/14 S 5/27/14 S 5/27/14 S 5/27/14 S 6/27/14 S 1/27/15 S S 7/21/16 S <td>Collier Bridge</td> <td>6/19/13</td> <td>တ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>549</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>009</td>	Collier Bridge	6/19/13	တ								549						009
1029/13 S 10299/13 S 237 803 80	Collier Bridge	8/27/13	Ø								292						81
1/2/1/4 S	Collier Bridge	10/29/13	S								237						260
3/22/14 S 151 152 </td <td>Collier Bridge</td> <td>1/21/14</td> <td>ဟ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>303</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>128</td>	Collier Bridge	1/21/14	ဟ								303						128
5/2/1/4 S 1/29/14 S 435 8 6.2 83 51,370 33.8 28 105 133 28 1.5 0.9 9/29/14 S 7.71 20.2 6.2 83 51,370 33.8 28 1.5 0.9 0.9 1/27/15 S 7.82 2.88 4.7 74 52,506 34.5 19 51 70 26 3.0 0.9 10	Collier Bridge	3/25/14	တ ၊								151						370
7/29/14 S 7/21/16 S 7/29/14 S S 7/29/14 S S 7/29/14 S	Collier Bridge	5/27/14	ဟ								435						4
9/2/2/14 S 7.71 20.2 6.2 83 51,370 33.8 28 420 133 28 1.5 0.9 1/2/1/5 S 7.83 28.8 4.7 74 52,506 34.5 19 51 70 26 3.0 9 5/1/1/5 S 7.83 32.5 4.8 79 49,176 31.9 44 346 390 49 8.2 2.4 1/1/19/15 S 7.74 27.1 4.5 68 48,401 31.5 68 348 416 25 2.1 2/1/16 S 7.64 19.7 6.3 80 41,545 26.6 180 331 511 2 1.5 5/10/16 S 7.74 26.3 7.8 51,537 33.8 20 528 1.5 1.5 4/1/16 S 7.87 31.1 4.7 7.3 47,213 30.5 8 520 528 </td <td>Collier Bridge</td> <td>7/29/14</td> <td>တ ဖ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>288</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10</td>	Collier Bridge	7/29/14	တ ဖ								288						10
1/2/1/5 S 7.71 20.2 6.2 8.3 51,370 33.8 2.8 105 133 2.8 1.5 0.9 1/2/1/5 S 7.82 28.8 4.7 74 52,506 34.5 19 51 70 26 3.0 1/19/1/5 S 7.74 27.1 4.5 68 48,401 31.5 68 348 416 25 2.1 2/1/1/6 S 7.74 26.3 5.3 78 51,537 33.8 20 528 528 528 528 5/10/1/6 S 7.74 26.3 5.3 78 51,537 33.8 20 528 528 528 528 6/10/1/6 S 7.87 31.1 4.7 7.3 47,213 30.5 8 520 528 528 528 528 7/10/1/6 S 7.87 31.1 4.7 7.3 47,213 30.5 8 520 528 528 520 528 7/10/1/6 S 7.87 31.1 4.7 7.3 47,213 30.5 8 520 528 520 528 7/10/1/6 S 7.87 31.1 4.7 7.3 47,213 30.5 8 520 528 520 528 7/10/1/6 S 7.87 31.1 4.7 7.3 4.72 7.3	Collier Bridge	9/23/14	S								420						10
\$1/2/15 \$5 7.82 2.88 4.7 74 \$52,506 34.5 19 51 70 26 3.0 2.4 11/19/15 \$ 7.83 7.25 4.8 79 49,176 31.9 44 346 390 49 8.2 2.4 11/19/15 \$ 7.84 27.1 4.5 6.8 44401 31.5 68 348 416 25 2.1 2/1/16 \$ 7.64 19.7 6.3 80 41,545 26.6 180 331 511 7 1.5 7 1.5 7 1.5 7 1.5 7 1.5	Collier Bridge	1/27/15	တ (7.71	20.2	6.2	83	51,370	33.8	788	105	133	28	5. 6		6.0	10
44 340 349 8.2 2.4 1/1/9/15 S 7.74 27.1 4.5 68 48,170 31.5 68 348 416 25 2.1 2/1/16 S 7.64 19.7 6.3 80 41,545 26.6 180 331 511 57 5/10/16 S 7.74 26.3 5.3 78 51,537 33.8 20 331 51 1.5 8/11/16 S 7.87 31.1 4.7 7.3 47,213 30.5 8 520 528 22	Collier Bridge	5/12/15	y (7.82	28.8	4.7	4/	52,506	34.5	19	51	0/	56	3.0			10
1/19/15 5	Collier Bridge	8/25/15	တ ဖ	7.83	32.5	8.4	6/	49,176	31.9	44	346	390	49	8.2		2.4	213
5/10/16 S 7.74 18.7 0.3 80 41,945 20.0 180 331 311 81 81/16 S 7.74 26.3 5.3 78 51,537 33.8 20 528	Collier Bridge	11/19/15	y c	7.74	27.1	4.5	89	48,401	31.5	68	348	416	25	2.1			10
3/10/10 S 7/37 3/11 4.7 73 47,213 30.5 8 520 528	Collier Bridge	2/1/16	n c	7.74	19.7	5.0	80	41,545	20.6	081	331	51.1					
6 1.0f 5.1 4.1 1.3 4.1/2.1 50.0 8 520 526 5.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	Collier Bridge	0/10/10	0 0	7.74	20.3	0.0	0 0	01,007	0.00	07	C	C				C. C	
	Collier Bridge	8/11/16	သ (7.87	31.1	4.7	73	47,213	30.5	20	220	978				2.2	

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

The color Date Da	Station ID	Sample	Sample	Hd	Temp.	Diss. O ₂	Diss. O ₂	Cond.	Salinity	NOX	TKN	Total N	Total P	Chyl-a	Turbidity	Secchi	Entero
2017/11/14 8 51 800 51 80 51 80 51 80 52 80 77 9 22 80 77 9 22 80 77 9 22 80		Date	Depth	(s.u.)	(၁့)	(mg/L)	(% satn.)	(mayoum)	(bbt)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(mg/m²)	(NTU)	Depth (m)	(cfu/100 mL)
51/10/11 51 71 22.2 55 65 62,053 88.3 84.44 44.64 46.9 46.9 77 22.0 81/8/11 8 7.70 22.2 5.2 85.2 7.0 46.0 7.0 46.0 7.0 46.0 7.0 46.0 7.0 20.0 80.0 46.0 7.0 46.0 7.0 20.0 7.0 46.0 7.0 20.0 7.0 46.0 7.0 20.0 7.0 46.0 7.0 20.0 7.0 46.0 7.0 20.0 7.0 46.0 7.0 20.0 7.0 46.0 7.0 20.0 7.0 46.0 7.0 20.0 7.0 46.0 7.0 20.0 7.0 46.0 7.0 7.0 20.0 7.0 46.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 <td>Collier Bridge</td> <td>2/21/17</td> <td>S</td> <td>7.79</td> <td>24.2</td> <td>6.1</td> <td>88</td> <td>51,989</td> <td>34.2</td> <td>2</td> <td>520</td> <td>522</td> <td>17</td> <td>3.5</td> <td></td> <td>2.2</td> <td>10</td>	Collier Bridge	2/21/17	S	7.79	24.2	6.1	88	51,989	34.2	2	520	522	17	3.5		2.2	10
67/19/17/1 8 7	Collier Bridge	2/21/17	В	7.81	24.2	5.9	85	52,033	34.3							2.2	
Finity F	Collier Bridge	5/18/17	တ	7.77	28.7	5.1	62	52,972	35.0	80	446	454	40	4.6		2.0	10
4016/17 5 5 5 6 2 4 400 484 38 3.3 17 6016/17 5 7 7 5 6 6 2 46687 226 4 400 484 38 3.3 17 18 <t< td=""><td>Collier Bridge</td><td>5/18/17</td><td>В</td><td>7.70</td><td>28.9</td><td>3.8</td><td>09</td><td>53,271</td><td>35.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.0</td><td></td></t<>	Collier Bridge	5/18/17	В	7.70	28.9	3.8	09	53,271	35.2							2.0	
401017 8 751 352 53 45002 227 394 306 22 460 17 46002 287 46002 287 46002 287 46002 287 46002 287 46002 287 46002 46002 46002 287 46002	Collier Bridge	8/16/17	တ	8.04	32.8	6.2	100	44,617	28.6	4	490	494	38	3.3		1.7	10
91 (11) 5 8 (11) 3.2 8 (11) 4 (12) 4 (12) 2.9 2 (12) 3.9 4 (12) 2.9 4 (12) 3.9 4 (12) 3.9 4 (12) 3.9 4 (12) 3.9 4 (12) 3.9 4 (12) 3.9 4 (12) 3.1 2 (12) 4 (12) 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.1 4 (12) 3.2 4 (12) 3.2 4 (12) 3.2 4 (12) 3.2 4 (12) 3.2 4 (12) 3.2 4 (12) 3.2 4 (12) 3.2 4 (12) 3.2 4 (12) 3.2 4 (12) 3.2 4 (12) 3.2 4 (12) 3.2	Collier Bridge	8/16/17	В	7.91	33.2	3.3	55	46,097	29.7								
11/13/17 8 7,88 39,3 38,6 46,284 20,8 46,284 20,8 46,284 20,8 46,284 20,8 46,284 20,8 46,284 20,8 46,234 20,8 46,234 31,7 2 2 4 46,132 31,7 2 2 4 46,132 31,7 2 2 4 46,132 31,7 2 2 4 46,132 31,7 2 2 4 46,132 31,2 400 1,100 1,200 61 1,100 1,200 61 1,100 1,200 61 1,100 1,200 61 1,100 1,200 61 1,100 1,200 61 1,100 1,200 61 1,100 1,200 61 1,100 1,200 61 1,100 1,100 61 1,100 61 1,100 61 1,100 61 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100	Collier Bridge	8/16/17	S	8.01	32.9	5.8	94	45,052	28.9	2	394	396	32	4.6		1.7	10
1111/21/1 5	Collier Bridge	8/16/17	В	7.93	33.3	3.8	62	46,284	29.8								
1,11,11,11,11,11,11,11,11,11,11,11,11,1	Collier Bridge	11/13/17	တ	7.68	25.9	5.9	98	48,334	31.5	2	624	626	17	2.7		1.6	
2011 8 51,150 3.04 410	Collier Bridge	11/13/17	В	7.72	26.1	5.7	84	48,612	31.7								
2,0,116 5 7,09 2,22 6,4 9,9 1,22 9,9 1,10 1,20 1,1	Collier Bridge	2/8/18	S	7.79	22.6	7.4	103	51,150	33.6		140		22	2.4		2.3	10
SIZTINES S 700 280 430 72 60 11400 1220 61 177 22 SIZTINES S 770 311 4.6 72 61,437 33.4 11 660 1491 37 770 35 67 459 37 11 4.6 72 61,437 33.4 11 660 30.2 33.4 11 660 30.2 30.2 60 4.3 4.9 4.9 30.0 60	Collier Bridge	2/8/18	В	7.84	22.2	6.4	88	51,929	34.2								
SIZIVIR S 770 26.9 3.7 66 53.47 34.4 1 66.9 580 77.5 36.9 77.5 36.9 77.5 36.9 77.7 36.9 77.7 36.4 77.7 36.4 77.7 36.9 77.7 36.9 77.7 46.9 37.1 46.9 37.7 36.9 47.0 46.9 36.7 46.9 56.9 47.0 46.9 36.7 46.9 46.9 46.9 46.9 47.0 </td <td>Collier Bridge</td> <td>5/21/18</td> <td>S</td> <td>7.69</td> <td>26.0</td> <td>4.9</td> <td>72</td> <td>49,328</td> <td>32.2</td> <td>09</td> <td>1,160</td> <td>1,220</td> <td>61</td> <td>1.7</td> <td></td> <td>2.1</td> <td>134</td>	Collier Bridge	5/21/18	S	7.69	26.0	4.9	72	49,328	32.2	09	1,160	1,220	61	1.7		2.1	134
8/16/18 S 787 311 46 74 51738 33.7 11 669 580 75 364 32.7 47 51738 33.7 11 669 75 36.7 469 75 36.7 469 517 469 517 469 517 469 469 469 469 36.7 469 517 469	Collier Bridge	5/21/18	В	7.70	26.9	3.7	26	52,347	34.4								
4 (16) (16) B 7 (26) 311 4 (6) 7 (4) 617 (38) 6 (6) 6 (17)	Collier Bridge	8/16/18	S	7.87	31.1	4.6	75	51,491	33.7	7	569	280	75	3.6		2.2	110
1116518 S 787 SS 610 410 57 489 610 419 46 90 220619 S 7.66 560 650 650 670 11 672 687 670 11 671 671 672 688 600 688 650 670 11 671 720 672 4.3 670	Collier Bridge	8/16/18	В	7.89	31.1	4.6	74	51,733	33.8								
200001 5 S 650 ON 85 SOORT 32.0 11 52.7 53.9 62.0 4.3 11.6	Collier Bridge	11/15/18	S	7.87	27.1	5.7	85	47,030	30.5	22	459	516	149	4.6		6.0	24,196
2.00419 B 7.84 2.00 5.8 845 5.02.11 3.2.9 11 7.21 7.22 6.7 6.7 11.4 5.1.841 34.0 11 7.21 7.22 6.7 6.7 11.4 5.1.841 34.0 11 4.22 1.6 3.4 1.1 4.3.2 1.6 6.8 1.0 7.1 4.3.2 6.6 1.0 7.1 4.3.2 6.6 1.0 7.1 4.2 6.0 7.0 1.2 <t< td=""><td>Collier Bridge</td><td>2/26/19</td><td>S</td><td>7.65</td><td>26.0</td><td>5.8</td><td>85</td><td>50,087</td><td>32.8</td><td>11</td><td>527</td><td>538</td><td>62</td><td>4.3</td><td></td><td>1.6</td><td>10</td></t<>	Collier Bridge	2/26/19	S	7.65	26.0	5.8	85	50,087	32.8	11	527	538	62	4.3		1.6	10
6/17/19 S 7,84 30.8 7.0 114 51,884 34.0 11 721 722 51 6.8 109 51,984 34.0 11 722 51 6.8 109 51,984 34.0 11 722 51 6.8 100 51,984 36.0 10.0 51,984 36.0 10.0 72.0 6.0 10.0 43,984 36.0 10.0 72.0 6.0 10.0 11.0 70.0 6.0 10.0 11.0 70.0 6.0 10.0 11.0 70.0 6.0 10.0 11.0 70.0 6.0 10.0 11.0 70.0 6.0 10.0 11.0 70.0 6.0 10.0 <	Collier Bridge	2/26/19	В	7.68	26.0	5.8	85	50,211	32.9								
6/13/19 B 7.84 3.07 6.8 1199 51,914 34.0 1 4.3644 28.1 4.0 51,914 3.0 6.8 1109 51,914 3.4 4.0 51,914 3.1 4.0 51,914 3.2 4.3644 28.1 4.0 6.0 4.3644 28.1 4.0 6.0 4.3644 28.1 4.0 6.0 7.0 4.0 7.0 6.0 1.0 1.1 4.0 1.1 4.3644 3.2 4.0 6.0 6.0 4.3644 3.2 6.0 6.0 6.0 4.3644 3.2 6.0 6.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 7.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0<	Collier Bridge	5/13/19	S	7.84	30.8	7.0	114	51,891	34.0	7	721	732	51	6.3		1.5	10
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	Collier Bridge	5/13/19	В	7.84	30.7	6.8	109	51,914	34.0								
1002319 S 7.75 30.2 6.2 98 49.842 32.5 97.7 40.842 32.5 97.7 40.842 32.5 97.7 40.842 32.5 40.84 40.847 32.5 18 67.1 689 76 55 2.9 1.3 1.	Collier Bridge	8/7/19	S	7.99	31.4	9.2	145	43,844	28.1	11	492	503	82	1.0		1.2	63
1002319 B 772 30.2 5.5 86 44967 32.6 87 679 76 5.5 2.9 1.3 11/15/20 S 7.86 23.7 6.9 83 45,350 29.4 53 549 605 77 6.9 1.3 1.3 11/15/20 S 7.88 23.7 6.0 83 45,350 29.4 53 549 605 3.4 2.5 1.4 11/15/20 S 7.80 20.7 10.1 48,752 31.9 7.7 609 31 2.0 1.7 1.3 4/14/20 S 7.69 2.85 7.0 7.7 7.7 7.7 1.7 1.2 7.7 7.7 7.7 1.1 7.8 7.7 60.9 3.1 4.7 7.7 7.7 1.1 7.8 7.7 7.7 1.1 7.8 7.7 7.7 1.1 7.7 7.7 1.1 7.8 7.7 7.7 <td>Collier Bridge</td> <td>10/23/19</td> <td>S</td> <td>7.75</td> <td>30.2</td> <td>6.2</td> <td>98</td> <td>49,842</td> <td>32.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.5</td> <td></td>	Collier Bridge	10/23/19	S	7.75	30.2	6.2	98	49,842	32.5							1.5	
114419 S 7.66 29.3 4.3 66 50.041 32.7 18 67.1 689 76 5.5 2.9 1.3 1.1/18/19 S 7.88 23.7 6.9 83 45.590 32.4 6.9 67.7 6.9 777 6.9 777 6.9 777 6.9 777 6.9 777 6.9 777 6.9 777 6.9 777 6.9 777 6.9 777 6.9 777 6.9 777 6.9 777 6.0 777 7.0 778 778 6.0 777 7.0 778 778 6.0 777 7.0 777 778	Collier Bridge	10/23/19	В	7.72	30.2	5.5	98	49,967	32.6								
12/18/19 S 788 237 59 83 45,350 294 55 549 602 121 48 38 1.1 1/16/20 S 780 232 6.7 94 50,207 32.9 18 709 727 55 34 2.2 1.4 2/4/20 S 7.69 286 4.5 71 65,522 36.7 11 726 737 57 2.5 2.7 1.9 4/14/20 S 7.69 286 4.5 71 65,522 36.7 11 726 737 57 2.5 2.7 1.9 4/14/20 S 7.69 286 4.5 71 48,727 31 7 55,58 36.7 7 57 1.9 1.1 7 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 </td <td>Collier Bridge</td> <td>11/4/19</td> <td>S</td> <td>7.66</td> <td>29.3</td> <td>4.3</td> <td>99</td> <td>50,041</td> <td>32.7</td> <td>18</td> <td>671</td> <td>689</td> <td>9/</td> <td>5.5</td> <td>2.9</td> <td>1.3</td> <td>10</td>	Collier Bridge	11/4/19	S	7.66	29.3	4.3	99	50,041	32.7	18	671	689	9/	5.5	2.9	1.3	10
111520 S 780 232 67 94 60,207 32.9 18 709 727 65 3.4 2.2 14 8 24/420 8 7.69 2.67 4.0	Collier Bridge	12/18/19	S	7.88	23.7	5.9	83	45,350	29.4	53	549	602	121	4.8	3.8	1.1	3,873
24/420 B 7.69 20.7 7.6 101 48,762 31.9 32 577 609 31 2.0 1.7 1.3 4/14/20 B 7.69 28.6 4.5 71 55,822 36.7 11 726 737 5.7 1.9 1.9 5/14/20 S 7.86 26.0 5.3 79 55,775 36.7 1.0 7.1 1.1 7.1 7.2 7.2 7.1 1.1 7.1 7.2 7.2 7.1 1.0 5.3 3.0 5.3 3.0 4.0	Collier Bridge	1/15/20	S	7.80	23.2	6.7	94	50,207	32.9	18	602	727	22	3.4	2.2	1.4	10
4/14/20 S 7.69 28.6 4.5 7.1 55.522 36.7 11 726 737 57 2.5 2.7 1.9 4/14/20 B 28.6 4.0 63 55.536 36.7 3 4.0 67 57.7 1.9 7.1 1.1 7.1 1.1 7.2 7.2 7.1 1.1 1.1 7.2 7.2 7.1 1.1 7.1 7.2 7.2 7.1 1.1 7.2 7.2 7.1 1.1 7.2 <td< td=""><td>Collier Bridge</td><td>2/4/20</td><td>В</td><td>7.69</td><td>20.7</td><td>7.6</td><td>101</td><td>48,762</td><td>31.9</td><td>32</td><td>277</td><td>609</td><td>31</td><td>2.0</td><td>1.7</td><td>1.3</td><td>10</td></td<>	Collier Bridge	2/4/20	В	7.69	20.7	7.6	101	48,762	31.9	32	277	609	31	2.0	1.7	1.3	10
4/14/20 B 7.68 28.5 4.0 63 55,536 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.5 37.7 47.0	Collier Bridge	4/14/20	S	7.69	28.6	4.5	71	55,522	36.7	11	726	737	22	2.5	2.7	1.9	10
5/14/20 S 7.86 26.0 5.3 79 53,775 35.5 33.5 470 503 91 3.1 7.1 1.1 6/15/20 S 7.88 30.6 5.3 83 48,237 31.3 11 778 49 4.3 1.6 1.7 1.6 1.7 1.6 <	Collier Bridge	4/14/20	В	7.68	28.5	4.0	63	55,536	36.7								
6/15/20 S 7.88 30.6 5.3 83 48,237 31.3 11 738 749 43 1.0 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.1 3.	Collier Bridge	5/14/20	S	7.86	26.0	5.3	62	53,775	35.5	33	470	503	9	3.1	7.1	1.	10
6/15/20 B 7.85 31.1 4.4 71 49,139 31.9 47 46 1.7 49,139 31.9 47 487 <th< td=""><td>Collier Bridge</td><td>6/15/20</td><td>S</td><td>7.88</td><td>30.6</td><td>5.3</td><td>83</td><td>48,237</td><td>31.3</td><td>7</td><td>738</td><td>749</td><td>43</td><td>1.0</td><td>1.6</td><td>1.6</td><td>20</td></th<>	Collier Bridge	6/15/20	S	7.88	30.6	5.3	83	48,237	31.3	7	738	749	43	1.0	1.6	1.6	20
7/28/20 S 7.81 30.6 5.7 89 47,270 30.6 11 476 487 49 4.1 1.4 1.7 7/28/20 B 7.78 30.6 5.1 80 47,387 30.6 6.8 47,387 30.7 1 6.8 47,891 31.0 1 6.8 6.8 47,891 31.0 1 6.8 6.8 47,891 31.0 1 6.8 47 5.8 0.95 1.4 1.9 8/28/20 S 7.98 29.2 5.8 87 42,727 27.4 11 383 394 47 5.8 0.95 1.4 1 10/22/20 S 8.12 2.4.8 3.7 42,727 27.4 11 383 394 47 5.8 0.95 1.4 1 10/22/20 S 8.12 24.8 3.7 5.2 47,325 30.8 20 350 8.5 1.1 2.8 <	Collier Bridge	6/15/20	В	7.85	31.1	4.4	7.1	49,129	31.9								
7/28/20 B 7.78 30.6 5.1 80 47.387 30.7 1 628 639 44 3.0 1.2 1.9 8/25/20 S 7.78 30.9 4.3 68 47.778 31.0 11 628 639 44 3.0 1.2 1.9 8/25/20 S 7.78 30.9 47.727 27.4 11 383 394 47 5.8 0.95 1.4 9/23/20 S 7.98 29.2 5.8 7.727 27.4 11 383 394 47 5.8 0.95 1.4 10/22/20 S 8.12 2.4 47,325 30.8 20 350 8.5 5.6 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 <td>Collier Bridge</td> <td>7/28/20</td> <td>S</td> <td>7.81</td> <td>30.6</td> <td>5.7</td> <td>88</td> <td>47,270</td> <td>30.6</td> <td>7</td> <td>476</td> <td>487</td> <td>49</td> <td>4.1</td> <td>4.1</td> <td>1.7</td> <td>10</td>	Collier Bridge	7/28/20	S	7.81	30.6	5.7	88	47,270	30.6	7	476	487	49	4.1	4.1	1.7	10
8/25/20 S 7.77 30.9 4.3 68 47,778 31.0 11 628 639 44 3.0 12 1.9 8/25/20 B 7.78 30.9 4.2 67 47,891 31.0 1 28 47 5.8 0.95 1.4 1 9/23/20 S 7.98 29.2 5.8 87 42,727 27.4 11 383 394 47 5.8 0.95 1.4 1 10/23/20 S 8.12 24.8 3.7 52 47,325 30.8 20 330 350 8 2.5 1.1 2.8 11/23/20 S 8.14 19.9 4.8 63 47,944 30.6 46 30 350 8.5 0.95 2.8 2.8 11/123/20 S 8.14 19.9 4.8 63 47,944 30.6 46 20 2.5 0.95 2.8 2.8	Collier Bridge	7/28/20	В	7.78	30.6	5.1	80	47,397	30.7								
8/25/20 B 7.78 30.9 4.2 67 47,891 31.0 9 68 47 5.8 0.95 1.4 9 9/23/20 S 7.98 29.2 5.8 87 42,727 27.4 11 383 394 47 5.8 0.95 1.4 1.4 10/22/20 S 8.12 24.8 3.7 52 47,325 30.8 20 330 350 8 2.5 1.1 2.8 2.8 2.8 2.5 1.1 <t< td=""><td>Collier Bridge</td><td>8/25/20</td><td>တ</td><td>7.77</td><td>30.9</td><td>4.3</td><td>89</td><td>47,778</td><td>31.0</td><td>7</td><td>628</td><td>639</td><td>4</td><td>3.0</td><td>1.2</td><td>1.9</td><td>109</td></t<>	Collier Bridge	8/25/20	တ	7.77	30.9	4.3	89	47,778	31.0	7	628	639	4	3.0	1.2	1.9	109
9/23/20 S 7.98 29.2 5.8 87 42,727 27.4 11 383 394 47 5.8 0.95 1.4 9/23/20 B 10/22/20 S 8.12 24.8 3.7 52 47,325 30.8 20 330 8 5.6 1.1 2.8 11/23/20 B 8.14 19.9 4.8 63 47,944 30.6 46 300 346 20 2.5 0.95 2.8 12/10/20 B 8.14 19.9 4.8 63 47,944 30.6 46 300 350 2.5 0.95 2.8 2.8	Collier Bridge	8/25/20	Ф	7.78	30.9	4.2	29	47,891	31.0								
9/23/20 B 8.12 24.8 3.7 52 47,325 30.8 20 330 86 2.5 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 1.1 2.8 2.5 1.1 2.8 2.8 2.8 1.1 2.8 2.	Collier Bridge	9/23/20	တ	7.98	29.2	5.8	87	42,727	27.4	7	383	394	47	5.8	0.95	1.4	10
10/22/20 S 8.12 24.8 3.7 52 47,325 30.8 20 330 350 8 2.5 1.1 2.8 11/23/20 B 8 2.5 8 2.5 1.1 2.8 8 12/10/20 S 8.14 19.9 4.8 63 47,944 30.6 46 300 346 20 2.5 0.95 2.8 12/10/20 B 12/10/20 B 350 20 2.5 0.95 2.8 2.8	Collier Bridge	9/23/20	В									394	47	5.8			10
11/23/20 S 8.12 24.8 3.7 52 47,325 30.8 20 330 350 8 2.5 1.1 2.8 11/23/20 B 8 2.5 8 2.5 1.1 2.8 8 12/10/20 S 8.14 19.9 4.8 63 47,944 30.6 46 300 346 20 2.5 0.95 2.8 12/10/20 B 8 12/10/20 8 2.5 0.95 2.8 2.8	Collier Bridge	10/22/20	S									400	5	5.6			50
11/23/20 B 350 8 2.5 8 2.5 8 2.5 8 12/10/20 8 2.5 8 2.5 8 12/10/20 8 2.5 8 2.5 8 1.5 8 1.5 8 1.5 8 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5	Collier Bridge	11/23/20	S	8.12	24.8	3.7	52	47,325	30.8	20	330	350	8	2.5	1.1	2.8	10
12/10/20 S 8.14 19.9 4.8 63 47,944 30.6 46 300 346 20 2.5 0.95 2.8 12/10/20 B 350 20 2.5	Collier Bridge	11/23/20	В									350	8	2.5			
12/10/20 B 350 Z0 Z:5	Collier Bridge	12/10/20	တ ၊	8.14	19.9	8.8	63	47,944	30.6	46	300	346	20	2.5	0.95	2.8	10
	Collier Bridge	12/10/20	9									320	20	2.5			10

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

10.00 10.00 50.00 9.00 10.00 50.00 10.00	513.00 513.00<	Station ID	Sample Date	Sample Depth	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Diss. O ₂ (% satn.)	Cond. (µumho/cm)	Salinity (ppt)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)
9.9.10.16 8.8 9.9.10.16 8.9.10.16 8.9.10.16 8.9.10.16 8.9.10.16 8.9.10.16 8.9.10.16 8.9.10.16 8.9.10.16 8.9.10.16 8.9.10.16 8.9.10.16 8.9.10.16 8.9.10.16 9.9.	1.1.1 1.1.	E Winterberry Bridge	1/28/15	S	7.96	19.4	7.5	100	52,809	34.9	17						1.3	
Vinition S Good 2044 GOOD 5100 5100 745 <th< td=""><td> 1,14,14,15,15 2, 1,14,14,15,</td><td>E Winterberry Bridge</td><td>5/12/15</td><td>S</td><td>7.93</td><td>28.9</td><td>5.3</td><td>84</td><td>53,083</td><td>34.9</td><td>26</td><td></td><td></td><td></td><td></td><td></td><td>1.3</td><td></td></th<>	1,14,14,15,15 2, 1,14,14,15,	E Winterberry Bridge	5/12/15	S	7.93	28.9	5.3	84	53,083	34.9	26						1.3	
	1,117,184 5 7,784 2,184 6 6 6 6 6 6 6 6 6	E Winterberry Bridge	8/25/15	S	8.05	32.4	0.9	66	51,868	33.9		689	745				2.1	
STATION SS 7788 818.8 65.5 864 427500 31.0 850 770	1,114 1,114 1,114 1,114 1,14	E Winterberry Bridge	11/19/15	S	7.76	26.9	5.8	88	51,564	33.8	40							
VILLEY S 7.75	9 170 18 0 9 1 75 80 <	E Winterberry Bridge	2/1/16	S	7.89	18.8	6.5	84	47,520	31.0	26		290					
No. 1, 19, 19, 19, 19, 19, 19, 19, 19, 19,	No. 1971 No. 1972 No. 1972	E Winterberry Bridge	5/10/16	တ (7.93	26.3	5.7	85	52,246	34.4								
National State	The color of the	E Winterberry Bridge	8/11/16	တ (7.96	31.2	2.8	92	48,922	31.8	2	745	750					
2567177 58 7584 256 64 92 5678 948 3 614 617 17 32 18 2567177 58 758 255 66 66 67 92,00 98 67 98 67 98 67 98 67 98 67 98 67 98 68	2017/17 S	E Winterberry Bridge	11/9/16	တ	7.90	23.8	5.9	85	53,497	35.3	11							
28.71/17 8 7.86 25.56 6.6 944 9.2 600 602 9.0 9	2571/17 5 7,856 25.55 6.6 944 2 600 902 3.5 1.8	E Winterberry Bridge	2/21/17	S	7.84	23.5	6.4	92	52,728	34.8	က	614	617	17	3.2		1.8	10
227177 S 786 235 66 66 66 66 66 66 66 66 67 68 66 67 68 67 68 72 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 78 <t< td=""><td>2871/17 58 786 283 66 662 787 663 664 2 660 662 30 612 652 652 660 662 67 67 678 67</td></t<> <td>E Winterberry Bridge</td> <td>2/21/17</td> <td>В</td> <td>7.86</td> <td>23.5</td> <td>9.9</td> <td>94</td> <td>52,786</td> <td>34.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.8</td> <td></td>	2871/17 58 786 283 66 662 787 663 664 2 660 662 30 612 652 652 660 662 67 67 678 67	E Winterberry Bridge	2/21/17	В	7.86	23.5	9.9	94	52,786	34.8							1.8	
528/17/1 5 7887 289 48.6 6 188 48.9 18.	18 18 18 18 18 18 18 18	E Winterberry Bridge	2/21/17	တ	7.86	23.5	9.9	92	52,786	34.8	2	069	692	30	3.6		1.8	10
	5/18/17 S	E Winterberry Bridge	2/21/17	В	7.87	23.5	6.7	92	52,799	34.8							1.8	
	11 11 12 13 14 15 15 15 15 15 15 15	E Winterberry Bridge	5/18/17	S	7.85	29.2	5.8	95	53,938	35.5	2	158	163	32	4.7		1.6	10
Mathematical Series 8 8 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11/14/17 S 1870 S S 18	E Winterberry Bridge	5/18/17	Ω	7.85	28.8	6.4	77	54,746	36.1							1.6	
111/21/17 5 7.02 7.05 5.6 6.4 5.6 6.4 5.6 6.4 5.6 6.4 6.5 7.0	11/14/17 5 7.92 2.54 5.6 5.6 5.7 5.6 5.8 5.5 5.7	E Winterberry Bridge	8/16/17	တ	8.02	34.1	0.9	66	47,893	30.9	2	378	380	31	4.8		4.	10
11/12/11/12 S 7 91 223 520 584 614 51679 3410	1114117 S 7140 253 58	E Winterberry Bridge	11/13/17	S	7.92	25.1	5.6	82	51,480	33.8	4	160	164	7	4.9		1.5	10
288/16 S 791 22.3 73 102 53.66 35.6 26.1 71 103 30 117 552/18 S 77,3 22.3 73 102 53.66 34.6 17.7 11.60 1.207 30 31 4.9 77.3 22.3 3.4 31.4 5.6 94 51.84 34.0 17.7 11.00 1.207 52.9 31.4 3.6 31.4 5.6 94 51.84 34.0 17.7 60.9	200116 SS 791 22.33 7.91 12.33 7.92 1102 53.66 35.6 20.1 1.9 3.0 1.7 552118 SS 7.74 22.13 7.2 1102 53.66 3.65 20.1 1.90 1.50 3.0 1.7 1.7 1.0 1.0 1.20 1.20 3.0 1.7 1.0 1.0 1.20 3.0 1.7 1.1 1.0 1.20 3.0 1.1 1.1 1.0 1.20 3.0 1.1 1.1 1.0 1.20 3.0 1.1 1.1 1.0 1.20 3.0 1.1 1.0 1.20 3.0 1.1 1.0 1.20 1.1 1.0 1.20 1.0 1.0 2.0 1.0	E Winterberry Bridge	11/13/17	В	7.96	25.0	5.8	84	51,679	34.0								
SEATING B 7,944 224 10.1 53,875 36.7 1,190 1,207 62.9 36.7 11.1 1,190 1,207 62.9 36.7 1,140 1,207 62.9 36.7 34.5 1,17 60.2 61.9 60.2 61.9 4.6 1,120 34.5 1,17 60.2 61.9 61.9 61.9 34.5 1,17 60.2 61.9 60.2 61.9 4.6 1,120 1,20 62.9 7.1 62.9 94.6 51.984 34.5 1,17 60.2 61.9 60.2 61.9 4.0 1,17 60.2 61.9 60.2 61.9 4.0 1,17 60.2 61.9 61.9 1,14 1,14 60.2 61.9 60.2 61.9	2011/16 B 7.94 22.1 7.2 10.1 53.875 3.6 1.1 1.00 1.207 1.20 1.4 1.4 6721/16 B 7.73 26.3 4.2 7.73 56.3 4.6 7.7 56.3 4.6 7.7 56.3 4.7 7.7 56.3 4.7 7.7 56.3 4.7 7.7 56.3 4.7 7.7 6.0 <td>E Winterberry Bridge</td> <td>2/8/18</td> <td>S</td> <td>7.91</td> <td>22.3</td> <td>7.3</td> <td>102</td> <td>53,609</td> <td>35.5</td> <td></td> <td>261</td> <td></td> <td>13</td> <td>3.0</td> <td></td> <td>1.7</td> <td>31</td>	E Winterberry Bridge	2/8/18	S	7.91	22.3	7.3	102	53,609	35.5		261		13	3.0		1.7	31
6721188 8 7773 26.3 6.2 77.8 5.6 77.9 26.3 4.2 73.9 34.0 17 1,190 1,207 6.2 3.6 1.4 1.4 8/16/18 8 8 9 71,24 34.0 17 60.2 77 6.9 14.4 17 17.9 6.2 77 6.9 11.4 18.9 11.4 6.9 6.9 11.4 6.9	6/2/11/8 S 7.73 2.65 5.6 7.74 2.65 3.6 1.4 1.4 6/2/11/8 S 7.74 2.65 3.6 3.4 1.7 1.4 1.6 6.9 1.4 1.4 9/16/18/8 S 8.0 3.15 5.8 9.4 7.1 6.0 6.0 6.9 1.4 4.9 1.1 7.0 6.0 6.0 1.4 4.4 1.1 7.0 6.0 6.0 1.4 4.4 1.1 7.0 6.0 7.0 6.0 1.4 4.4 1.1 7.0 6.0 7.0 1.4 4.4 1.1 7.0 6.0 7.0 1.4 4.4 1.1 7.0 6.0 7.0 1.4 4.4 1.4 4.4 1.4 4.0 1.7 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	E Winterberry Bridge	2/8/18	В	7.94	22.1	7.2	101	53,875	35.7								
5/21/18 S 7 5/294 34.5 1 60.294 34.5 1 60.294 34.5 1 60.294 34.5 1 60.294 34.5 1 60.294 34.5 1 60.294 34.5 1 60.294 34.5 1 60.2 1 7 60.2 1 60.2 1 4 4 1 7 60.2 60.2 9 1 4 4 1 4 8 8 9 1 4 4 1 4 7 6 6 6 9 9 6 1 6 9 9 9 1 6 9	6/12/11/8 B 77.4 26.5 4.9 77.3 34.5 7.9 4.0 77.4 26.5 4.9 77.4 34.5 7.7 60.2 61.9 66.9 77.4 26.2 9.4 51.984 34.5 1.7 70.1 66.9 77.7 25.9 9.6 51.984 34.0 1.7 70.1 60.2 61.7 60.2 61.7 60.2 61.7 60.2 61.7 60.2 77.7 60.2 61.4 77.7 77.7 77.7 25.9 61.2 34.5 1.1 70.0 20.1 61.4 91.8 34.5 1.1 70.0 20.2 20.2 1.1 1.4 70.0 20.2 20.2 1.1 1.4 70.0 20.2 1.1 1.4 70.0 20.2 1.1 70.0 20.2 20.0 1.1 4.0 70.0 20.2 20.0 1.1 4.0 1.1 4.0 1.2 1.1 4.0 1.1 4.0 1.2 2	E Winterberry Bridge	5/21/18	တ	7.73	26.3	5.2	78	51,716	34.0	17	1,190	1,207	52	3.6		4.1	10
WINTING S 8.00 314 5.8 94 51,024 34.0 17 791 665 6.9 14 11/16/16 S 7.06 315 5.9 96 51,024 34.0 17 791 65 6.9 14 14 14 791 86 6.9 14 15.0 34.0 17 791 86 6.9 14 17 791 87 2.29 71 14 17 791 86 2.29 14 14 791 86 2.29 14 14 791 86 2.29 14 14 791 86 2.29 14 14 791 86 14 14 791 86 14 14 791 86 2.29 14	NITIONIS S 8.00 31.4 5.6 9.4 51.924 3.4 6.02 6.02 7.7 6.9 1.4 4 51.924 3.4 1.7 60.2 6.0 6.0 31.4 6.0 4.0 51.924 3.4 1.7 60.2 7.7 6.9 4.7 51.924 3.4 1.1 60.1 6.0 6.1 9.0 51.924 3.4 1.1 60.1 6.0 7.7 1.3 1.1 6.0 7.7 6.0 1.4 4.4 1.2 2.0 2.1 6.0 9.0 1.1 6.0 9.0 7.7 9.0 1.1 6.0 1.4 9.0 1.1 6.0 9.0 1.1 9.0 1.1 6.0 9.0 9.0 1.1 9.0 1.1 9.0	E Winterberry Bridge	5/21/18	В	7.74	26.3	4.9	73	52,394	34.5								
4/11/67/61 B 6.0 5.5 9.6 5.15,934 34.0 11 961 962 7.1 6.9 1.4 114 114 961 962 7.1 6.6 2.0 1.4 1.4 1.4 961 962 2.0 1.4 1.4 1.4 961 962 2.0 1.4 1.4 961 962 2.0 1.4 1.4 961 962 2.0 1.4 1.4 961 962 2.0 1.4 961 2.0 2.0 1.4 962 2.0 2.0 1.4 961 962 2.0 2.0 1.4 961 962 2.0 1.4 961 962 2.0 1.4 962 2.0 1.4 962 <	11/16/16 8 8 8 6 6 134 4 7 7 8 7 7 8 7 1 6 9 1 4 1 1 4 1 4 1 4 1 1 4 1 4 1 4 1 4 4 1 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4	E Winterberry Bridge	8/16/18	တ	8.09	31.4	5.8	94	51,924	34.0	17	602	619	92	6.9		4.1	573
114/5(1) S 7796 272 47 73 62,415 34,5 11 961 972 66 22.9 113 2.224(1) S 7796 55.4 76 61,169 33.6 11 230 241 66 22.9 114 2.224(1) S 778 52.6 5.2 76 61,149 33.6 11 1080 56.2 9 144 5.1719 V 731 22.9 61 98 52.37 34.6 11 1080 56 53 14.4 8.1719 V 731 22.9 61 98 52.6 17 11.4 <td> 11/16/16/16/16/16/16/16/16/16/16/16/16/1</td> <td>E Winterberry Bridge</td> <td>8/16/18</td> <td>В</td> <td>8.08</td> <td>31.5</td> <td>5.9</td> <td>96</td> <td>51,934</td> <td>34.0</td> <td>7</td> <td>791</td> <td>802</td> <td>71</td> <td>6.9</td> <td></td> <td>1.4</td> <td>439</td>	11/16/16/16/16/16/16/16/16/16/16/16/16/1	E Winterberry Bridge	8/16/18	В	8.08	31.5	5.9	96	51,934	34.0	7	791	802	71	6.9		1.4	439
2/206/19 S 779 2.56 6.5 81 51,169 33.6 11 200 241 55 2.9 1.4 1.6 2/206/19 S 7.81 2.56 6.5 6.1 96 6.2997 34.8 11 1.060 1.091 59 7.2 1.5 1.5 1.5 6/13/19 S 7.91 2.90 6.1 96 6.2997 34.8 1.1 1.060 1.091 59 7.2 1.1 8/7/19 S 7.91 3.02 6.1 96 6.2997 34.8 1.1 1.060 1.091 59 7.2 1.1 10/23/19 S 7.92 2.90 6.1 96 6.2997 34.8 7.0 9.9 7.2 7.0 9.9 7.0 9.0 9.0 1.7 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	2026/16 5 614 61,496 33.6 11 220 241 65 21 61,496 33.6 11 220 241 65 22 23 11 11 120 220 22 11 11 120 120 22 11 11 120 120 12 11 120 120 12 12 11 120 120 12 11 120 120 12 11 12 13 14 12 14	E Winterberry Bridge	11/15/18	S	7.86	27.5	4.7	73	52,415	34.5	7	961	972	82	22.9		1.3	20
2/26/19 B 78 II 2.65 6.2 76 6149II 33.8 II 1,080 1,091 58 7.2 1.5 <	2/26/19 B 781 2.56 5.2 76 51,491 33.8 11 1080 1091 58 7.2 11 1080 1091 58 7.2 11 11 11 1080 1091 58 7.2 11 11 11 1080 1091 59 40,203 32.0 11 668 669 66 5.3 7.2 11 11 11 11 102,211 67 10,7 <	E Winterberry Bridge	2/26/19	S	7.79	25.9	5.5	81	51,196	33.6	7	230	241	55	2.9		1.4	10
6/13/19 S 789 299 61 98 52,987 34,8 11 1,080 1,091 58 72 115 8/13/19 S 7,91 299 61 98 52,987 34,8 11 1,080 169 52 11 1,080 10,087 22,68 689 689 689 689 689 17	5/13/19 S 789 299 6.1 98 52,957 34.8 11 1,080 1,081 589 72 115 8/17/19 S 7.91 312 6.1 98 49,283 32.0 1 68 669 56 5.3 1.7	E Winterberry Bridge	2/26/19	В	7.81	25.8	5.2	92	51,491	33.8								
8/1/319 V 7 541 31.2 6.1 986 55.947 34.8 11 668 669 56 57.9 7.8 17 1	8/1/19/19 5V 791 289 61 98 492,947 34.8 669 669 66 65 53 17 8/1/19 8 7,90 30.9 6.1 98 492,887 32.6 11 668 669 65 53 17 10/22/19 8 7,90 30.9 6.3 6.7 11 67.369 33.6 6.7 9.6 6.0 6.1 9.6 6.0 1.4 1.2 1.4	E Winterberry Bridge	5/13/19	S	7.89	29.9	6.1	98	52,957	34.8	-	1,080	1,091	28	7.2		1.5	10
8/11/19 S 7.91 3.12 6.1 9.8 4.92/33 3.2.0 1.1 6.68 6.69 5.69 5.5 7.9 1.7 1.2 2.0 1.1 1.7 1.2 2.0 1.1 1.2	88/7/19 5 7 91 312 61 98 94,288 32.0 11 658 669 566 553 17 1002319 5 7,99 30.9 5.3 65 60,007 32.6 7.0 32.6 107 52.611 34.6 7.0 9.0 81 9.8 1.7 1.4 1.4 1.7 1.4	E Winterberry Bridge	5/13/19	>	7.91	29.9	6.1	86	52,947	34.8								
(10/23/19) S 7.90 3.09 5.3 85 50.037 32.6 9 7.90 3.09 5.3 85 50.037 32.6 9 7.91 9.8 7.93 30.1 1.4 9 8 7.92 1.4	87/19 53 85 50.037 32.6 996 81 96 97.6 98 97.6 98 97.6 98 97.6 98 98 97.6 98 97.6 98 97.6 98 97.7 98 98 97.7 98 98 97.7 98 98 97.7 98 97.7 98 97.7 98 97.7 98 97.7 98 97.7 98 97.7 98 97.7 98 97.7 98 97.7 98 97.7 98 97.7 98 98 98 98 98 98 98 99	E Winterberry Bridge	8/7/19	တ	7.91	31.2	6.1	86	49,283	32.0	-	658	699	26	5.3		1.7	20
10023/19 S 7,93 30,1 6,7 107 5,2,81 34,6 34,6 14,6	10023/19 S 7.933 3.0.1 6.7 10/7 52.861 34.6 34.	E Winterberry Bridge	8/7/19	B	7.90	30.9	5.3	82	50,037	32.6								
10/23/19 S 7.90 29.8 5.5 87 32/337 34.8 21 975 996 81 98 3.3 1.4 1/14/19 S 7.81 24.0 5.9 83 47.529 31.0 43 731 774 72 5.6 3.0 1.1 1/14/19 S 7.83 24.0 6.8 96 50.863 33.3 1.5 6.4 4.5 5.0 1.3 1/15/20 S 7.86 19.2 6.4 83 50.685 33.3 1.5 6.4 4.5 5.0 1.7 2/3/20 S 7.86 19.2 6.4 83 50.687 33.3 1.6 4.5 5.0 1.7 2/3/20 S 7.86 29.0 6.1 96 56.136 3.6 4.1 1.6 2.2 3.2 1.7 4/14/20 S 7.94 2.5 8 6.5,46 3.6 4 5 </td <td> 114/19 S 7.90 29.8 5.5 87 55.387 34.8 21 975 996 81 9.8 3.3 1.4 114/19 S 7.81 24.0 5.9 83 47.529 31.0 43 771 774 72 5.6 3.0 1.1 114/19 S 7.81 24.0 5.9 83 47.529 31.0 43 771 774 72 5.6 3.0 1.1 114/19 S 7.83 23.6 6.8 83 47.529 31.4 11 640 651 65 5.0 1.3 114/19 S 7.86 19.2 6.3 82 50.685 33.3 1.4 11 640 651 65 6.0 1.3 114/10 S 7.86 19.2 6.3 82 50.685 33.3 1.4 1.6 6.0 6.1 6.0 6.1 6.0 6.1 6.0 114/10 S 7.86 29.0 6.1 88 56.135 36.4 11 1.600 1.611 5.0 6.5 6.1 1.3 114/10 S 7.85 28.8 5.6 88 56.135 36.4 11 1.600 1.611 5.0 6.5 6.1 1.3 114/10 S 7.89 28.6 5.8 88 56.135 36.4 11 777 788 5.0 6.5 6.1 1.3 114/10 S 7.89 20.8 5.2 88 5.135 30.4 11 777 788 5.0 2.8 7.0 114/10 S 7.89 20.8 5.2 89 51.27 33.5 11 777 788 5.0 2.8 1.0 114/10 S 7.99 30.8 5.2 89 50.22 33.3 11 85.7 86.8 2.1 1.5 1.2 114/10 S 7.99 20.8 4.6 7.2 49.545 32.3 11 85.7 86.8 2.4 1.6 2.2 2.0 114/20 S 7.93 20.8 4.6 7.2 49.545 32.3 20.0 4.0 1.4 2.5 2.0 114/20 S 8.18 27.9 4.5 6.2 8.1 50.342 33.3 4.0</td> <td>E Winterberry Bridge</td> <td>10/23/19</td> <td>S</td> <td>7.93</td> <td>30.1</td> <td>6.7</td> <td>107</td> <td>52,681</td> <td>34.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.4</td> <td></td>	114/19 S 7.90 29.8 5.5 87 55.387 34.8 21 975 996 81 9.8 3.3 1.4 114/19 S 7.81 24.0 5.9 83 47.529 31.0 43 771 774 72 5.6 3.0 1.1 114/19 S 7.81 24.0 5.9 83 47.529 31.0 43 771 774 72 5.6 3.0 1.1 114/19 S 7.83 23.6 6.8 83 47.529 31.4 11 640 651 65 5.0 1.3 114/19 S 7.86 19.2 6.3 82 50.685 33.3 1.4 11 640 651 65 6.0 1.3 114/10 S 7.86 19.2 6.3 82 50.685 33.3 1.4 1.6 6.0 6.1 6.0 6.1 6.0 6.1 6.0 114/10 S 7.86 29.0 6.1 88 56.135 36.4 11 1.600 1.611 5.0 6.5 6.1 1.3 114/10 S 7.85 28.8 5.6 88 56.135 36.4 11 1.600 1.611 5.0 6.5 6.1 1.3 114/10 S 7.89 28.6 5.8 88 56.135 36.4 11 777 788 5.0 6.5 6.1 1.3 114/10 S 7.89 20.8 5.2 88 5.135 30.4 11 777 788 5.0 2.8 7.0 114/10 S 7.89 20.8 5.2 89 51.27 33.5 11 777 788 5.0 2.8 1.0 114/10 S 7.99 30.8 5.2 89 50.22 33.3 11 85.7 86.8 2.1 1.5 1.2 114/10 S 7.99 20.8 4.6 7.2 49.545 32.3 11 85.7 86.8 2.4 1.6 2.2 2.0 114/20 S 7.93 20.8 4.6 7.2 49.545 32.3 20.0 4.0 1.4 2.5 2.0 114/20 S 8.18 27.9 4.5 6.2 8.1 50.342 33.3 4.0	E Winterberry Bridge	10/23/19	S	7.93	30.1	6.7	107	52,681	34.6							1.4	
1/14/19 S 7 7.89 2.97 86 3.3.6 1.3.6 33.6 4.7 7.84 7.7 7.8 9.8 3.3.6 1.3.6 3.3.6 1.3.6 3.3.6 1.3.6 3.3.6 1.3.6 3.3.4 1.1 640 661 54 4.5 5.0 1.1 1.1 1.1 1.2 5.0 1.3 1.4 1.2 1.3 1.4 1.3 1.4 1.2 6.0 3.3 4.1 6.0 661 6.4 4.5 5.0 1.1 1.2 6.0 6.1 1.4 1.6 2.2 3.2 1.1 1.2 6.0 6.1 1.1 6.0 6.1 6.1 6.0 6.1 1.7 1.7 1.7 1.7 1.7 1.2 6.1 1.7 1.7 1.2 6.1 1.1 1.2 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 7.2 6.1 7.2 7.2	11/47/20 S	E Winterberry Bridge	10/23/19	ω (7.90	29.8	5.5	87	52,937	34.8	3	1	000		(0	,	(
1/1/19/19/19/19/19/19/19/19/19/19/19/19/	1/16/20 S 7.83 240 6.8 6.9 6	E Winterberry Bridge	11/4/19	n c	7.92	29.7	4. 0	80	51,330	33.0	7 7	973	980	3 03	ω r ω α	υ. υ. α	4. 4	10
1/15/20 S. 7.83 9.6 9.0	1715/20 S	E Willelbelly Blidge	61/01/71	0	1007	24.0	9.0	80	47,329	0.10	5 4	131	4 7 6	7/2	0.0	0.0		000,1
2/3/2/0 S 7.80 19.3 0.4 8.3 50,000 33.3 15 0.20 0.41 16 0.21 0.41 16 0.41 16 0.41 16 0.41 16 0.41 16 0.41 16 0.41 16 0.41 0.42	2/3/201 S 7.88 19.3 6.4 8.3 50,000 3.3.3 15 6.20 641 16 2.2 3.2 1.7 2/3/201 B 7.88 19.2 6.3 82 56,136 36.4 11 1,600 1,611 50 6.5 6.1 1.3 4/14/20 S 7.86 290 6.1 96 56,136 36.4 11 1,600 1,611 50 6.5 6.1 1.3 1.3 4/14/20 S 7.96 2.86 56 86 56,136 36.4 11 1,600 1,611 50 6.5 6.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.7 1.8 50 2.8 2.7 1.4 1.4 1.4 1.7 1.4 1.4 1.2 1.4 1.4 1.4 1.4 1.4 1.5 1.4 1.4 1.4 1.	E Winterberry Bridge	02/51/1	n o	7.83	23.0	8.0	06	50,863	33.4	= ;	040	1.00	¥ ;	t. 4	0.0	ر ن ا	10
4/4/20 S 7.86 19.2 6.5 6.5 6.1 1.6 6.5 6.1 1.3 4.7 7.86 19.2 6.1 9.6 55,136 36.4 11 1,600 1,611 50 6.5 6.1 1.3 4.7 1.3 6.2 9.6 55,136 36.4 11 1,600 1,611 50 6.5 6.1 1.3 6.2 9.6 55,136 36.4 11 1,600 1,611 50 6.5 6.1 1.3 6.2 9.6 55,172 36.4 36.4 490 52.3 490 5.7 490 4.6 7.7 7.8 7.9 4.7 7.7 7.8 7.9 7.9 4.7 7.2 7.7 7.8 7.9 7.9 7.9 7.9 8.6 5.2 8.8 50,622 33.0 1.1 7.7 7.8 7.9 7.9 7.9 8.8 50,622 33.0 1.1 7.7 7.8 7.9 1.4	4/14/20 S 7.80 1.92 0.5	E Winterberry Bridge	2/3/20	ם מי	7 00	19.3	6.4	833	50,065	33.3	ū	979	42	9	2.2	3.2	J.,/	0.L
4/14/20 S 7.85 2.84 5.6 88 55,135 36.4 36.1 33 490 523 96 4.9 13.0 0.9 5/14/20 S 7.94 25.7 5.8 86 54,546 36.1 33.5 11 777 788 50 2.8 2.7 1.4 5/14/20 S 7.89 30.4 6.2 99 51,212 33.5 11 777 788 50 2.8 2.7 1.4 6/15/20 S 7.89 30.4 6.2 99 51,212 33.5 11 777 788 50 2.8 1.4 1.4 1.7 1.4 1.4 1.7 1.4 1.7 1.4 1.4 1.7 1.4 1.7 1.4 1.7 1.4 1.7 1.4 1.7 1.4 1.7 1.4 1.7 1.4 1.7 1.4 1.7 1.4 1.7 1.4 1.7 1.4 1.7	4/14/20 B 7.85 2.84 56,135 36.4 36.1 33 490 523 96 4.9 13.0 0.9 5/14/20 S 7.94 25.6 5.8 86 54,546 36.1 33 490 523 96 4.9 13.0 0.9 5/14/20 S 7.94 25.7 5.8 86 54,546 36.1 33.5 11 777 788 50 4.9 1.4	E Winterberry Bridge	02/2/2	0 د	7 86	28.0		98	55.37	26.5	-	1 600	1611	C,	ω υ	4	4	10
5/14/20 S 7.94 25.6 5.8 86 54,546 36.1 33 490 523 96 4.9 13.0 0.9 5/14/20 B 7.94 25.7 5.8 86 54,712 36.2 7 7 788 50 28 2.7 1.4 7 7 788 50 28 2.7 1.4 7 7 788 50 28 2.7 1.4 7 7 788 50 28 2.7 1.4 7 7 788 50 28 2.7 1.4 7 7 78 50 28 2.7 1.4 1.7 1.2 2.2 1.1 7 7 8 1.1 867 868 5.4 1.6 1.7 1.9 1.9 1.1 882 88 2.4 1.6 1.7 1.9 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 <t< td=""><td>5/14/20 S 7.91 25.6 5.8 86 54,546 36.1 33 490 523 96 4.9 13.0 0.9 5/14/20 B 7.94 25.7 5.8 86 54,712 36.2 7 7 78 50 28 2.7 1.4 7 7 78 50 28 2.7 1.4 7 7 78 50 28 2.7 1.4 7 7 78 50 28 2.7 1.4 7 7 78 50 28 2.7 1.4 7 7 78 50 28 2.7 1.4 7 1.4 7 1.4 1.7 1.4 1.6 1.7 1.9 1.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.1 1.1 1.2 1.1 1.1 1.2 1.1 1.1 1.2 1.1 1.1 1.2 1.1</td><td>E Winterberry Bridge</td><td>4/14/20</td><td>ο α</td><td>7.85</td><td>28.8</td><td>5.6</td><td>88</td><td>55,135</td><td>36.4</td><td></td><td></td><td></td><td>3</td><td></td><td>i</td><td>2</td><td></td></t<>	5/14/20 S 7.91 25.6 5.8 86 54,546 36.1 33 490 523 96 4.9 13.0 0.9 5/14/20 B 7.94 25.7 5.8 86 54,712 36.2 7 7 78 50 28 2.7 1.4 7 7 78 50 28 2.7 1.4 7 7 78 50 28 2.7 1.4 7 7 78 50 28 2.7 1.4 7 7 78 50 28 2.7 1.4 7 7 78 50 28 2.7 1.4 7 1.4 7 1.4 1.7 1.4 1.6 1.7 1.9 1.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.1 1.1 1.2 1.1 1.1 1.2 1.1 1.1 1.2 1.1 1.1 1.2 1.1	E Winterberry Bridge	4/14/20	ο α	7.85	28.8	5.6	88	55,135	36.4				3		i	2	
\$\(\)\)	\$1/4 20 B 7.94 25.7 5.8 B6 54,712 36.2 11 777 788 50 2.8 2.7 1.4 6/15/20 S 7.89 30.4 6.2 99 51,212 33.5 11 777 788 50 2.8 2.7 1.4 1.4 1.4 1.7 722 31 5.7 1.4 1.9 1.9 1.1 1.1 1.1 722 31 5.7 1.4 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.1 1.1 711 722 31 1.6 2.2 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.1 1.1 1.1 1.1 882 883 56 9.7 1.6 1.7 1.1 1.1 1.2 1.1 1.1 1.1 1.2 1.1 1.1 1.1 1.0 1.1 1.1 1.1	E Winterberry Bridge	5/14/20	S	7.91	25.6	5.8	98	54,546	36.1	33	490	523	96	4.9	13.0	6:0	10
6/15/20 S 7.89 30.4 6.2 99 51,212 33.5 11 777 788 50 2.8 2.7 1.4 7/28/20 S 7.93 31.3 6.2 99 49,932 32.5 11 771 722 31 5.7 1.2 1.9 8/25/20 S 7.93 30.4 6.2 99 49,932 33.5 11 867 868 24 1.6 1.2 1.9 1.9 8/25/20 S 7.93 30.8 4.6 7.2 49,545 32.3 1 862 89.7 1.6 1.7 1.7 9/23/20 S 7.93 29.8 4.6 7.2 49,545 32.3 1 400 14 2.5 1.7	6/15/20 S 7.89 30.4 6.2 99 51,212 33.5 11 777 788 50 2.8 2.7 1.4 7/28/20 S 7.93 31.3 6.2 99 49,932 32.5 11 771 722 31 5.7 1.2 1.9 8/25/20 S 7.93 31.1 6.2 88 50,622 33.0 11 857 868 24 1.6 2.2 2.0 8/25/20 S 7.93 30.8 6.2 96 47.263 33.6 11 882 893 56 9.7 1.6 1.7 9/23/20 S 7.93 29.8 4.6 72 49,545 32.3 1 400 14 2.5 0.96 2.4 11/23/20 S 8.18 2.7 4.9,545 32.3 1 400 14 2.5 0.96 2.4 11/123/20 S 8.23 19.	E Winterberry Bridge	5/14/20	В	7.94	25.7	5.8	98	54,712	36.2								
7/28/20 S 7.93 31.3 6.2 99 49,932 32.5 11 711 722 31 5.7 1.2 1.9 8/25/20 S 7.97 31.1 5.5 88 50,622 33.0 11 867 868 24 1.6 2.2 2.0 8/25/20 B 7.99 30.8 5.2 83 50,388 33.3 11 882 893 56 9.7 1.6 1.7 9/23/20 B 7.99 30.8 4.6 72 49,545 32.3 11 882 893 56 9.7 1.6 1.7 1.7 10/22/20 S 7.93 2.98 4.6 72 49,545 32.3 1.7 400 14 2.5 9.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	7/28/20 S 7.93 31.3 6.2 99 49,932 32.5 11 711 722 31 5.7 1.2 1.9 8/25/20 S 7.97 31.1 5.5 88 50,622 33.0 11 867 868 24 1.6 2.2 2.0 8/25/20 S 7.99 30.8 6.2 96 47,263 33.3 11 862 893 56 9.7 1.6 1.7 9/23/20 B 7.93 2.94 4.6 72 49,545 32.3 66 9.7 1.6 1.7 1.7 10/22/20 S 8.18 2.79 4.2 60 50,398 33.1 42 2.0 14 2.5 9.6 2.4 1 3.2 0.96 2.4 1 1.7 1 1.7 1 1.7 1.7 1 1.7 1 1.7 1 1.7 1 1.7 1 1.7 </td <td>E Winterberry Bridge</td> <td>6/15/20</td> <td>S</td> <td>7.89</td> <td>30.4</td> <td>6.2</td> <td>66</td> <td>51,212</td> <td>33.5</td> <td>1</td> <td>777</td> <td>788</td> <td>20</td> <td>2.8</td> <td>2.7</td> <td>1.4</td> <td>10</td>	E Winterberry Bridge	6/15/20	S	7.89	30.4	6.2	66	51,212	33.5	1	777	788	20	2.8	2.7	1.4	10
8/5/2/O S 7.97 31.1 5.5 88 50,622 33.0 11 857 868 24 1.6 2.2 2.0 8/25/2/O B 7.99 30.8 5.2 83 50,938 33.3 1 82 3 3	8/5/2/O S 7.97 31.1 5.5 88 50,622 33.0 11 857 868 24 1.6 2.2 2.0 8/25/2/O B 7.99 30.8 5.2 83 50,938 33.3 1 8 7 7 7 7 7 49,545 32.3 1 8 8 9.7 1.6 1.7 1 1.7 1 1.7 1 1.7 1 1.7 1 1.7 1 1.7 1 1.7 1 1.7 1 1.7 1 1.7 1 1.7 1 1.7 1 1 1.7 1 1 1.7 1 1.7 1 1 1.7 1 1.7 1 1 1.7 1 1 1.7 1 1 1 1.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E Winterberry Bridge	7/28/20	Ø	7.93	31.3	6.2	66	49,932	32.5	-	711	722	31	5.7	1.2	1.9	10
8/25/20 B 7.99 30.8 5.2 83 50,938 33.3 9 7.99 30.8 1.7 1.7 9 9/23/20 S 7.93 29.7 6.2 96 47,263 30.6 11 882 893 56 9.7 1.6 1.7 <td< td=""><td>8/26/20 B 7.99 30.8 5.2 8.3 50.938 33.3 9 7.99 30.8 1.7 <th< td=""><td>E Winterberry Bridge</td><td>8/25/20</td><td>S</td><td>7.97</td><td>31.1</td><td>5.5</td><td>88</td><td>50,622</td><td>33.0</td><td>-1</td><td>857</td><td>898</td><td>24</td><td>1.6</td><td>2.2</td><td>2.0</td><td>20</td></th<></td></td<>	8/26/20 B 7.99 30.8 5.2 8.3 50.938 33.3 9 7.99 30.8 1.7 <th< td=""><td>E Winterberry Bridge</td><td>8/25/20</td><td>S</td><td>7.97</td><td>31.1</td><td>5.5</td><td>88</td><td>50,622</td><td>33.0</td><td>-1</td><td>857</td><td>898</td><td>24</td><td>1.6</td><td>2.2</td><td>2.0</td><td>20</td></th<>	E Winterberry Bridge	8/25/20	S	7.97	31.1	5.5	88	50,622	33.0	-1	857	898	24	1.6	2.2	2.0	20
9/23/20 S 7.93 2.97 6.2 96 47,263 30.6 11 882 893 56 9.7 1.6 1.7 9/23/20 B 7.93 29.8 4.6 72 49,545 32.3 400 14 2.5 1.7 1.7 10/22/20 S 8.18 27.9 4.2 60 50,398 33.1 42 200 242 11 3.2 0.96 2.4 11/23/20 S 8.23 19.6 5.5 81 50,342 33.6 39 290 329 5 2.5 0.58 2.5 12/10/20 B 330 5 2.5 2.5 0.58 2.5 12	9/23/20 S 7.93 29.7 6.2 96 47,263 30.6 11 882 893 56 9.7 1.6 1.7 10/23/20 S 7.93 29.8 4.6 72 49,545 32.3 400 14 2.5 1.7 1.7 10/23/20 S 8.18 27.9 4.2 60 50,398 33.1 42 200 242 11 3.2 0.96 2.4 11/123/20 S 8.23 19.6 5.5 81 50,342 33.6 39 290 329 5 2.5 0.58 2.5 12/10/20 S 8.23 19.6 5.5 81 50,342 33.6 5 2.5 0.58 2.5 8	E Winterberry Bridge	8/25/20	В	7.99	30.8	5.2	83	50,938	33.3								
9/23/20 B 7.93 29.8 4.6 72 49,545 32.3 400 14 2.5 1.7 10/22/20 S 8.18 27.9 4.2 60 50,396 33.1 42 200 242 11 3.2 0.96 2.4 11/23/20 B 8.23 19.6 5.5 81 50,342 33.6 290 290 329 5 2.5 0.58 2.5 12/10/20 B 330 5 2.5 330 5 2.5 2.5	9/23/20 B 7.93 29.8 4.6 72 49,545 32.3 400 14 2.5 1.7 10/22/20 S 8.18 27.9 4.2 60 50,396 33.1 42 200 242 11 3.2 0.96 2.4 11/23/20 B 8.23 19.6 5.5 81 50,342 33.6 290 329 5 2.5 0.58 2.5 12/10/20 B 12/10/20 B 330 5 2.5 0.58 2.5 1	E Winterberry Bridge	9/23/20	S	7.93	29.7	6.2	96	47,263	30.6	11	882	883	26	9.7	1.6	1.7	10
10/22/20 S 8.18 27.9 4.2 60 50,396 33.1 42 200 242 11 3.2 0.96 2.4 11/23/20 B 8.23 19.6 5.5 81 50,342 33.6 290 290 329 5 2.5 0.58 2.5 12/10/20 B 330 5 2.5 0.58 2.5 2.5	10/22/20 S 8.18 27.9 4.2 60 50,396 33.1 42 200 242 11 3.2 0.96 2.4 11/23/20 B 8.23 19.6 5.5 81 50,342 33.6 39 290 329 5 2.5 0.58 2.5 12/10/20 B 12/10/20 B 330 5 2.5 0.58 2.5	E Winterberry Bridge	9/23/20	a	7.93	29.8	4.6	72	49,545	32.3							1.7	
11/23/20 S 8.18 27.9 4.2 60 50,396 33.1 42 200 242 11 3.2 0.96 2.4 11/23/20 B 8.23 19.6 5.5 81 50,342 33.6 39 290 329 5 2.5 0.58 2.5 12/10/20 B 330 5 2.5 0.58 2.5 2.5	11/23/20 S 8.18 27.9 4.2 60 50,396 33.1 42 200 242 11 3.2 0.96 2.4 11/23/20 B B 8.23 19.6 5.5 81 50,342 33.6 39 290 329 5 2.5 0.58 2.5 12/10/20 B B 330 5 2.5 2.5 81	E Winterberry Bridge	10/22/20	S	!								400	4	2.5			20
1/12/3/20 B 8.23 19.6 5.5 81 50,342 33.6 39 290 120 1 3.2 0.58 2.5 12/10/20 B 330 5 2.5 2.5	1/12/3/20 S 8.23 19.6 5.5 81 50,342 33.6 39 290 329 5 2.5 0.58 2.5	E Winterberry Bridge	11/23/20	w c	8.18	27.9	4.2	09	50,398	33.1	42	200	242	= ;	3.2	0.96	2.4	10
12/10/20 B 0.23 19:0 0.10 00,342 03:0 09 290 0.29 2.50 0.30 2.50 0.30 2.50 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0	12/10/20 B	E Willelbeiry Driuge	12/10/20	ט מ	8 23	10.6	r.	ά	50 342	33 6	30	200	320	_ u	3.6	0.58	о 2	10
		E Winterberry Bridge	12/10/20	o 60	0.4.0	5.0	0.0	10	20,000	0.00	00	720	330) LG	2.5	50.00	0.7	5 0

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Station ID	Sample Date	Sample Depth	pH (s.u.)	. (၁)	(mg/L)	(% satn.)	(humho/cm)	(ppt)	(hg/L)	(hg/L)	(µg/L)	(hg/L)	(mg/m³)	(NTU)	Depth (m)	(cfu/100 mL)
HC Center	5/31/07	S								870						4
HC Center	8/1/07	S								320						7
HC Center	9/26/07	S								530						_
HC Center	11/28/07	S								620						2
HC Center	1/30/08	S								130						2
HC Center	3/12/08	တ								180						22
HC Center	5/15/08	ω α								240						τ ,
HC Center	0/24/08	o u								140						
HC Center	12/10/08	o 0.								350						- 0
HC Center	2/11/09	o o								152						1 6
HC Center	4/29/09) ဟ								201						o
HC Center	6/11/09	S								451						-
HC Center	8/27/09	S								219						-
HC Center	10/27/09	S								845						2
HC Center	12/22/09	Ø								396						~
HC Center	2/24/10	S								26						~
HC Center	4/21/10	တ								233						17
HC Center	6/23/10	S								176						-
HC Center	9/2/10	S								1,018						_
HC Center	11/17/10	S								59						1
HC Center	1/26/11	S								455						16
HC Center	3/23/11	S								210						-
HC Center	5/18/11	S								315						6
HC Center	7/28/11	S														2
HC Center	9/28/11	S								380						4
HC Center	12/29/11	S								374						-
HC Center	2/23/12	S								306						2
HC Center	4/25/12	တ								431						-
HC Center	6/27/12	Ø								276						80
HC Center	8/22/12	တ								356						~
HC Center	10/24/12	တ (224						← :
HC Center	12/2//12	y (495						19
HC Center	SL/12/2	n o								333						67
HC Center	4/24/13	တ (426						. 19
HC Center	6/20/13	တ (389						- !
HC Center	8/28/13	တ ဖ								273						40
HC Center	10/30/13	y) (†					28						3 2
HC Center	1/22/14	ν (253						r ;
HC Center	3/26/14	y o								213						. 67
HC Center	5/28/14	y (278						- 3
HC Center	7/30/14	n o								41.6						°.
HC Center	9/24/14	n								253						01
HC Center	1/27/15	တ (7.68	20.4	6.2	\$	51,101	33.6	50	100	120	16	9.1			10
HC Center	5/12/15	S	7.84	28.8	5.3	88	52,413	34.4	18	51	69	8	1.7			10
HC Center	8/25/15	S	7.98	33.5	6.2	103	48,996	31.7	16	227	243	23	6.1			10
HC Center	11/19/15	S	7.70	27.4	4.0	09	48,705	31.7	99	377	443	46	2.2			10
HC Center	2/1/16	S	7.72	19.9	6.4	83	42,292	27.1	137	367	504					
HC Center	5/10/16	S	7.85	26.1	5.3	78	52,384	34.5	1							
HC Center	8/11/16	S	7.91	30.8	4.9	9/	46,467	30.0	23	211	009					
								9	ì							

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Station ID	Date	Depth	(s.u.)	(C)	(mg/L)	(% satn.)	(humho/cm)	(ppt)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/m³)	(NTU)	Depth (m)	(cfu/100 mL)
HC Center	2/21/17	S	7.84	24.2	6.9	66	51,823	34.1	2	451	453	19	4.7		2.1	
HC Center	2/21/17	В	7.86	24.2	6.7	26	51,805	34.1							2.1	
HC Center	5/18/17	S	7.73	28.7	4.6	7.1	53,282	35.2	2	642	644	32	4.3		1.5	10
HC Center	5/18/17	В	7.71	29.2	3.7	58	53,884	35.6							1.5	
HC Center	8/16/17	S	8.06	33.1	6.2	100	44,766	28.7	က	487	490	31	4.0		1.7	10
HC Center	8/16/17	В	7.84	33.4	2.6	42	45,563	29.3								
HC Center	11/13/17	S	7.55	25.9	5.3	77	47,868	31.2	9	572	578	31	2.6		2.0	20
HC Center	11/13/17	В	7.61	25.6	5.7	83	47,891	31.2								
HC Center	2/8/18	S	7.79	22.4	7.4	103	51,088	33.6		1,160		7	2.7		2.2	10
HC Center	2/8/18	В	7.75	22.3	5.8	81	51,804	34.1								
HC Center	5/21/18	တ	7.82	26.4	5.5	83	52,028	34.2	13	657	029	7	1.6		1.8	10
HC Center	5/21/18	В	7.82	26.3	5.4	80	52,030	34.2								
HC Center	8/16/18	တ	7.87	31.2	5.0	81	51,597	33.7	1	167	778	82	5.6		1.9	63
HC Center	8/16/18	В	7.87	31.1	4.8	77	51,630	33.8								
HC Center	11/15/18	S	7.76	27.2	5.9	88	49,943	32.6	7	853	864	28	9.9		1.6	158
HC Center	11/15/18	В	7.76	27.9	5.4	82	50,898	33.3								
HC Center	2/26/19	S	7.77	25.9	9.9	96	50,074	32.8	1	230	241	20	5.7		1.4	10
HC Center	2/26/19	В	7.75	25.8	6.1	06	50,038	32.8								
HC Center	5/13/19	တ	7.80	30.7	6.2	100	52,191	34.2	7	748	759	48	5.3		1.6	10
HC Center	5/13/19	В	7.80	30.1	0.9	92	52,208	34.2								
HC Center	8/7/19	တ	8.14	31.7	10.4	163	43,288	27.7	1	397	408	65	7.5		6.0	10
HC Center	8/7/19	В	7.98	30.9	8.1	128	48,047	31.1								
HC Center	10/23/19	တ	7.89	30.1	7.9	125	49,912	32.5							1.1	
HC Center	10/23/19	В	7.86	30.0	7.5	118	49,924	32.5								
HC Center	11/4/19	တ	7.75	29.3	5.7	88	50,333	32.9	1	675	989	25	10.0	2.3	1.5	20
HC Center	11/4/19	В	69.7	28.9	4.9	92	50,316	32.9								
HC Center	12/18/19	S	7.96	23.7	6.7	92	47,360	30.8	7	454	465	48	7.3	1.3	1.5	269
HC Center	1/15/20	တ	7.64	22.9	6.3	87	50,119	32.9	7	267	578	53	2.5	1.7	1.7	10
HC Center	1/15/20	В	7.72	23.0	0.9	84	50,428	33.1								
HC Center	2/4/20	တ	7.65	20.0	9.9	88	49,071	32.1	21	564	585	18	2.4	1.0	1.6	10
HC Center	2/4/20	В	7.66	20.9	0.9	80	49,787	32.7								
HC Center	4/14/20	S	7.72	28.8	4.8	92	55,494	36.7	29	561	628	55	2.5	2.2	1.7	10
HC Center	4/14/20	В	7.71	28.7	4.7	74	55,610	36.8								
HC Center	5/14/20	တ	7.85	25.8	5.5	82	53,882	35.6	33	430	463	68	1.7	1.8	1.8	10
HC Center	5/14/20	ω	7.87	25.8	5.5	84	53,908	35.6								
HC Center	6/15/20	တ	7.84	30.0	5.3	83	48,135	31.2	1	723	734	53	4.8	0.8	2.1	10
HC Center	6/15/20	ם מ	7.85	30.3	y. 4	7 7	49,033	3.9	7	470	700	1	L			4
HC Center	7/28/20	ν ם	7 05	30.7	4.0	101	47,779	31.0	=	0/4	804	20	0.0	C.	<u>.</u>	2
HC Center	8/25/20	o w	62.7	31.0	4. 6.4	00	47,607	31.0	-	593	604	45	11	0.	14	0
HC Center	8/25/20	m	7.78	31.0	3.9	63	48.253	31.3								
HC Center	9/23/20	Ø	7.94	29.1	5.6	84	42,714	27.4	1	523	534	48	8.2	6.0	1.7	10
HC Center	9/23/20	В	7.91	29.3	5.1	77	42,831	27.4								
HC Center	10/22/20	S									400	5	5.6			20
HC Center	11/23/20	S	8.16	24.7	4.5	61	47,190	30.7	21	370	391	5	2.5	0.54	1.8	10
HC Center	11/23/20	В									390	5	2.5			
HC Center	12/10/20	S	8.18	19.6	5.2	67	47.698	31.1	29	250	309	5	2.5	0.62	75	10
						5)))	:;		, , , ,	- / /	,	2	11:	?	•

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Station ID	Sample Date	Sample Depth	pH (s.u.)	Temp.	Diss. O ₂ (mg/L)	Diss. O ₂ (% satn.)	Cond. (µumho/cm)	Salinity (ppt)	NOX (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)
Hollyhock	5/31/07	Ø								790						36
Hollyhock	8/1/07	S								220						260
Hollyhock	9/26/07	Ø								540						29
Hollyhock	11/28/07	S								40						-
Hollyhock	1/30/08	Ø								260						-
Hollyhock	3/12/08	Ø								360						20
Hollyhock	5/15/08	တ (250						2
Hollyhock	1/23/08	y)								620						თ :
Hollyhock	9/24/08	တ ဖ								610						41
Hollyhock	12/10/08	v) c								430						- 0
Hollyhock	60/11/2	v o								180						m d
Hollyhock	4/29/09	တ (270						က ၊
Hollyhock	6/11/08	တ (138						, !
Hollyhock	8/27/09	ဟ								171						42
Hollyhock	10/27/09	ဟ								469						-
Hollyhock	12/22/09	တ (339						5
Hollyhock	2/24/10	တ								150						တ
Hollyhock	4/21/10	တ								199						2
Hollyhock	6/23/10	ဟ								161						0
Hollyhock	9/2/10	Ø								200						17
Hollyhock	11/17/10	S								59						1
Hollyhock	1/26/11	Ø								515						227
Hollyhock	3/23/11	တ								494						7
Hollyhock	5/18/11	Ø								747						-
Hollyhock	7/28/11	တ														-
Hollyhock	9/28/11	တ								513						4
Hollyhock	12/29/11	S								393						21
Hollyhock	2/23/12	S								401						8
Hollyhock	4/25/12	တ								265						7
Hollyhock	6/27/12	တ								384						က
Hollyhock	8/22/12	Ø								202						-
Hollyhock	10/24/12	တ								340						56
Hollyhock	12/27/12	ဟ								206						84
Hollyhock	2/27/13	S								420						83
Hollyhock	4/24/13	S								780						29
Hollyhock	6/20/13	S								292						29
Hollyhock	8/28/13	S								258						48
Hollyhock	10/30/13	S								250						70
Hollyhock	1/22/14	တ								445						28
Hollyhock	3/26/14	S								295						96
Hollyhock	5/28/14	S								274						13
Hollyhock	7/30/14	S								375						41
Hollyhock	9/24/14	S								435						10
Hollyhock	1/28/15	S	7.84	19.3	6.8	06	53,220	35.2	27	158	185	28	1.6			10
Hollyhock	5/12/15	S	7.87	28.6	5.2	81	53,204	35.0	27	63	06	31	4.0			20
Hollyhock	8/25/15	S	7.69	32.0	5.2	85	50,277	32.7	19	186	205	30	4.1			20
Hollyhock	11/19/15	S	7.79	26.2	7.3	109	50,776	33.3	22	160	182	17	7.1			10
Hollyhock	2/1/16	S	7.73	19.2	6.2	78	40,862	26.2	133	376	209					
Hollyhock	5/10/16	Ø	7.76	25.8	4.3	64	52,976	34.9	12							
Hollyhock	8/11/16	Ø	7.77	31.0	4.8	92	45,163	29.1	35	673	208					
		c	1	0	C	ĺ										

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Station ID	Sample	Sample	Hd	Temp.	Diss. O ₂	Diss. O ₂	Cond.	Salinity (npt)	XON	TKN	Total N	Total P	Chyl-a	Turbidity	Secchi Denth (m)	Entero
	Date	Deptil	(ə.e.)	3	(IIIg/L)	(% Sdul.)	(hallillo/cill)	(phr)	(HB/L)	(µg/L)	(Hg/L)	(H8/F)	(mg/m)	(NIO)	Deptil (III)	(ciu/ 100 IIIL)
Hollyhock	2/21/17	တ	7.70	23.4	6.1	87	53,009	35.0	က	929	629	33	3.6		1.1	20
Hollyhock	5/18/17	S	7.79	28.6	5.3	83	54,963	36.3	6	262	604	25	5.6		1.4	10
Hollyhock	8/16/17	S	7.95	32.9	5.7	91	44,294	28.4	9	487	493	27	4.5		1.3	10
Hollyhock	11/13/17	S	7.75	25.0	5.6	81	49,863	32.6	9	345	351	42	2.5		1.5	156
Hollyhock	11/13/17	В	7.74	25.3	4.0	29	50,568	33.2								
Hollyhock	2/8/18	S	7.74	22.7	5.9	83	53,845	35.6		268		7	1.5		1.2	10
Hollyhock	2/8/18	В	7.75	22.7	5.9	83	53,888	35.7				16	1.7		1.2	10
Hollyhock	5/21/18	တ	7.49	26.4	4.0	29	49,509	32.3	44	824	898	99	3.0		1.3	20
Hollyhock	8/16/18	တ	7.99	30.7	4.7	75	51,631	33.8	1	1,140	1,151	91	9.7		1.0	211
Hollyhock	11/15/18	တ	7.74	27.3	4.2	64	52,894	34.8	19	069	602	20	4.7		1.3	20
Hollyhock	2/26/19	S	7.76	25.9	5.1	75	51,591	33.9	199	240	439	75	10.0		1.0	31
Hollyhock	2/26/19	В	77.77	25.9	5.2	77	51,586	33.9	-	273	284	20	9.2		1.0	52
Hollyhock	5/13/19	S	7.83	29.3	5.5	86	52,686	34.6	-	461	472	78	10.3		1.7	10
Hollyhock	5/13/19	В	7.79	29.2	4.7	74	52,797	34.7								
Hollyhock	8/7/19	S	7.71	30.5	5.0	78	46,080	29.7	16	911	927	72	0.9		1.7	10
Hollyhock	8/7/19	В	7.70	30.6	4.3	89	46,509	30.0								
Hollyhock	10/23/19	S	7.58	29.6	4.3	69	52,466	34.4							1.3	
Hollyhock	10/23/19	В	7.53	29.5	3.4	54	52,502	34.5								
Hollyhock	11/4/19	တ	7.66	29.3	4.9	77	50,784	33.2	11	1,230	1,241	9/	15.2	2.7	1.3	10
Hollyhock	12/18/19	S	7.64	24.4	5.2	75	51,434	33.8	34	632	999	70	13.3	3.6	1.1	281
Hollyhock	1/15/20	S	7.72	23.6	5.4	92	51,594	33.9	11	969	202	29	5.4	7.5	1.0	10
Hollyhock	2/3/20	S	7.63	19.1	5.3	69	50,681	33.3	34	888	922	39	1.3	4.7	1.3	10
Hollyhock	4/14/20	S	7.72	29.1	5.7	91	56,008	37.1	1	792	803	26	7.6	2.7	1.3	10
Hollyhock	5/14/20	တ	7.86	25.9	5.4	81	54,791	36.3	33	530	563	88	7.5	7.4	1.0	10
Hollyhock	6/15/20	S	7.75	31.8	0.9	86	50,170	32.7	11	918	929	40	7.2	2.9	1.1	20
Hollyhock	6/15/20	В	7.76	31.8	6.4	104	50,372	32.8	1	788	266	4	6.4	2.7	1.1	10
Hollyhock	7/28/20	S	7.80	30.6	4.9	78	49,008	31.9	11	809	619	54	3.4	1.6	1.8	285
Hollyhock	7/28/20	В	7.80	30.8	4.1	65	49,621	32.3								
Hollyhock	8/25/20	S	7.80	30.5	2.0	62	49,759	32.4	11	673	684	18	4.8	2.2	1.8	10
Hollyhock	8/25/20	В	7.78	30.6	4.1	99	49,919	32.5								
Hollyhock	9/23/20	တ	7.85	27.8	5.8	98	44,057	28.4	7	413	413	39	4.5	4.1	4:1	<10
Hollyhock	9/23/20	В									413	39	4.5			10
Hollyhock	10/22/20	တ									380	9	7.2			20
Hollyhock	11/23/20	တ	8.13	24.9	3.5	51	50,437	33.0	29	290	320	20	2.5	0.67	1.8	10
Hollyhock	11/23/20	В									320	20	2.5			
Hollyhock	12/10/20	တ	8.32	18.9	5.2	29	50,310	33.0	25	320	340	6	2.5	69.0	1.7	10
Hollyhock	12/10/20	В									340	6	2.5			10

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Station ID	Sample Date	Sample Depth	(s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Diss. O ₂ (% satn.)	Cond. (µumho/cm)	(ppt)	NOX (µg/L)	(µg/L)	Total N (µg/L)	l otal Ρ (μg/L)	Cnyl-a (mg/m³)	(NTU)	Seconi Depth (m)	(cfu/100 mL)
Hummingbird	5/31/07	တ								840						2
Hummingbird	8/1/07	S								370						71
Hummingbird	9/26/07	S								290						2
Hummingbird	11/28/07	S								260						1
Hummingbird	1/30/08	S								190						-
Hummingbird	3/12/08	S								460						9
Hummingbird	5/15/08	တ								280						-
Hummingbird	7/23/08	တ								089						က
Hummingbird	9/24/08	တ (100						- (
Hummingbird	12/10/08	S								370						2
Hummingbird	2/11/09	တ								92						-
Hummingbird	4/29/09	S								790						4
Hummingbird	6/11/09	S								257						2
Hummingbird	8/27/09	S								267						1
Hummingbird	10/27/09	S								892						9
Hummingbird	12/22/09	S								238						-
Hummingbird	2/24/10	S								59						1
Hummingbird	4/21/10	တ								392						3
Hummingbird	6/23/10	S								194						19
Hummingbird	9/2/10	တ								1,311						6
Hummingbird	11/17/10	S								59						1
Hummingbird	1/26/11	S								265						98
Hummingbird	3/23/11	S								329						4
Hummingbird	5/18/11	S								366						က
Hummingbird	7/28/11	S														2
Hummingbird	9/28/11	တ								425						6
Hummingbird	12/29/11	S								499						9
Hummingbird	4/25/12	တ								320						က
Hummingbird	6/27/12	တ								222						∞
Hummingbird	8/22/12	တ								729						42
Hummingbird	10/24/12	တ (300						2
Hummingbird	12/27/12	တ								467						10
Hummingbird	4/24/13	S								572						38
Hummingbird	6/20/13	S								634						14
Hummingbird	8/28/13	တ								322						26
Hummingbird	10/30/13	S								236						17
Hummingbird	1/22/14	တ								288						64
Hummingbird	3/26/14	တ								175						120
Hummingbird	5/28/14	တ								203						10
Hummingbird	7/30/14	တ								295						10
Hummingbird	9/24/14	တ								462						10
Hummingbird	1/28/15	တ	7.81	20.0	9.9	06	52,651	34.8	28	109	137	40	1.3			10
Hummingbird	5/12/15	တ	7.86	29.5	5.1	81	52,484	34.4	18	51	69	59	5.2			10
Hummingbird	8/25/15	S	96'2	32.6	5.3	87	49,904	32.4	17	222	239	30	2.8			10
Hummingbird	11/19/15	S	7.60	26.4	5.6	83	49,788	32.6	38	220	258	14	4.8			41
Hummingbird	2/1/16	S	8.03	19.4	8.6	123	37,554	23.9	26	342	398					
Hummingbird	5/10/16	တ	7.84	26.1	5.6	83	52,132	34.3	15							
Hummingbird	8/11/16	S	7.85	30.3	5.5	85	45,852	29.6	6	813	822					
Hummingbird	11/9/16	S	7.89	23.9	6.7	96	52,771	34.8								
Hummingbird	2/21/17	တ	7.73	23.8	6.3	06	52,422	34.6	4	458	462	21	5.7		1.4	10
Hummingbird	5/18/17	တ	7.83	29.1	5.5	88	54,502	36.0	2	268	573	8	5.8		1.4	10
I become in the land	1 20 20 20		1 00	7 00	C	,										

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Hummingbird 5/21	Date De	Sample Depth	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Diss. O ₂ (% satn.)	Cond. (µumho/cm)	Salinity (ppt)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)
	5/21/18	S	7.61	26.4	4.5	89	50,478	33.1	18	1,160	1,178	29	4.7		1.4	10
_	8/16/18	S	8.02	31.0	4.9	62	51,261	33.5	7	875	886	98	8.1		1.2	4,884
Hummingbird 11/19	11/15/18	S	99.2	28.1	4.9	75	51,990	34.1	1	875	886	29	8.7		6.0	10
Hummingbird 2/26	2/26/19	S	7.84	26.1	6.2	95	50,853	33.3	11	276	287	92	7.1		1.1	20
Hummingbird 5/13	5/13/19	S	7.87	29.9	6.4	102	52,518	34.5	7	836	847	63	7.9		1.3	327
Hummingbird 5/13	5/13/19	В	7.89	29.8	6.4	102	52,524	34.5								
Hummingbird 8/7/	8/7/19	S	7.73	30.5	5.6	98	44,512	28.6	7	684	695	77	8.4		1.7	10
Hummingbird 8/7/	8/7/19	В	7.73	30.7	4.1	65	46,384	29.9								
Hummingbird 10/2:	10/23/19	S	7.87	30.0	8.9	108	51,430	33.7							1.6	
Hummingbird 11/4	11/4/19	S	7.69	29.1	4.3	29	49,901	32.6	15	1,030	1,045	68	17.5	2.7	1.3	10
Hummingbird 12/18	12/18/19	S	7.62	24.6	5.4	78	50,413	33.1	19	487	909	61	4.3	1.9	1.1	717
Hummingbird 1/15		S	7.75	23.1	6.3	68	50,242	33.0	1	703	714	25	3.6	2.2	1.0	10
Hummingbird 2/3/	2/3/20	S	7.75	19.1	8.9	88	49,536	32.5	21	795	816	18	3.3	2.6	1.4	10
Hummingbird 4/14	4/14/20	S	7.72	29.0	5.4	85	54,910	36.3	7	753	764	51	3.7	3.9	1.6	10
Hummingbird 4/14/20	4/20	В	7.72	29.0	5.3	84	54,915	36.3								
Hummingbird 5/14/20	4/20	S	7.90	26.1	5.9	89	53,978	35.7	33	490	523	93	5.0	6.7	1.2	10
Hummingbird 6/15	6/15/20	S	7.78	31.1	6.9	110	47,990	31.1	7	624	635	32	4.0	1.5	1.0	10
Hummingbird 7/28	7/28/20	S	7.88	30.8	6.2	97	47,932	31.1	1	790	801	45	6.4	1.1	1.9	10
Hummingbird 7/28	7/28/20	В	7.87	30.9	5.4	85	48,264	31.3								
Hummingbird 8/25	8/25/20	S	7.81	30.6	4.7	75	48,916	31.8	1	479	490	32	3.5	1.7	1.8	10
Hummingbird 9/23	9/23/20	S	7.93	28.7	6.3	94	41,858	26.8	7	413	424	30	6.7	-	4.1	10
Hummingbird 9/23	9/23/20	В									413	30	6.7			10
Hummingbird 10/2;	10/22/20	В									420	5	4.8			50
Hummingbird 11/23	11/23/20	S	8.09	25.2	3.6	54	47,050	30.6	96	380	476	25	2.5	0.39	1.7	201
Hummingbird 11/2:	11/23/20	В									480	25	2.5			
Hummingbird 12/10	12/10/20	S	8.17	19.5	4.9	63	48,279	31.6	35	340	375	6	2.5	0.72	1.6	10
Hummingbird 12/10	12/10/20	В									380	9	2.5			10

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Station ID	Sample Date	Sample Depth	pH (s.u.)	Temp.	Diss. O ₂ (mg/L)	Diss. O ₂ (% satn.)	Cond. (µumho/cm)	Salinity (ppt)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)
JH Park	2/30/02	S								940						-
JH Park	7/31/07	S								370						-
JH Park	9/25/07	S								470						29
JH Park	11/27/07	S								460						2
JH Park	1/29/08	တ								190						← (
JH Park	3/11/08	တ (520						2
JH Park	5/14/08	y u								300						- <
H Park	9/23/08	o co								710						4 66
JH Park	12/9/08	S								100						S 60
JH Park	2/10/09	S								380						7
JH Park	4/28/09	S								630						-
JH Park	6/16/09	S								742						7
JH Park	8/26/09	S								76						4
JH Park	10/26/09	S								9/						-
JH Park	12/21/09	S								336						3
JH Park	2/23/10	တ								170						-
JH Park	4/20/10	တ								146						7
JH Park	6/22/10	တ (120						, 11
JH Park	9/1/10	တ (1,037						-
JH Park	11/16/10	တ								29						-
JH Park	1/25/11	တ ဖ								468						eo ,
JH Park	3/22/11	on u								300						- 0
JH Park	7/27/11	o 00								9						1 ←
JH Park	9/27/11	S								466						44
JH Park	12/28/11	S								387						4
JH Park	2/22/12	S								308						~
JH Park	4/24/12	S								271						~
JH Park	6/26/12	တ								403						-
JH Park	8/21/12	Ø								539						21
JH Park	10/23/12	တ								323						-
JH Park	12/26/12	တ								439						27
JH Park	2/26/13	S								537						40
JH Park	4/23/13	S								638						16
JH Park	6/19/13	တ								388						290
JH Park	8/27/13	တ								239						9
JH Park	10/29/13	S								216						195
JH Park	1/21/14	S								325						37
JH Park	3/25/14	တ								126						91
JH Park	5/27/14	တ								770						4
JH Park	7/29/14	ဟ ပ								297						0 4
L rark	9/23/14	0	7 60	0 0	0	G	406	000	90	436	700	8	c		c	5 6
H Park	5/12/15	n v	7.89	28.5	0.0	20 00	52 487	34.5	07 02	111	131	3 %	3.0		. c.	5 6
JH Park	8/25/15	o 00	7.92	31.8	5.6	9 6	49.191	31.9	15	282	297	3 8	6.4		2.0	146
JH Park	11/19/15	Ø	7.49	26.7	5.2	77	48,497	31.6	64	295	359	22	2.2			10
JH Park	2/1/16	S	7.72	19.0	7.1	88	41,368	26.4	169	385	554					
JH Park	5/10/16	S	7.79	25.9	5.5	82	51,877	34.1							1.5	
JH Park	8/11/16	S	7.88	30.5	5.0	62	47,261	30.6	6	591	009				1.2	
II Park	11/9/16	S	7.84	24.3	6.4	93	52,872	34.8							2.4	

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Station ID	Date	Depth	(s.u.)	(C)	(mg/L)	(% satn.)	(humho/cm)	(ppt)	(hg/L)	(hg/L)	(µg/L)	(µg/L)	Cnyl-a (mg/m³)	Turbidity (NTU)	Seccni Depth (m)	(cfu/100 mL)
JH Park	2/21/17	S	7.86	24.1	6.5	94	52,460	34.6	2	553	555	24	2.3		1.8	10
JH Park	2/21/17	В	7.90	24.1	6.4	93	52,503	34.6							1.8	
JH Park	5/18/17	S	7.83	28.5	5.5	86	53,642	35.5	4	628	632	35	5.7		1.2	20
JH Park	5/18/17	В	7.79	28.4	4.5	70	54,269	35.9							1.2	
JH Park	8/16/17	S	8.02	33.0	5.8	92	45,717	29.4	2	266	268	31	0.9		1.2	
JH Park	8/16/17	В	8.02	33.1	5.3	98	47,109	30.4								
JH Park	11/13/17	တ	69.7	25.5	5.8	85	49,641	32.5	2	575	222	18	3.7		1.6	10
JH Park	11/13/17	В	7.72	25.6	5.3	77	50,003	32.7								
JH Park	2/8/18	S	7.82	22.3	6.9	96	51,948	34.2		225		7	4.0		2.9	10
JH Park	2/8/18	В	7.89	22.3	8.9	92	52,224	34.4								
JH Park	5/21/18	S	7.80	26.3	4.9	73	52,070	34.2	19	1,070	1,089	4	1.8		1.7	52
JH Park	5/21/18	В	7.80	26.2	4.7	70	52,404	34.5								
JH Park	8/16/18	S	7.91	31.2	5.1	83	51,950	34.0	1	747	758	76	6.1		2.2	82
JH Park	8/16/18	В	7.90	31.3	5.0	81	51,978	34.0								
JH Park	11/15/18	S	7.67	27.9	4.7	72	50,993	33.4	15	920	935	25	3.3		2.1	768
JH Park	11/15/18	В	7.70	28.1	4.5	69	51,620	33.9								
JH Park	2/26/19	S	69.7	26.0	5.5	81	50,925	33.4	11	270	281	63	6.9		1.2	10
JH Park	2/26/19	В	7.74	26.0	5.5	80	51,001	33.5								
JH Park	5/13/19	တ	7.75	30.0	5.7	91	52,541	34.5	7	725	736	99	7.4		1.0	10
JH Park	5/13/19	В	7.75	29.8	5.1	81	52,635	34.5								
JH Park	8/7/19	S	7.97	30.0	7.3	114	45,887	29.6	11	707	718	99	7.2		1.	10
JH Park	8/7/19	В	7.92	30.1	6.2	96	47,847	31.0								
JH Park	10/23/19	S	7.80	30.0	6.1	96	50,693	33.1							1.5	
JH Park	10/23/19	В	7.80	30.0	5.9	94	50,788	33.2								
JH Park	11/4/19	S	79.7	29.0	4.6	71	50,166	32.8	14	812	826	20	9.7	4.5	1.6	63
JH Park	11/4/19	Ф	7.70	29.0	4.6	72	50,556	33.0								
JH Park	12/18/19	S	7.88	24.4	5.5	80	51,924	34.2	14	538	552	09	4.2	3.7	1.9	450
JH Park	12/18/19	В	7.89	24.4	5.4	79	52,355	34.5								
JH Park	1/15/20	S	7.76	23.2	6.3	88	50,692	33.3	7	699	089	23	3.1	3.2	1.0	10
JH Park	1/15/20	В	7.78	23.2	6.2	88	50,752	33.3								
JH Park	2/4/20	S	7.77	19.9	6.5	86	49,834	32.7	18	745	763	24	1.0	3.4	1.7	10
JH Park	2/4/20	a	7.80	19.3	6.4	84	50,520	33.2								
JH Park	4/14/20	တ	7.81	28.5	5.2	82	55,786	36.9	11	674	685	20	3.4	6.3	1.2	20
JH Park	4/14/20	m	7.82	28.5	5.1	81	55,812	37.0								
JH Park	5/14/20	ဟ	7.94	25.8	6.1	92	54,566	36.1	33	480	513	68	3.3	0.9	4.	10
JH Park	5/14/20	m	7.96	25.8	6.1	91	54,598	36.1							-	
JH Park	6/15/20	တ	7.93	30.2	5.3	83	50,333	32.8	-	899	629	46	3.0	2.4	1.5	10
JH Park	6/15/20	ω	7.92	30.1	4.4	71	51,623	33.8								
JH Park	7/28/20	တ	7.77	30.4	5.5	87	49,138	32.0	-	509	520	43	4.8	3.9	1.3	10
JH Park	7/28/20	В	7.79	30.6	5.0	80	49,649	32.3								
JH Park	8/25/20	တ ၊	7.87	30.7	5.1	84	48,337	31.4	11	489	200	ee	2.0	8.	1.7	10
JH Park	8/25/20	B	7.86	30.7	2.0	79	48,557	31.5								
JH Park	9/23/20	S	7.97	29.1	5.7	98	44,089	28.3	11	490	501	42	7.3	1.3	1.9	20
JH Park	9/23/20	m	7.92	29.5	4.9	75	46,246	29.9							1.9	
JH Park	10/22/20	တ									450	18	7.2			20
JH Park	11/23/20	တ	8.14	24.5	4.4	99	47,761	31.1	37	240	277	5	3.2	0.54	2.9	10
JH Park	11/23/20	В									280	2	3.2			
JH Park	12/10/20	တ	8.19	19.3	6.2	8	49,204	32.2	36	300	339	9	2.5	0.38	2.5	10

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Station ID	Date	Denth	(I s		()/ow/	(0% catn)	(mi)oquiii)	(hut)	(/טוו)	([/011)	(1/011)	(/טוו)	(ma/m ³)	(NTII)	Denth (m)	(cfii/100 ml)
Kondall	1107115	U	7.71	19.7	(1,8,11)	86	51 418	33.0	72	346	373	(F.84)	(/S)		()	
Kendall	5/12/15	o w	7.87	28.1	4 6	26	52,350	2. 45	17	5	2				1.2	
Kendall	8/25/15	Ø	7.94	32.4	5.7	94	51,136	33.3	18						1.4	
Kendall	11/19/15	တ	7.82	26.6	5.0	75	49,161	32.1	55	241	296				2.3	
Kendall	2/1/16	S	69.7	19.5	7.2	06	39,577	25.1	148	284	432				2.3	
Kendall	5/10/16	တ	7.74	26.0	5.5	82	51,749	34.0								
Kendall	8/11/16	Ø	7.91	30.6	5.2	82	47,263	30.6	24	009	624					
Kendall	11/9/16	Ø	7.79	23.9	6.3	91	53,250	35.1								
Kendall	2/21/17	S	7.80	23.8	5.8	84	52,423	34.6	က	475	478	59	2.5		1.1	
Kendall	5/18/17	Ø	7.80	28.6	5.4	84	53,447	35.3	2	750	752	42	5.7		1.1	10
Kendall	8/16/17	v	8.01	32.6	5.9	92	46,639	30.1	2	408	410	30	3.9		1.5	
Kendall	8/16/17	В	8.02	32.9	4.9	81	48,526	31.4								
Kendall	11/13/17	Ø	7.63	25.5	5.5	81	49,715	32.5	4	1,160	1,164	33	2.8		1.2	10
Kendall	11/13/17	В	7.75	25.4	5.6	81	49,855	32.6								
Kendall	2/8/18	S	7.89	22.8	7.5	105	51,969	34.2		134	134	7	1.4		6.0	10
Kendall	5/21/18	S	7.72	26.1	4.6	89	52,137	34.3	19	1,130	1,149	26	1.6		1.3	20
Kendall	5/21/18	В	7.74	26.1	4.5	89	52,145	34.3								
Kendall	8/16/18	S	7.94	31.0	5.0	80	51,684	33.8	11	553	564	73	5.1		1.0	211
Kendall	11/15/18	S	7.70	27.9	5.0	77	51,203	33.6	11	1,030	1,041	62	5.0		0.7	431
Kendall	2/26/19	S	79.7	25.8	5.2	92	50,713	33.2	11	289	300	65	3.7		1.0	31
Kendall	5/13/19	Ø	7.79	30.0	5.5	88	52,308	34.3	-	874	885	29	7.4		1.0	10
Kendall	8/7/19	တ	7.93	30.5	6.7	105	46,640	30.1	11	290	601	74	11.7		0.8	10
Kendall	10/23/19	v	7.74	29.9	5.1	81	50,705	33.1							1.2	
Kendall	10/23/19	Ф	7.75	30.0	5.2	82	50,700	33.1							1.2	
Kendall	11/4/19	S	7.66	29.1	4.2	65	50,235	32.8	22	1,120	1,142	84	6.7	5.6	0.8	10
Kendall	12/18/19	S	7.83	24.5	4.9	71	51,555	33.9	32	626	658	69	3.7	5.7	0.6	197
Kendall	1/15/20	S	7.80	23.6	6.3	88	50,446	33.1	11	725	736	25	3.2	5.7	9.0	10
Kendall	2/4/20	S	7.73	20.0	9.9	88	50,127	32.9	16	711	727	30	1.5	3.7	6.0	10
Kendall	4/14/20	Ø	7.76	28.8	5.4	85	55,751	36.9	7	581	592	45	3.2	4.3	1.4	10
Kendall	5/14/20	Ø	7.86	25.4	5.6	83	54,558	36.1	33	510	543	83	5.1	8.0	1.0	10
Kendall	6/15/20	Ø	7.89	30.6	4.9	78	49,878	32.5	7	202	716	48	2.1	2.6	1.2	10
Kendall	7/28/20	Ø	7.77	30.6	5.1	81	48,535	31.5	1	554	265	48	3.1	3.2	1.0	10
Kendall	7/28/20	Ø	7.77	30.6	5.1	81	48,499	31.5	7	644	655	45	4.7	3.0	1.0	10
Kendall	8/25/20	S	7.83	30.8	5.0	62	48,408	31.4	11	775	786	4	4.8	3.1	1.0	10
Kendall	9/23/20	S	7.97	29.2	0.9	91	44,037	28.3	11		416	26	5.3	2	0.95	110
Kendall	9/23/20	Ф									416	56	5.3			110
Kendall	10/22/20	В									370	6	4.8			20
Kendall	11/23/20	S	8.11	24.8	3.6	53	47,333	30.8	35		430	18	2.5	1.4	1.5	10
Kendall	11/23/20	В									430	18	2.5			
Kendall	12/10/20	ď	8 18	20.1	0.5	2	48 206	34.7	40		370	4	2.5	0.43	τ,	10
		,	5			3	201,01	0	2		2	2	5.4)		2

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Station ID	Sample	Sample	Hd (Temp.	Diss. O ₂	Diss. 0 ₂	Cond.	Salinity	XON.	TKN	Total N	Total P	Chyl-a	Turbidity	Secchi	Entero
	Лате	Deptn	(s.u.)	5	(mg/L)	(% sam.)	(mayoumn)	(ppt)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(mg/m²)	(N I O)	Deptn (m)	(cru/100 mL)
Landmark	10/23/19	S	7.82	29.8	5.0	80	52,504	34.5							2.1	
Landmark	11/4/19	S	7.18	28.9	4.1	64	50,905	33.3	1	1,150	1,161	103	13.8	1.8	1.9	20
Landmark	11/4/19	В	7.78	29.1	4.0	62	51,237	33.5								
Landmark	12/18/19	S	8.08	24.3	6.9	100	52,717	34.8	1	585	969	63	5.3	2.0	1.2	84
Landmark	1/15/20	S	7.85	23.1	6.9	26	50,816	33.4	1	658	699	61	2.1	0.8	1.2	10
Landmark	2/3/20	S	7.93	19.2	7.7	101	50,614	33.3	1	718	729	39	4.6	1.5	1.8	10
Landmark	2/3/20	В	7.96	19.5	6.7	104	51,205	33.7								
Landmark	4/14/20	S	7.92	27.9	6.4	66	53,176	35.0	14	675	689	69	3.9	3.1	2.0	74
Landmark	4/14/20	Ф	7.89	28.5	5.9	92	54,641	36.1								
Landmark	5/14/20	S	7.88	25.8	5.2	78	53,148	35.0	33	470	503	93	3.5	1.3	1.8	10
Landmark	5/14/20	В	7.89	26.5	5.1	77	54,248	35.8								
Landmark	6/15/20	S	7.95	30.1	6.7	104	47,241	30.6	1	809	619	43	1.9	0.7	2.1	10
Landmark	6/15/20	В	7.80	31.4	4.5	73	51,991	34.0								
Landmark	7/28/20	S	8.17	29.9	9.7	117	46,283	29.9	7	542	553	49	5.0	6.0	2.1	41
Landmark	7/28/20	В	8.03	31.7	7.4	120	51,319	33.5								
Landmark	8/25/20	S	8.05	29.7	6.5	101	46,390	30.0	11	602	613	86	4.9	3.1	1.9	173
Landmark	8/25/20	В	8.08	31.2	6.3	101	49,909	32.5								
Landmark	9/23/20	S	7.96	28.9	5.8	89	46,516	30.1	11	269	280	48	4.2	6.0	1.5	31
Landmark	9/23/20	В	7.98	29.0	5.7	88	46,946	30.4							1.5	
Landmark	10/22/20	S									710	148	3.2			20
Landmark	11/23/20	S	8.20	25.2	3.7	55	49,983	32.7	21	330	351	11	3.2	0.29	2.5	10
Landmark	11/23/20	В									350	11	3.2			
Landmark	12/10/20	S	8.18	20.7	3.3	45	50,836	33.4	24	440	464	25	3.2	0.49	2.2	10
Landmark	12/10/20	В									460	25	3.2			10

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

McIlvaine	Date	Depth	рн (s.u.)	remp. (°C)	UISS. O ₂ (mg/L)	Diss. O ₂ (% satn.)	Cond. (µumho/cm)	Salinity (ppt)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)
McIlvaine	5/31/07	Ø								630						-
2	8/1/07	w								410						413
McIlvaine	9/26/07	S								430						2
McIlvaine	11/28/07	S								580						-
McIlvaine	1/30/08	Ø								180						_
McIlvaine	3/12/08	တ								80						-
McIlvaine	5/15/08	w u								260						- 4
Mellysine	0/24/08	o u								430						40
McIlvaine	12/10/08	o w								210						- 4
McIlvaine	2/11/09	S								128						2
McIlvaine	4/29/09	Ø								299						-
McIlvaine	6/11/09	Ø								92						-
McIlvaine	8/27/09	S								92						48
McIlvaine	10/27/09	တ								692						2
McIlvaine	12/22/09	S								185						4
McIlvaine	2/24/10	S								270						-
McIlvaine	4/21/10	တ								235						-
McIlvaine	6/23/10	Ø								102						-
McIlvaine	9/2/10	Ø								621						10
McIlvaine	11/17/10	Ø								59						8
McIlvaine	1/26/11	S								554						173
McIlvaine	3/23/11	Ø								235						9
McIlvaine	5/18/11	S								298						-
McIlvaine	7/28/11	S														-
McIlvaine	9/28/11	Ø								297						-
McIlvaine	12/29/11	S								471						2
McIlvaine	2/23/12	တ								303						_
McIlvaine	4/25/12	တ								185						-
McIlvaine	6/27/12	o (480						4
McIlvaine	8/22/12	w								433						100
McIlvaine	10/24/12	တ (159						← !
McIlvaine	12/27/12	y (441						10
McIlvaine	2/27/13	တ								310						50
McIlvaine	4/24/13	တ (491						46
McIlvaine	6/20/13	တ (372						- ;
McIlvaine	8/28/13	တ ဖ								26						4 4
McIlvaine	10/30/13	y) o		1						115						16
McIlvaine	1/22/14	<i>y</i>								387						750
McIlvaine	3/26/14	တ ဖ								260						30
Mollyging	2/20/14	0 0								707						, ?
McIlyaine	9/24/14	o 0								787						2 5
Mollyging	4/20/4	0	00	107	10	007	010	0.50	c	1 7	17.4	8	0.7		2	2 5
McIlvaine	5/12/15	o u	66.7	0.00	0.0	20 100	52,010	34.9	7 20	<u> </u>	1,1	5 5	ن ن م			2 5
Mollyging	0/12/10	0 0	0.00	24.7	0.2	600	52,492	0.45	5 4	000	00	ţ ţ	0.0			5 6
Melivaine	8/25/15	n u	2002	31.7	0.0	90	53,091	34.8	2 0	632	103	7 5	3.0		000	2 6
Mollyaine	2/1/8/13	o 0	8 00	187	7.5	1 9	78 510	34.0	07	3	275	5	2		7 4.0	2
McIlvaine	5/10/16	o (/	00.0	25.5	0.7	90	53.031	35.0	7 7		217					
Mollyging	0/10/10	0	00.0	20.0	7 0	30	47.086	0.00	- 0	760	466				5 6	
McIlvaine	8/11/16	n o	8.00	30.1	2.9	QQ G	47,266	30.6	2	462	465				7:	

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Station ID	Sample Date	Sample Depth	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Diss. O ₂ (% satn.)	Cond. (µumho/cm)	Salinity (ppt)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)
McIlvaine	2/8/18	S	7.96	21.4	8.9	94	54,238	35.9	12	278	290	21	2.1		-	10
McIlvaine	2/8/18	Ф	7.95	21.3	6.7	93	54,229	35.9								
McIlvaine	5/21/18	S	7.81	26.0	5.5	82	54,528	36.1	16	655	671	37	2.1		1.4	20
McIlvaine	8/16/18	S	8.09	30.5	5.7	92	52,439	34.4	11	290	601	69	3.4		1.5	305
McIlvaine	8/16/18	В	8.10	30.4	5.9	94	52,638	34.5								
McIlvaine	11/15/18	S									808	72	3.5			
McIlvaine	11/15/18	В	7.91	27.0	5.1	77	52,881	34.8	18	809	827	72	3.5		0.8	30
McIlvaine	11/4/19	S									581	09	4.1			
McIlvaine	1/15/20	S									230	69	4.5			
McIlvaine	2/4/20	S									629	29	2.3			
McIlvaine	4/4/20	S									1,990	53	3.9			
McIlvaine	5/15/20	S									400	88	2.6			
McIlvaine	6/15/20	S									781	28	1.6			
McIlvaine	7/28/20	S									541	37	2.9			
McIlvaine	8/25/20	S									637	25	3.9			10
McIlvaine	9/23/20	S	7.99	28.6	5.4	83	49,844	32.5	1	578	589	36	2.6	2.4	2	10
McIlvaine	9/23/20	В	8.03	28.7	5.5	98	51,330	32.6							2	
McIlvaine	10/22/20	Ф									420	9	2.5			20
McIlvaine	11/23/20	S	8.24	24.7	4.0	53	51,440	33.3	33	260	293	8	2.5	1.3	2.2	10
McIlvaine	11/23/20	В									300	8	2.5			
McIlvaine	12/10/20	S	8.24	19.4	5.2	70	50,477	33.2	28	250	278	9	2.5	0.69	2.2	10
McIlvaine	12/10/20	В									270	9	2.5			10

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Date Depth (\$\c.{\c.{\c.{\c.{\c.{\c.{\c.{\c.{\c.{\c.{	Station ID	Sample	Sample	Hd	Temp.	Diss. O ₂	Diss. O ₂	Cond.	Salinity	NOx	TKN	Total N	Total P	Chyl-a	Turbidity	Secchi	Entero
1002319 S 782 291 47 74 51,819 34.0 1,550 1,57 6 96 94.3 11 1,560 1,57 99 1,14419 8 5 79 52,189 34.3 11 1,560 1,57 99 1,1372 30.9 11 322 333 40 22 2.3 16 17 1,14419 8 6.1 80 52,2480 34.6 11 322 333 40 22 2.3 16 1.7 1.7 1.7 2.3 40 2.2 3.0 11 25,480 34.6 11 32.2 333 40 2.2 3.3 1.1 2.2 3.3 1.1 3.7 4.1 3.7 4.1 3.7 4.1 3.7 4.1 3.7 4.1 3.7 4.1 3.2 4.0 4.1 4.2 3.3 4.0 2.2 3.3 1.1 4.2 3.2 4.0 1.1 4.2		Date	Depth	(s.u.)	(၁့)	(mg/L)	(% satn.)	(mnho/cm)	(bbt)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(mg/m³)	(NTN)	Depth (m)	(cfu/100 mL)
114419 S 790 27.18 55.189 34.3 11 1,560 1,571 64 3.9 5.5 1.5 <t< td=""><td>Olde Marco</td><td>10/23/19</td><td>S</td><td>7.82</td><td>29.1</td><td>4.7</td><td>74</td><td>51,819</td><td>34.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.0</td><td></td></t<>	Olde Marco	10/23/19	S	7.82	29.1	4.7	74	51,819	34.0							6.0	
11/14/19 B 791 278 52 80 52.209 34.3 40 22 2.3 40 2.2 7 4.0 7 7 40 7 7 40 2.2 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 7 4.0 4.0 7 4.0 4.0 7 4.0	Olde Marco	11/4/19	တ	7.90	27.8	5.1	62	52,189	34.3	1	1,560	1,571	8	3.9	5.5	1.5	285
12/18/19 S 8 0.2 2.8 8 0.2 6.9 9 47.372 30.9 11 322 333 40 2.2 2.3 16 A 12/18/19 S 6.01 2.3 6.03 9.1 52.480 34.6 1.7 567 2.3 6.4 1.1 1/15/20 S 7.82 1.27 6.1 86 51.142 33.7 1.1 758 57 1.5 6.4 1.1 24/420 S 7.83 186 7.3 96 51.142 33.7 1.1 758 56 1.6 1.4 1.4 758 56 1.4 1.1 1.4 758 56 1.4 1.1 1.4 758 56 1.4 1.4 1.4 758 56 1.4	Olde Marco	11/4/19	В	7.91	27.8	5.2	80	52,209	34.3								
12/18/19 B 8 0.1 2.3 6.3 91 52,489 34.6 9 7.7 7.8 7.7 7.8 7	Olde Marco	12/18/19	တ	8.02	22.8	6.9	96	47,372	30.9	1	322	333	40	2.2	2.3	1.6	228
111500 S 762 227 61 86 51,984 34.2 11 567 578 57 23 64 11 24420 S 7.83 186 7.33 95 51,142 33.7 11 747 778 25 16 0 1.4 4/1420 S 7.84 280 5.5 86 56,347 37.4 11 725 736 16 0.08 1.4 4/1420 S 7.84 280 5.5 86 56,347 37.4 11 725 736 16 0.08 1.4 4/1420 S 8.00 2.52 6.1 91 36.3 37.4 410 443 50 6.1 9.8 1.4 36.5 1.8 1.4 1.8 1.4 1.4 1.8 1.4 1.4 1.8 1.4 1.4 4.3 4.0 7.7 5.4 16.0 0.8 1.4 1.4 4.2<	Olde Marco	12/18/19	В	8.01	23.9	6.3	91	52,480	34.6								
24/20 S 7.83 96 51,142 33.7 11 747 758 26 1.6 6.0 1.4 97 4.24/20 S 7.84 28 6.1142 33.7 1 7 6 6 0 1.4 8 1.4 8 1.4 8 6 56,347 37.4 1 7 6 6 6 9 6,347 37.4 1 7 6 6 6 6 8 6 66,347 37.4 1 7 6	Olde Marco	1/15/20	S	7.62	22.7	6.1	98	51,984	34.2	11	292	878	25	2.3	6.4	1.1	10
244/20 B 7.86 186 7.3 96 51,174 33.7 1 755 778 16.0 0.88 4/14/20 S 7.84 28.0 5.5 86 56,343 37.4 11 725 736 779 16.0 0.88 9.6 56,343 37.4 11 725 736 779 16.0 0.88 1.4 0.8 1.4 0.8 1.4 0.8 1.4 0.8 1.4 0.8 1.4 0.8 1.4 0.8 1.4 0.8 5.1 9.6 3.7 4.0 4.3 5.0 1.4 0.8 5.1 1.4 0.8 5.1 1.4 0.8 5.1 1.4 3.6 3.3 410 443 50 2.0 5.8 1.4 1.4 1.4 3.0 5.8 1.4 1.4 3.0 1.4 3.0 1.4 3.0 1.4 3.2 1.4 3.2 1.8 1.4 3.2 4.0	Olde Marco	2/4/20	တ	7.83	18.6	7.3	92	51,142	33.7	11	747	758	25	1.6	0.9	1.4	10
4/14/20 S 7,84 28.0 5.5 86 56,347 37.4 11 725 736 77 5.4 16.0 0.8 6.6 4/14/20 86 56,347 37.4 11 725 736 77 5.4 16.0 0.8 98 4/14/20 8 7.3 4.0 4.13 5.0 96 56,347 37.4 4.0 4.1 6.0 5.8 1.4 6.0 5.8 1.4 9.0 5.1 8.0 56,117 36.5 3.3 4.0 4.1 4.0 4.1 4.0 4.1 4.0 4.1 5.0 9.0 5.0 1.4 9.0 5.1 8.0 5.1,786 3.4 1.1 8.0 6.1,786 3.4 1.1 8.0 4.0 1.1 3.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 <th< td=""><td>Olde Marco</td><td>2/4/20</td><td>В</td><td>7.85</td><td>18.6</td><td>7.3</td><td>92</td><td>51,174</td><td>33.7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Olde Marco	2/4/20	В	7.85	18.6	7.3	92	51,174	33.7								
4/14/20 S 6.6,347 37.4 9 6.3,47 37.4 9 6.3,47 37.4 9 6.13 36.5 33 410 443 50 2.0 5.8 1.4 9 1.4 55.113 36.5 33 410 443 50 2.0 5.8 1.4 9 1.4 36.5 33 410 443 50 2.0 5.8 1.4 9 1.4 36.5 3.7 2.0 2.0 5.8 1.4 36.5 3.7 4.0 4.0 1.7 3.5 1.4 9 1.4 8 1.4 3.5 4.0 4.0 1.7 3.5 1.8 1.4 1.8 3.5 1.8 4.0 1.7 3.5 1.8 1.4 1.8 3.5 1.8 1.4 1.8 3.5 4.0 1.7 3.5 4.3 1.4 4.0 1.7 3.5 1.8 1.4 1.4 3.0 4.0 1.7 3.5 1.8 </td <td>Olde Marco</td> <td>4/14/20</td> <td>တ</td> <td>7.84</td> <td>28.0</td> <td>5.5</td> <td>98</td> <td>56,343</td> <td>37.4</td> <td>1</td> <td>725</td> <td>736</td> <td>11</td> <td>5.4</td> <td>16.0</td> <td>0.8</td> <td>10</td>	Olde Marco	4/14/20	တ	7.84	28.0	5.5	98	56,343	37.4	1	725	736	11	5.4	16.0	0.8	10
5/14/20 S 8.00 2.5.2 6.1 91 55,117 36.5 33 410 443 50 2.0 5.8 14 7 6/14/20 B 8.00 25.3 5.9 88 55,117 36.5 7 7 7 7 7 7 8 6,117 36.5 7 7 7 7 8 7 1 819 80 40 1.7 3.5 1.8 3.5 1.8 3.5 1 8 7 7 8 7 8 6 5,147 36.5 4 7 7 8 7 7 8 7 8 7 8 7 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 7 8 8 9 9 9 9 9 9 8 9 9 9 8 9 <	Olde Marco	4/14/20	Ф	7.90	28.0	5.5	98	56,347	37.4								
5/14/20 B 6.5.17 86 55.17 36.5 9 11 819 830 40 1.7 3.5 1.8 7.78 3.3.9 11 819 830 40 1.7 3.5 1.8	Olde Marco	5/14/20	တ	8.00	25.2	6.1	91	55,113	36.5	33	410	443	20	2.0	5.8	4.1	10
6/15/20 S 7.96 29.3 5.1 80 51,786 33.9 11 819 830 40 1.7 3.5 1.8 1.	Olde Marco	5/14/20	В	8.00	25.3	5.9	88	55,117	36.5								
6/15/20 B 1/15/20 B 1/15/20 B 1/15/20 B 1/15/20 B 1/15/20 B 1/15/20 B B 1/15/20 B B 1/15/20 B B B B B B B B B B B B B B B B B B	Olde Marco	6/15/20	တ	7.96	29.3	5.1	80	51,786	33.9	11	819	830	40	1.7	3.5	1.8	10
7/28/20 S 7,79 29.5 4.8 76 52,366 34.4 11 590 601 36 2.2 4.3 1.4 8/25/20 S 7,91 30.0 5.2 83 51,961 34.0 11 536 547 15 3.7 2.2 1.6 8/25/20 S 7,91 30.0 5.2 80 51,961 34.0 1 536 57 4.0 2.2 1.6 9/23/20 S 7,98 276 5.7 86 48,907 31.9 11 919 930 27 4.0 2.2 1.85 10/22/20 B 7.98 28.0 5.3 803 50,189 32.8 1 4.0 4.0 1.85 1.85 11/23/20 S 8.21 24.2 3.8 55 51,837 34.2 16 270 286 5 2.5 1.8 1.8 11/23/20 B 8.21	Olde Marco	6/15/20	В	8.01	29.5	5.4	85	54,183	35.7								
8/25/20 S 7.91 30.0 5.2 83 51,961 34.0 11 536 547 15 37 2.2 1.6 10 8/25/20 B 7.91 30.1 5.0 80 51,934 34.0 11 919 930 27 4.0 2.2 1.85 1.	Olde Marco	7/28/20	တ	7.79	29.5	4.8	9/	52,366	34.4	1	290	601	36	2.2	4.3	4.1	20
8/25/20 B 7.91 30.1 5.0 80 51,934 34.0 9 930 27 4.0 2.2 1.85 8 9/23/20 S 7.98 27.6 5.7 86 48,907 31.9 11 919 930 27 4.0 2.2 1.85 1.85 10/23/20 B 7.98 28.0 5.3 803 50,189 32.8 1.6 270 286 4.0 4.0 1.85 1.85 11/23/20 S 8.21 24.2 3.8 55 51,837 34.2 16 270 286 5.5 1.2 1.8 1.8 11/23/20 S 8.21 18.4 5.4 70 50,554 33.2 10 290 300 5 8.0 1.4 1.5 1.8 12/10/20 B 8.21 18.4 5.4 70 50,554 33.2 10 290 80 1.4 1.5 <td< td=""><td>Olde Marco</td><td>8/25/20</td><td>Ø</td><td>7.91</td><td>30.0</td><td>5.2</td><td>83</td><td>51,961</td><td>34.0</td><td>7</td><td>536</td><td>547</td><td>15</td><td>3.7</td><td>2.2</td><td>1.6</td><td>10</td></td<>	Olde Marco	8/25/20	Ø	7.91	30.0	5.2	83	51,961	34.0	7	536	547	15	3.7	2.2	1.6	10
9/23/20 S 7.98 27.6 5.7 86 48,907 31.9 11 919 930 27 4.0 2.2 1.85 80 9/23/20 B 7.98 28.0 5.3 803 50,189 32.8 1 4.0 2.2 1.85 1.85 10/22/20 B 8.21 24.2 3.8 55 51,837 34.2 16 270 286 5 2.5 1.2 1.8 1.8 11/23/20 S 8.21 18.4 5.4 70 50,554 33.2 10 290 300 5 8.0 1.4 1.5 1.8 12/10/20 B 8 8.2 1.8 70 50,554 33.2 10 290 300 5 8.0 1.4 1.5 1.5	Olde Marco	8/25/20	В	7.91	30.1	5.0	80	51,934	34.0								
9/23/20 B 7.98 28.0 5.3 80.3 50.189 32.8 7.89 7.89 7.85 8.05 7.85 8.05 <t< td=""><td>Olde Marco</td><td>9/23/20</td><td>S</td><td>7.98</td><td>27.6</td><td>5.7</td><td>86</td><td>48,907</td><td>31.9</td><td>11</td><td>919</td><td>930</td><td>27</td><td>4.0</td><td>2.2</td><td>1.85</td><td>10</td></t<>	Olde Marco	9/23/20	S	7.98	27.6	5.7	86	48,907	31.9	11	919	930	27	4.0	2.2	1.85	10
10/22/20 B 8.21 24.2 3.8 55 51,837 34.2 16 270 286 6 2.5 1.2 1.8 11/23/20 B 8.21 18.4 5.4 70 50,554 33.2 10 290 300 5 8.0 1.4 1.5 1.5 1.8 1.5 1.5 1.8 1.5 1.8 1.5 1.8 1.5 1.8 1.5 1.8 1.5 1.8 1.5 1.8 1.5 1.5 1.5 1.8 1.5 1.5 1.5 1.5 1.5 1.8 1.5 1.5 1.8 1.5 1.8 1.5 1.5 1.8 1.5 <td< td=""><td>Olde Marco</td><td>9/23/20</td><td>В</td><td>7.98</td><td>28.0</td><td>5.3</td><td>803</td><td>50,189</td><td>32.8</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.85</td><td></td></td<>	Olde Marco	9/23/20	В	7.98	28.0	5.3	803	50,189	32.8							1.85	
11/23/20 S 8.21 24.2 3.8 55 51,837 34.2 16 270 286 5 2.5 1.2 1.8 1.	Olde Marco	10/22/20	В									330	16	4.0			20
11/23/20 B 8.21 18.4 5.4 70 50,554 33.2 10 290 300 5 8.0 1.4 1.5 8.0 12/10/20 B B 8.0 1.4 1.5 1.5 8.0	Olde Marco	11/23/20	S	8.21	24.2	3.8	55	51,837	34.2	16	270	286	5	2.5	1.2	1.8	10
12/10/20 S 8.21 18.4 5.4 70 50,554 33.2 10 290 300 5 8.0 1.4 1.5 1.5 12/10/20 B B 8.0 8.0 1.4 1.5 1.5	Olde Marco	11/23/20	В									350	5	2.5			
12/10/20 B 8.0	Olde Marco	12/10/20	S	8.21	18.4	5.4	20	50,554	33.2	10	290	300	5	8.0	1.4	1.5	10
	Olde Marco	12/10/20	В									300	8	8.0			10

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Station ID	Sample Date	Sample	pH (s.u.)	remp. (°C)	Diss. O ₂ (mg/L)	Ulss. O ₂ (% satn.)	Cona. (µumho/cm)	Sallnity (ppt)	(hg/L)	(µg/L)	l otal N (µg/L)	lotal P (µg/L)	(mg/m³)	Turbidity (NTU)	Seccni Depth (m)	Entero (cfu/100 mL)
Perrine	2/30/02	Ø								630						~
Perrine	7/31/07	S								480						~
Perrine	9/25/07	တ								330						-
Perrine	11/27/07	S								470						1
Perrine	1/29/08	တ								230						2
Perrine	3/11/08	တ								470						7
Perrine	5/14/08	S								430						-
Perrine	7/22/08	Ø								700						-
Perrine	9/23/08	S								630						16
Perrine	12/9/08	S								420						1
Perrine	2/10/09	S								349						16
Perrine	4/28/09	S								833						_
Perrine	6/16/09	S								352						2
Perrine	8/26/09	S								92						-
Perrine	10/26/09	S								92						_
Perrine	12/21/09	S								316						13
Perrine	2/23/10	S								150						-
Perrine	4/20/10	တ								113						-
Perrine	6/22/10	S								116						7
Perrine	9/1/10	S								962						0
Perrine	11/16/10	S								59						-
Perrine	1/25/11	S								593						19
Perrine	3/22/11	S								441						13
Perrine	5/17/11	S								381						27
Perrine	7/27/11	S														_
Perrine	9/27/11	S								530						10
Perrine	12/28/11	Ø								561						34
Perrine	2/22/12	S								345						_
Perrine	4/24/12	S								488						19
Perrine	6/26/12	S								391						31
Perrine	8/21/12	တ								514						18
Perrine	10/23/12	တ								322						2
Perrine	12/26/12	တ								430						16
Perrine	2/26/13	S								370						16
Perrine	4/23/13	S								625						10
Perrine	6/19/13	S								563						24
Perrine	8/27/13	S								213						36
Perrine	10/29/13	S								339						56
Perrine	1/21/14	S								248						52
Perrine	3/25/14	S								193						157
Perrine	5/27/14	S								542						4
Perrine	7/29/14	S								198						10
Perrine	9/23/14	S								288						10
Perrine	1/27/15	s	7.81	19.0	7.4	86	51,690	34.1	22	130	152	32	2.8		0.7	10
Perrine	5/12/15	S	7.89	27.6	5.2	62	51,921	34.1	18	161	179	27	2.1			10
Perrine	8/25/15	S	7.97	32.2	0.9	86	51,620	33.7	15	185	200	16	4.8			10
Perrine	11/19/15	S	7.90	26.6	5.9	88	50,483	33.1	30	173	203	37	4.0			10
Perrine	2/1/16	S	7.83	19.1	7.5	96	44,419	28.6	20							
Perrine	8/11/16	S	8.00	31.3	6.9	109	47,707	30.9	20	692	789					
Perrine	11/9/16	S	7.65	22.9	6.1	87	53,562	35.3								

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

01 201	Sample	Sample	Hd	Temp.	Diss. O ₂	Diss. O ₂	Cond.	Salinity	XON	TKN	Total N	Total P	Chyl-a	Turbidity	Secchi	Entero
Station ID	Date	Depth	(s.u.)	(°C)	(mg/L)	(% satn.)	(humho/cm)	(ppt)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(mg/m³)	(NTN)	Depth (m)	(cfu/100 mL)
Swallow	10/23/19	S	7.98	29.7	7.5	119	50,953	33.3							1.5	
Swallow	11/4/19	တ	7.83	29.2	3.8	59	49,589	32.3	28	850	878	98	7.9	4.0	1.3	10
Swallow	12/18/19	တ	8.01	23.6	6.3	89	45,751	29.7	45	547	592	100	5.9	4.7	1.1	24,196
Swallow	1/15/20	S	7.81	23.0	5.5	2.2	50,346	33.0	11	781	792	61	4.1	3.5	1.2	10
Swallow	2/3/20	တ	7.70	17.7	5.4	29	44,608	28.9	92	774	820	58	1.2	4.6	1.2	10
Swallow	2/3/20	В	7.81	20.7	5.1	69	51,174	33.7								
Swallow	4/14/20	တ	7.92	28.8	9.9	104	54,630	36.1	13	694	707	40	4.9	2.8	1.2	10
Swallow	4/14/20	В	7.80	28.4	4.1	64	54,952	36.3								
Swallow	5/14/20	Ø	7.91	25.8	5.5	82	51,897	34.1	33	460	493	68	3.5	2.3	1.4	10
Swallow	5/14/20	В	7.92	26.7	4.2	64	54,230	35.8								
Swallow	6/15/20	တ	7.58	31.0	1.7	26	49,504	32.2	28	863	891	102	4.1	5.5	0.8	899
Swallow	7/28/20	တ	7.87	30.8	6.2	26	46,706	30.2	28	638	999	26	4.7	1.6	2.1	41
Swallow	7/28/20	Ф	8.18	31.0	9.7	156	52,277	34.2								
Swallow	8/25/20	တ	8.00	29.7	6.3	86	47,398	30.7	1	675	989	42	5.2	1.3	1.8	121
Swallow	8/25/20	В	7.90	31.5	3.8	63	51,196	33.4								
Swallow	9/23/20	S	8.02	28.9	5.6	85	44,349	28.5	14	1,070	1,084	125	173.0	6.9	1.3	10
Swallow	9/23/20	В	7.72	30.2	1.0		50,733	33.1							1.3	
Swallow	10/22/20	S									410	5	4.0			20
Swallow	11/23/20	S	7.94	25.2	2.8	38	49,036	32.0	09	300	360	32	2.5	0.98	2	110
Swallow	11/23/20	В									360	32	2.5			
Swallow	12/10/20	Ø	8.12	20.6	3.7	49	49,169	32.3	46	440	486	37	2.5	1.1	1.5	10
Swallow	12/10/20	ш									480	37	2.5			10

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

	Date	Depth	(s.u.)	. ပွ	(mg/L)	(% satn.)	(humho/cm)	(ppt)	(hg/L)	(hg/L)	(µg/L)	(hg/L)	(mg/m³)	(NTU)	Depth (m)	(cfu/100 mL)
W Winterberry Bridge	1/28/15	S	7.88	19.4	7.3	97	52,938	35.0	23						1.1	
W Winterberry Bridge	5/12/15	Ø	7.99	29.0	6.5	102	52,695	34.6	19	303	322				1.3	
W Winterberry Bridge	8/25/15	S	7.98	32.4	5.6	93	51,698	33.8	15	662	229				2.2	
W Winterberry Bridge	11/19/15	S	7.85	26.9	6.8	103	51,768	34.0							2.8	
W Winterberry Bridge	2/1/16	S	7.85	19.3	6.7	87	45,374	29.4	7.1	275	346				2.4	
W Winterberry Bridge	5/10/16	Ø	7.86	25.9	5.9	88	52,211	34.3	1						1.8	
W Winterberry Bridge	8/11/16	Ø	7.96	31.1	6.1	96	47,466	30.7	4	569	573					
W Winterberry Bridge	11/9/16	Ø	7.91	24.1	6.4	92	53,353	35.2								
W Winterberry Bridge	2/21/17	S	7.89	23.2	6.5	92	52,963	35.0							2.2	
W Winterberry Bridge	5/18/17	တ	7.88	29.0	6.0	95	54,168	35.7	9	589	595	4	3.9		1.2	10
W Winterberry Bridge	5/18/17	В	7.88	28.7	5.3	83	54,895	36.3							1.2	
W Winterberry Bridge	8/16/17	တ	8.08	33.5	6.1	101	47,888	30.9	2	311	313	344	5.4		1.2	41
W Winterberry Bridge	11/13/17	Ø	7.91	24.9	5.5	80	51,873	34.1	20	623	643	27	3.4		1.8	10
W Winterberry Bridge	11/13/17	В	7.91	24.7	4.8	70	52,130	34.3								
W Winterberry Bridge	2/8/18	S	7.91	22.1	7.1	86	53,490	35.4		290		7	2.3		1.7	10
W Winterberry Bridge	5/21/18	Ø	7.87	26.6	6.7	101	51,505	33.8	1	781	792	19	4.4		2.4	10
W Winterberry Bridge	5/21/18	В	7.81	26.5	5.9	88	52,154	34.3								
W Winterberry Bridge	8/16/18	S	7.96	31.2	5.9	96	52,615	34.5	-	834	845	28	5.3		1.8	52
W Winterberry Bridge	8/16/18	В	7.95	31.2	5.7	93	52,693	34.5								
W Winterberry Bridge	11/15/18	တ	7.90	27.2	5.3	81	52,468	34.5	11	296	978	71	8.3		1.3	74
W Winterberry Bridge	11/15/18	В	7.90	27.3	5.2	80	52,493	34.5								
W Winterberry Bridge	2/26/19	တ	7.85	25.9	5.8	85	51,737	34.0	1	388	399	62	3.5		1.0	10
W Winterberry Bridge	2/26/19	В	7.85	25.7	5.3	78	51,900	34.1								
W Winterberry Bridge	5/13/19	S	7.87	29.9	6.4	103	53,384	35.1	16	1,020	1,036	53	5.5		1.3	10
W Winterberry Bridge	5/13/19	В	7.86	29.6	5.3	84	53,486	35.2								
W Winterberry Bridge	8/7/19	တ	8.00	30.9	6.8	108	47,139	30.5	7	899	629	92	6.4		1.6	10
W Winterberry Bridge	8/7/19	В	7.90	30.8	4.9	79	49,784	32.4								
W Winterberry Bridge	10/23/19	တ	7.91	29.6	2.7	06	52,613	34.5							4.	
W Winterberry Bridge	11/4/19	တ	7.85	28.8	4.7	73	51,015	33.4	15	757	772	9/	9.9	3.5	0.7	10
W Winterberry Bridge	12/18/19	Ø	7.96	23.9	9.9	92	49,928	32.7	19	537	556	28	2.2	2.0	2.2	733
W Winterberry Bridge	12/18/19	В	7.95	23.9	6.5	94	50,446	33.1								
W Winterberry Bridge	1/15/20	Ø	7.84	22.8	6.2	87	51,353	33.8	35	540	575	78	4.4	0.9	1.3	10
W Winterberry Bridge	1/15/20	ш	7.87	22.8	6.3	88	51,478	33.9								
W Winterberry Bridge	2/3/20	တ ၊	7.83	19.4	6.4	84	50,764	33.4	16	701	717	21	1.2	3.9	4.1	10
w winterberry Bridge	2/3/20	ם מ	7.90	- 6	4.0	94	51,041	33.0	7	100	673	00	c	7	0.7	2
W Winterberry Bridge	4/14/20	o a	7.02	28.3		20 00	55.256	36.5	=	5	770	8	0.0		2	2
W Winterberry Bridge	5/14/20	o o	7 94	25.8	. 62	87	54 598	36.1	33	430	463	26	1.7	89	,	10
W Winterberry Bridge	6/15/20) W	7.95	30.1	6.4	101	49.609	32.3	=======================================	2.180	2.191	43	5.7	1.2	. 9.	10
W Winterberry Bridge	6/15/20	ω	7.92	29.8	5.0	62	53,055	34.9								
W Winterberry Bridge	7/28/20	S	8.07	30.9	7.1	112	49,639	32.3	1	909	617	47	5.4	2.1	1.5	10
W Winterberry Bridge	8/25/20	S	7.99	30.8	5.3	86	50,684	33.1	1	573	584	30	7.8	2.6	2.0	10
W Winterberry Bridge	8/25/20	В	7.98	30.8	4.9	79	50,715	33.1								
W Winterberry Bridge	9/23/20	Ø	7.95	29.2	5.9	91	46,885	30.5	1	792	803	38	5.1	1.2	2	10
W Winterberry Bridge	9/23/20	В	7.92	29.7	4.8	74	48,607	31.6							2	
W Winterberry Bridge	10/22/20	S									380	108	5.6			20
W Winterberry Bridge	11/23/20	S	8.21	24.8	4.1	59	49,502	32.3	74	280	354	20	2.5	1.1	1.6	10
W Winterberry Bridge	11/23/20	ш (4				4			360	20	2.5	•		
W Winterberry Bridge	12/10/20	တ	8.18	19.8	5.2	99	50,249	33.0	39	320	386	<5	2.5	6.0	1.6	10
W Winterherry Bridge	000												İ			

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

Station ID	Sample Date	Sample Depth	pH (s.u.)	Temp.	Diss. O ₂ (mg/L)	UISS. O ₂ (% satn.)	Cond. (µumho/cm)	Sallnity (ppt)	NOX (µg/L)	(µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)
Windmill	2/30/02	Ø								920						2
Windmill	7/31/07	v								480						2
Windmill	9/25/07	Ø								490						80
Windmill	11/27/07	S								390						~
Windmill	1/29/08	တ ပ								160						- 1
Windfill	3/11/00	0 0								300						- 7
Windmill	7/22/08	ာ ဟ								069						
Windmill	9/23/08	S								200						265
Windmill	12/9/08	S								380						-
Windmill	2/10/09	S								282						2
Windmill	4/28/09	S								362						8
Windmill	6/16/09	တ								27.2						_
Windmill	8/26/09	တ								251						81
Windmill	10/26/09	S								170						-
Windmill	12/21/09	S								529						2
Windmill	2/23/10	တ								220						-
Windmill	4/20/10	S								59						4
Windmill	6/22/10	S								111						_
Windmill	9/1/10	S								793						-
Windmill	11/16/10	S								59						3
Windmill	1/25/11	S								451						6
Windmill	3/22/11	S								459						10
Windmill	5/17/11	S								515						56
Windmill	7/27/11	တ														က
Windmill	9/27/11	တ								471						9
Windmill	12/28/11	S								459						-
Windmill	2/22/12	တ (463						.
Windmill	4/24/12	y (352						4 ;
Windmill	6/26/12	y c								220						2 2
Windmill	21/12/8	n o								208						97
Windmill	10/23/12	ν o								468						10
WINGINI	71 /07/71	n								414						00
Windmill	2/26/13	တ								437						6
Windmill	4/23/13	တ								675						34
Windmill	6/19/13	တ								389						36
Windmill	8/27/13	တ								263						103
Windmill	10/29/13	S								56						38
Windmill	1/21/14	တ								165						28
Windmill	3/25/14	တ								229						220
Windmill	5/27/14	တ								329						=
Windmill	7/29/14	တ (304						10
Windmill	9/23/14	S								110						10
Windmill	1/28/15	S	7.90	19.7	8.9	91	52,805	34.9	26	111	137	35	1.5			10
Windmill	5/12/15	S	7.91	28.5	5.4	82	52,719	34.7	17	77	94	30	4.4		1.2	20
Windmill	8/25/15	တ	7.95	32.5	0.9	66	51,125	33.3	7	803	814	59	8.9		1.2	10
Windmill	11/19/15	S	7.80	26.7	8.9	102	50,006	32.7	38	197	235	32	6.5		2.3	10
Windmill	2/1/16	Ø	7.98	19.0	9.1	113	38,163	24.3	71	297	368				4.1	
Windmill	5/10/16	S	7.84	25.8	5.8	85	52,655	34.7	13						1.7	
Windmill	8/11/16	Ø	7.78	30.7	4.4	89	46,422	30.0	14	758	772				1.7	

Historical Water Quality Data for Marco Island Monitoring Sites from 2007 - 2020

ור)																																																7
Entero (cfu/100 mL)			10		20		20		10		74		63		488		10		450		10				10		4,106		10		10		10		10	4	2	10	2	10		20		20	20		10	10
Secchi Depth (m)	2.2	2.2	1.1	1.1	2.0		1.6		1.5		1.4		1.8		1.1		1.0		1.2		1.8		1.1		1.2		1.2		1.2		1.3		1.3		0.8		0.	7.)	1.6		1.7	1.7		1.5		2	
Turbidity (NTU)																									3.1		3.7		5.9		5.4		7.1		17.0	C	7.0	2.7	i	2.8		1.2			0.85		0.82	
Chyl-a (mg/m³)	3.1		5.9		4.9		3.8		2.8		5.6		9.6		5.5		9.7		2.7		8.9				11.3		5.0		4.7		2.3		5.7		3.7	0	5.01	r.		4.8		7.6		6.4	4.0	4.0	4.8	4.8
Total P (µg/L)	24		40		4		39		8		61		8		78		73		25		84				9/		28		47		23		48		110	1	/c	40	3	59		41		5	16	16	5	5
Total N (µg/L)	211		581		873		359				1,226		909		1,181		335		241		929				830		522		554		701		807		513	020	9/6	778		788		330		400	432	423	400	390
TKN (µg/L)	575		575		575		353		231		1,210		595		1,170		324		230		665				819		511		543		689		962		480	100	706	767		777		319			390		390	
NOx (µg/L)	2		9		က		9				16		7		7		7		7		11				11		7		7		12		7		33	7	=			7		7			42		10	
Salinity (ppt)	35.0	35.1	36.4	36.7	28.6	29.5	32.3	33.2	35.4	35.8	32.6	33.6	33.5	33.8	34.3	35.1	33.7	34.0	35.0	35.0	29.9	30.2	34.0	34.1	32.8	32.8	30.1	34.7	33.4	33.6	33.2	33.4	36.5	36.7	36.3	36.3	30.8	31.0	32.9	32.0	32.4	27.0	31.1		32.2		32.3	
Cond. (µumho/cm)	52,949	53,159	55,033	55,408	44,654	45,811	49,452	50,591	53,536	54,118	49,878	51,239	51,327	51,624	52,186	53,249	51,272	51,692	53,216	53,249	46,308	46,763	51,830	51,964	50,204	50,205	46,295	52,665	50,835	51,155	50,585	50,762	55,265	55,412	54,776	54,805	48,432	47 776	50.372	49,212	49,744	42,133	47,827		49,001		48,274	
Diss. O ₂ (% satn.)	87	86	75	71	87	80	89	84	94	87	70	7.1	93	81	81	73	88	80	88	98	74	72	88	79	93	91	26	88	88	85	84	84	84	82	87	87	87.8	5 8	82	84	81	86	77		22		09	
Diss. O ₂ (mg/L)	6.1	0.9	4.8	4.6	5.4	4.9	6.2	5.8	6.7	6.2	4.7	4.8	5.8	5.1	5.3	4.7	0.9	5.5	5.6	5.4	4.7	4.6	5.6	5.0	5.9	5.8	7.0	0.9	6.3	0.9	6.5	6.5	5.3	5.2	2.8	2.8	у, С. п	0.00	5.5	5.3	5.1	6.5	5.0		3.9		4.7	
Temp. (°C)	23.5	23.5	28.5	28.3	33.0	33.0	24.9	24.7	22.5	22.6	26.1	25.9	30.8	30.5	27.4	27.5	25.8	25.8	29.3	29.2	30.4	30.3	29.7	29.5	29.5	29.5	23.5	24.4	23.3	23.3	18.7	18.7	28.7	28.6	25.7	25.7	30.3	00.00	30.3	30.4	30.4	28.8	28.7		27.8		19.3	
рН (s.u.)	7.68	7.73	7.72	7.73	7.99	7.98	7.78	7.89	7.76	7.78	7.48	7.57	8.07	8.05	7.78	7.81	7.85	7.83	7.82	7.84	7.78	7.79	7.78	7.75	7.86	7.87	7.78	7.82	7.78	7.79	7.67	7.71	7.75	7.74	7.91	7.92	67.7	7.87	7.90	7.83	7.86	7.93	7.89		8.16		8.29	
Sample Depth	S	В	S	В	တ	В	တ	В	S	В	တ	В	တ	В	Ø	В	Ø	В	တ	В	တ	В	Ø	В	S	В	Ø	В	Ø	В	Ø	В	တ	В	တ	m (nα	υ.	о ш	Ø	ш	Ø	В	တ	Ø	m ·	တ ၊	В
Sample Date	2/21/17	2/21/17	5/18/17	5/18/17	8/16/17	8/16/17	11/13/17	11/13/17	2/8/18	2/8/18	5/21/18	5/21/18	8/16/18	8/16/18	11/15/18	11/15/18	2/26/19	2/26/19	5/13/19	5/13/19	8/7/19	8/7/19	10/23/19	10/23/19	11/4/19	11/4/19	12/18/19	12/18/19	1/15/20	1/15/20	2/3/20	2/3/20	4/14/20	4/14/20	5/14/20	5/14/20	6/15/20	7/28/20	7/28/20	8/25/20	8/25/20	9/23/20	9/23/20	10/22/20	11/23/20	11/23/20	12/10/20	12/10/20
Station ID	Windmill	Windmill	Windmill	Windmill	Windmill	Windmill	Windmill	Windmill	Windmill	Windmill	Windmill	Windmill	Windmill																																			

sis Measured value less than MDL; listed value = MDL

Δ-2: Maan Annu	al Values for	r Marco Isla	nd Monitori	na Sites
A-2: Mean Annu	ai vaiues foi	<u>r Iviarco Isia</u>	<u>na wonitori</u>	ng Sites

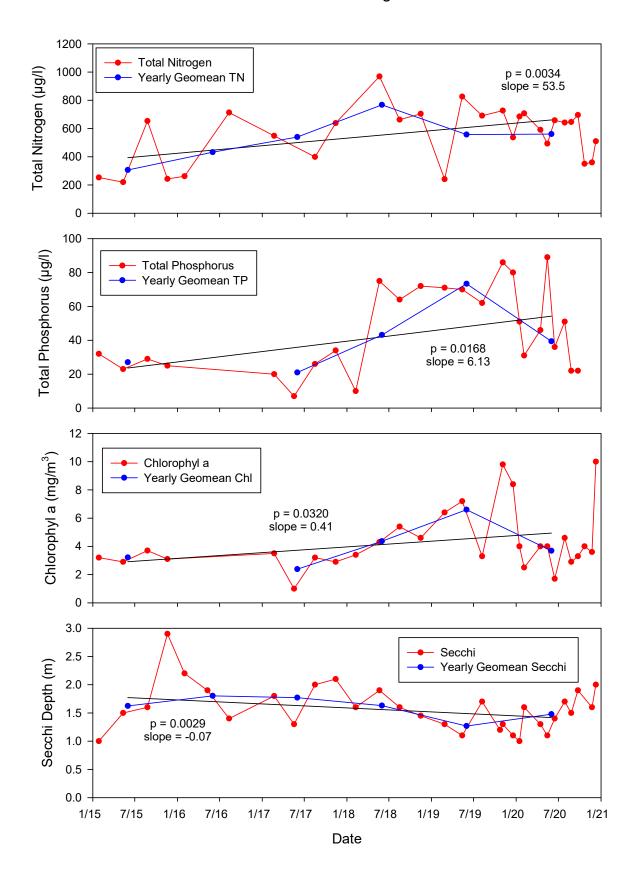
Annual Geometric Mean Values for Historical Marco Island Monitoring Sites from 2007 -2020

	(s.u.)	္ပ်	(ma/L)	(% satn.)	(nnmho/cm)	(pag)	(na/L)	(na/L)	(na/L)	(na/L)	(ma/m ₃)	(NTU	Depth (m)	(cfu/100 mL)
+					` -		,	540			,			4
+								273	,		,	,		22
		,					,	247			,		,	2
								399						4
								395						က
		,						374						7
				•	•			350		•			,	63
2014				•	•			274		•			,	27
	7.82	25.76	5.9	88	51,729	34.0	25	280	305	27	3.2		1.62	26
	7.84	24.15	6.5	93	48,751	31.8	29	395	424		,		1.80	
	7.88	27.45	0.9	91	51,114	33.5	2	538	240	21	2.4		1.77	2
2018	7.87	26.22	0.9	06	51,595	33.9	45	479	524	43	4.4		1.63	92
	7.84	27.87	6.3	96	50,949	33.4	-	545	929	73	9.9	6.2	1.27	17
	7.91	25.60	5.9	87	51,504	33.8	41	572	586	39	3.7	3.2	1.48	12
Γ		,						580			,	,	,	6
				•	•	•		417		•				က
		ı	•	•	•		,	423	•	•		•	,	2
2010		ı	•	•	•		,	181	•	•		•	,	2
_		,			•	,	,	385	,		,	,	,	4
2012					•			371						13
~					•			389						149
4					•	•	,	299				•	,	29
	7.77	26.72	5.0	9/	50,336	32.9	36	233	268	31	3.0		1.47	21
~	7.76	24.98	5.3	77	48,004	31.2	31	415	446				1.97	
	7.86	28.68	5.8	88	48,471	31.5	ო	489	492	27	3.7		1.83	10
_	7.83	28.24	6.4	97	48,048	31.2	19	517	536	72	2.7	3.3	1.45	91
	7.89	26.83	5.0	75	48,847	31.7	16	502	518	32	3.0	1.7	1.76	16
	7.89	26.83	5.0	75	48,847	31.7	16	502	518	47	3.0	1.7	1.76	16
2015	7.92	26.43	6.1	95	52,327	34.4	26	689	715				1.51	
ω.	7.92	24.60	0.9	98	50,488	33.1	15	745	760					
_	7.90	26.79	6.1	95	51,722	33.9	ო	332	335	20	4.2	•	1.61	10
2018	7.90	26.68	5.7	98	52,411	34.5	15	651	999	4	6.4		1.43	43
6	7.87	28.34	5.9	92	50,794	33.2	16	651	299	64	2.7	3.1	1.41	29
	7 06	26 37	8 5	88	51 054	22 E	4	777	630	22	2.7	3 0	707	5,

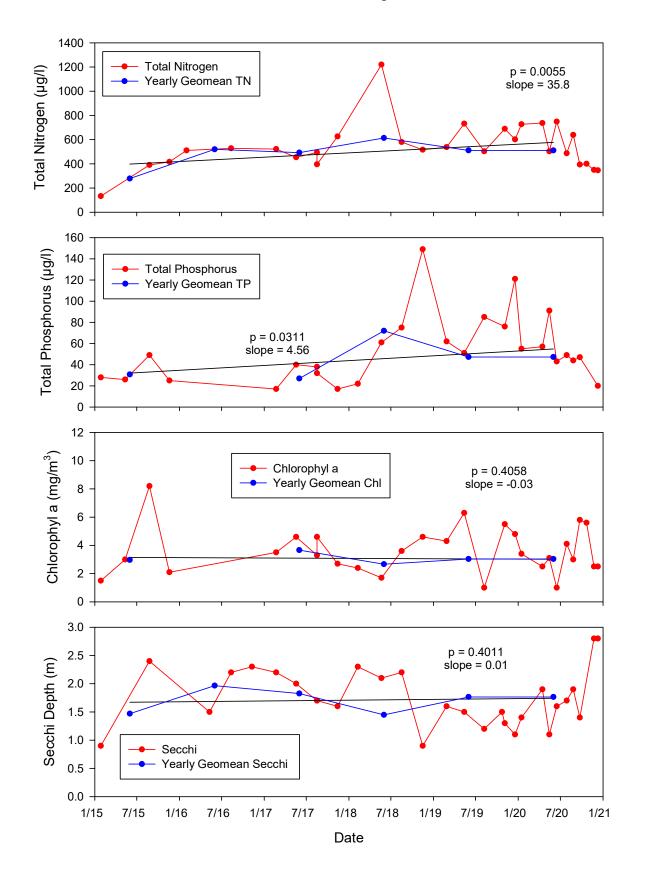
Annual Geometric Mean Values for Historical Marco Island Monitoring Sites from 2007 -2020

	<u> </u>	(s.u.)	် (၃)	(mg/L)	(% satn.)	(µumho/cm)	(ppt)	(µg/L)	(hg/L)	(µg/L)	(µg/L)	(mg/m ₃)	N UTN	Depth (m)	(cfu/100 mL)
	2007	,							550						က
	2008	,	,	•					337		,	,	,	,	2
	2009	,	,	,	•			•	387	,	,				2
	2010				•	•			171						2
	2011				•	•			336						က
	2012				•	•			336						က
-	2013	,	ı	,	,			•	244	ı	ı		,		15
HC Center	2014					•		•	260	,					18
	2015	7.80	27.06	5.3	81	50,280	32.9	25	205	229	24	2.5			10
	2016	7.83	24.93	5.7	83	48,197	31.4	33	460	493					
	2017	7.79	27.78	5.7	98	49,320	32.2	က	533	536	28	3.8		1.81	13
	2018	7.81	26.62	5.9	88	51,158	33.5	12	840	852	22	3.6		1.85	32
	2019	7.88	28.42	7.1	109	48,772	31.7	11	461	472	22	7.0	1.7	1.30	27
	2020	7.86	25.92	5.4	79	48,904	31.9	20	488	508	48	3.7	1.2	1.70	12
	2007	,		,		•	-	•	624	,				,	23
	2008	,	ı	,	•			•	395	ı	ı		,	,	4
	2009	,	ı	,	•			•	238	ı	ı		,	,	4
	2010	,	ı	,					221	,	ı			,	2
	2011		,			•			521				,		8
	2012								390		,	,	,		80
-	2013	,	,	•					413		,	,	,	,	99
Hollynock	2014					•		•	358	,					31
	2015	7.80	26.08	0.9	91	51,851	34.0	23	168	191	26	3.7	,	,	41
	2016	7.76	24.44	5.0	72	47,856	31.2	31	503	534				06:0	
	2017	7.80	27.24	5.6	98	50,366	32.9	9	510	515	31	3.9	,	1.32	24
	2018	7.74	26.62	4.6	70	51,944	34.1	21	646	299	41	3.6	,	1.19	30
	2019	7.70	28.08	5.0	9/	50,789	33.2	27	601	627	74	10.5	3.1	1.31	24
	2020	7.86	25.82	5.2	77	50,587	33.1	16	572	588	42	4.3	2.3	1.38	18
	2002								566						4
	3008		1			,			202		1				C
	2002	•	•	•	•	•		•	409	•	•		•		1 თ
	2010			,					464	,	,				က
	2011								440						7
	2012								449	,					7
7	2013	,	ı	,	,			•	407	ı	ı		,		31
numinigaira	2014	,	ı	1	•			•	268	ı	ı		,	,	24
	2015	7.80	26.69	5.6	85	51188.36	33.5	24	175	198	26	3.7			14
	2016	7.90	24.58	6.7	92	46,653	30.3	20	527	547	•	•	•	•	•
	2017	7.85	28.49	0.9	93	49,854	32.5	4	206	511	25	5.1		1.40	10
	2018	7.76	28.44	4.8	74	51,239	33.6	13	961	974	70	6.9		1.15	62
	2019	77.7	28.28	2.7	87	49,869	32.5	13	602	615	75	8.1	2.3	1.33	25
	2020	7.88	25.94	5.6	83	48,946	31.9	4	551	220	33	3.9	16	1.43	45

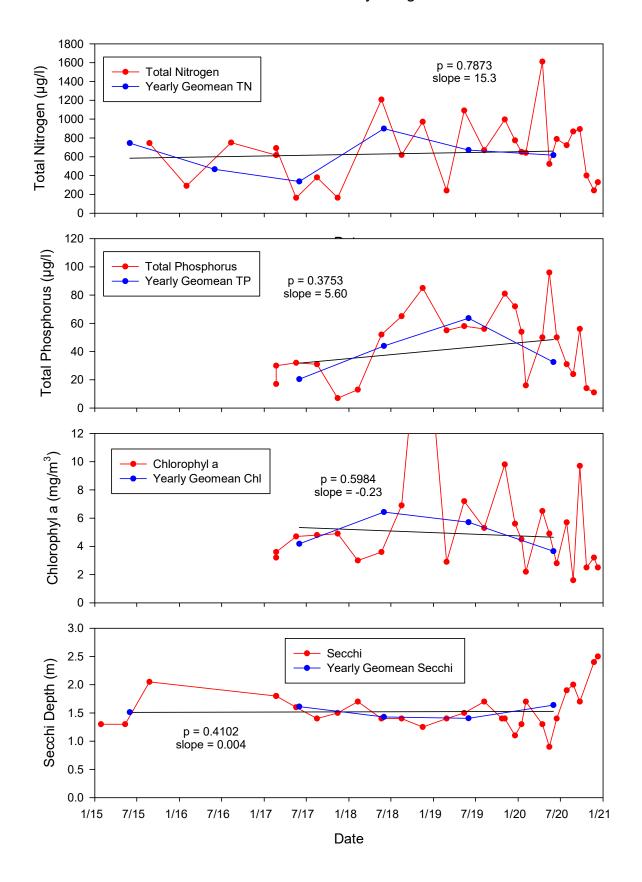
Annual Geometric Mean Values for Historical Marco Island Monitoring Sites from 2007 -2020

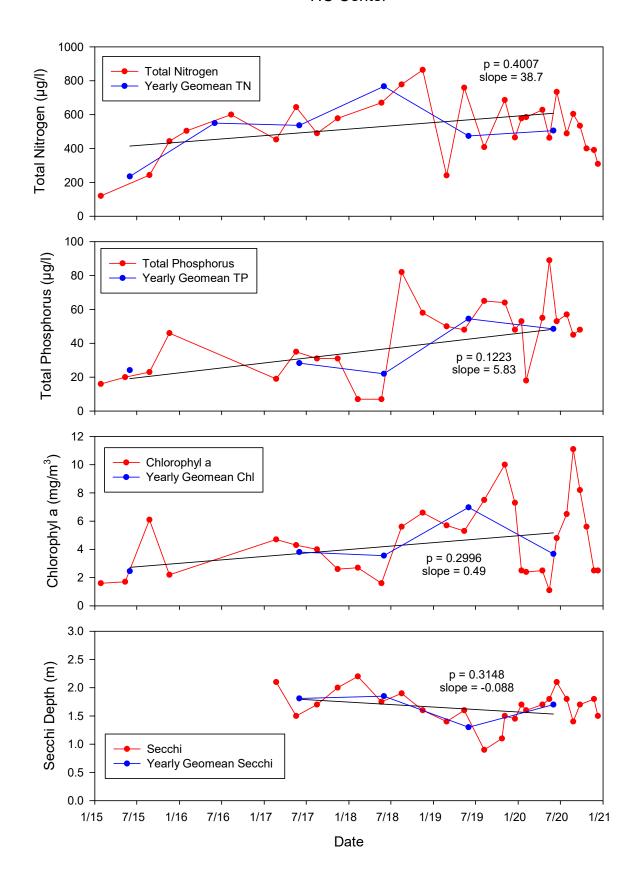

Site	Year	(S.II.)	<u>.</u>	(ma/l)	(% satn.)	(uumho/cm)	(popt)	(I/on)	(ng/L)	(ua/L)	(Ind/L)	(ma/m ³)	(NTU)	Depth (m)	(cfu/100 mL)
	Ţ	(:::::)		(1.8i.l.)	(10 3411.)	((244)	(F3: F)	(184)	(F8) I	(1 (ST)	(()	(=)
	2007		,		•	•		•	524	,		•	,		က
	2008				•			•	347					•	က
	2009								494						က
	2010	,	,						236		,		,		2
	2011				,	•		•	409						က
	2012				,	•		•	370						က
	2013				,	•		•	369						46
ЈН Рагк	2014	,	,						303	,			,		17
	2015	7.74	26.30	5.6	8	50.376	32.9	27	188	215	22	2.9		1.33	20
	2016	7.80	24.56	6.0	88	48,122	31.3	39	477	516				1.63	
	2017	7.85	27.57	5.9	06	50,270	32.9	2	580	582	26	4.1		1.43	13
	2018	7.80	26.73	5.3	80	51,738	34.0	15	638	652	33	3.5		2.18	9/
	2019	7.79	28.14	5.7	88	50,308	32.9	12	571	583	65	6.3	4.1	1.35	34
	2020	7.91	25.82	5.6	83	49,875	32.6	17	498	515	41	3.5	2.1	1.63	13
	2015	7.83	26.27	5.5	82	51,003	33.4	26	289	315				1.57	
	2016	7.78	24.68	0.9	86	47,648	31.0	09	413	472				2.30	
:	2017	7.81	27.43	5.6	86	50,486	33.0	8	641	643	33	3.5	,	1.21	10
Kendall	2018	7.81	26.78	5.4	81	51,747	34.0	13	542	555	36	2.7		0.95	65
	2019	7.77	28.20	5.2	80	50,326	32.9	16	637	652	71	0.0	5.6	0.87	23
	2020	7.88	26.45	5.3	78	49,521	32.3	16	645	099	41	3.2	2.7	1.06	12
Jacombac	2019	7.68	27.56	5.2	80	52,036	34.2	11	820	831	81	8.6	1.9	1.69	41
Landinary	2020	8.01	25.76	5.8	85	49,434	32.3	15	548	563	89	3.5	1.0	1.88	23
	2007	-	-				-		504		-		•		5
	2008		,		•	•	•	•	308	,			,		က
	2009				•			•	323					•	က
	2010	ı	ı		,				252	,					2
	2011								352					•	4
	2012								306		,				4
Molboiso	2013								284						12
MCIIVAIII	2014								261						22
	2015	7.98	25.64	9.9	66	52,748	34.7	17	312	329	28	3.6		1.18	10
	2016	7.99	23.76	9.9	94	50,583	33.2	6	462	471				1.22	
	2017		•		•	•		•	•	,			,		•
	2018	7.95	25.70	0.9	88	53,727	35.4	13	475	488	4	2.7		1.28	39
	2019										09	4.1			
	2020	8.16	23.93	4.8	29	50,583	33.0	22	335	357	41	2.8	1.3	2.13	10
Olde Marce	2019	7.91	26.42	5.5	82	50,412	33.0	11	602	720	51	2.9	3.6	1.29	255
Olde Mal Co	0000	7 03	00.70	7 7	8	52 161	3/13	13	576	252	37	00	3.7	7	**

Annual Geometric Mean Values for Historical Marco Island Monitoring Sites from 2007 -2020

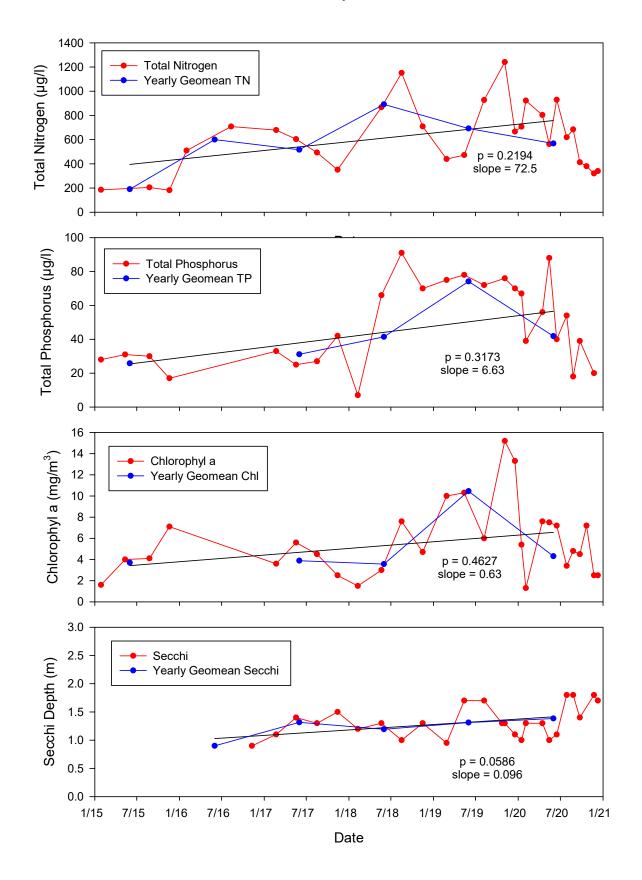

Site			(,	//	17	1 11 1	10-1				·		
		(s.u.)	(5)	(mg/L)	(% satn.)	(movoumnd)	(ppt)	(hg/L)	(hg/L)	(µg/L)	(hg/L)	(mg/m²)	(NIO)	Deptn (m)	(ctu/100 mL)
	2007								465						-
	2008				•	•			453	,		•		•	2
	2009				,		,	,	424	ı					က
	2010								209	,					2
	2011								495	,					11
Perrine	2012								409	,					80
	2013				,		,	,	393	ı					24
	2014				,		,	,	272	ı					20
	2015	7.89	25.89	0.9	06	51,425	33.7	21	161	181	27	3.3		0.70	10
	2016	7.83	23.92	8.9	26	48,418	31.5	32	692	801					
	2017	7.80	22.80	6.4	06	52,693	34.8	23	574	265	29	2.6		0.20	20
	2019	7.94	27.35	5.7	85	48,714	31.7	35	682	717	93	8.9	4.3	1.29	492
Swallow	2020	7.89	25.76	4.6	29	48,672	31.7	26	632	657	28	4.9	2.5	1.40	30
	2015	7.92	26.45	6.5	66	52,272	34.3	19	448	467				1.71	,
	2016	7.89	24.73	6.3	91	49,491	32.3	15	396	410			,	2.08	
interberry		7.94	27.37	0.9	92	51,668	33.9	9	485	491	51	4.2		1.55	16
Bridge		7.91	26.58	6.2	96	52,515	34.5	1	654	999	28	4.6	,	1.76	25
	2019	7.91	26.58	6.2	94	52,515	34.5	11	654	999	28	4.6		1.76	25
	2020	7.98	25.84	5.7	85	50,794	33.3	20	593	613	46	3.5	2.5	1.54	12
	2007					•		,	539					•	2
	2008					•			324						4
	2009					•			332						က
	2010				,	•	,	'	269	,			,	•	2
	2011				,	•	,	'	470	,			,	•	9
	2012								455						10
Windmill	2013				,	•	,	'	417	,			,	•	34
	2014				,	•		'	211	,			,	•	23
	2015	7.89	26.41	6.2	94	51,650	33.9	21	260	281	31	4.1		1.49	12
	2016	7.82	24.27	6.1	86	47,247	30.7	23	474	498				1.59	
	2017	7.79	27.24	5.6	8	50,365	32.9	4	509	513	27	4.3	,	1.67	16
	2018	7.77	26.53	5.6	8	51,715	33.9	12	664	229	74	5.4	,	1.43	69
	2019	7.81	27.91	5.8	88	49,782	32.5	11	461	472	70	7.0	3.4	1.23	71
	0000	5	20.00	7 1	č	10 501	20.4	77	576	200	48	7	3.0	1 25	10

<u>A-3:</u>	Temporal Plots and Regression Analyses for Marco
<u> </u>	Island Historical Monitoring Data

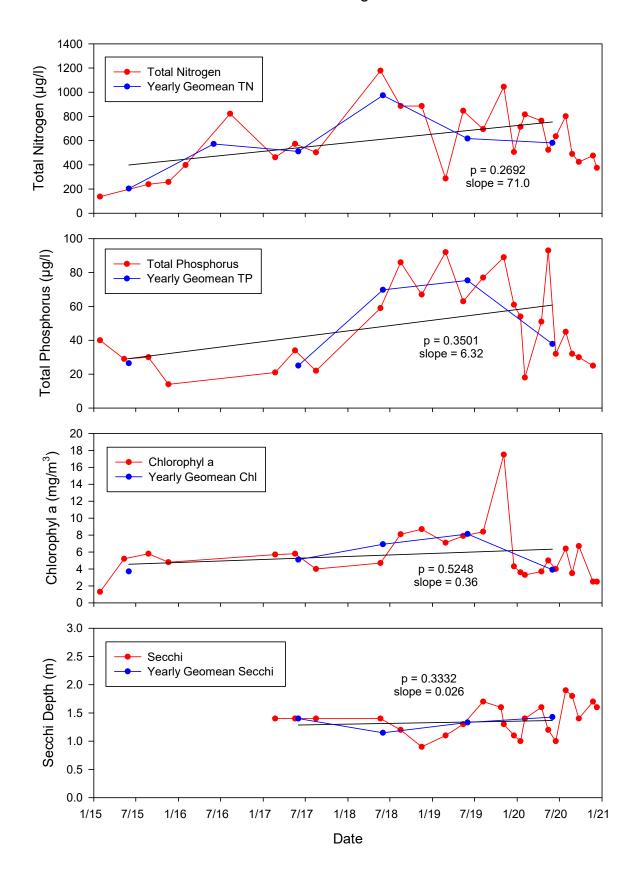

Barfield Bridge

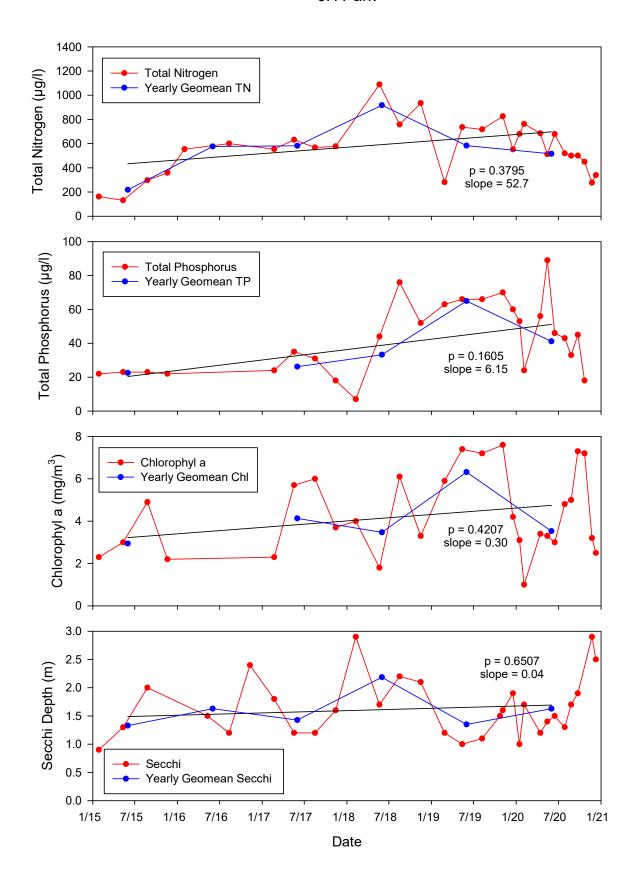


Collier Bridge

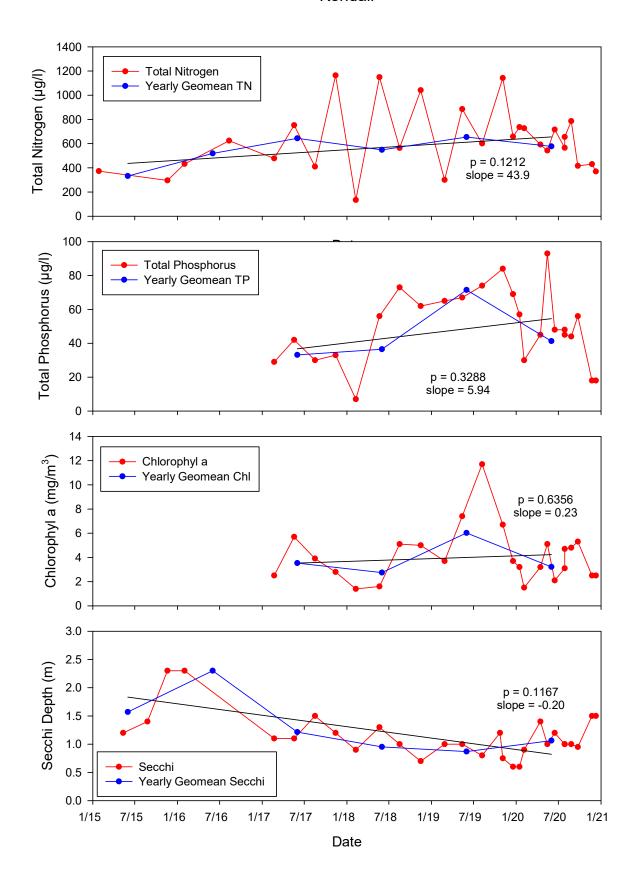


E Winterberry Bridge

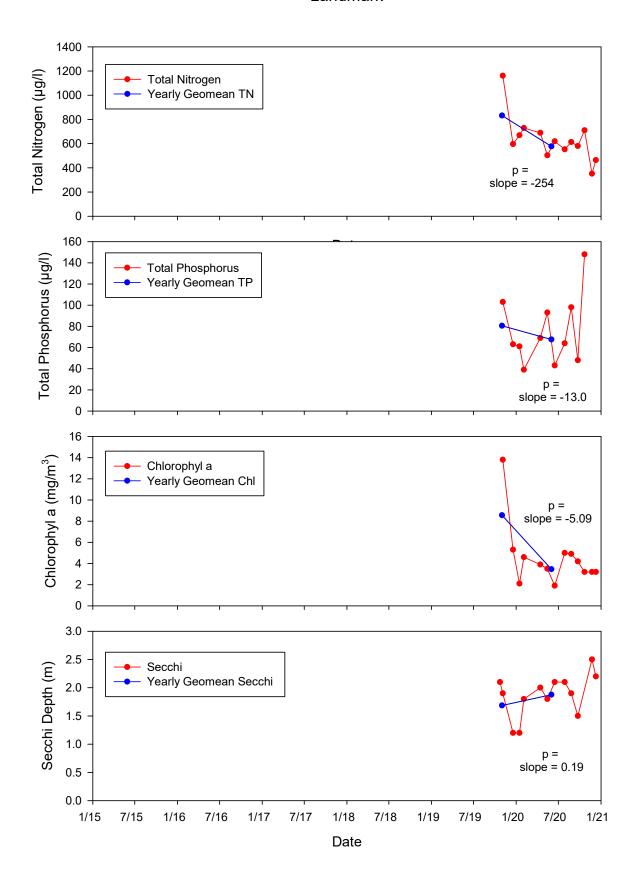


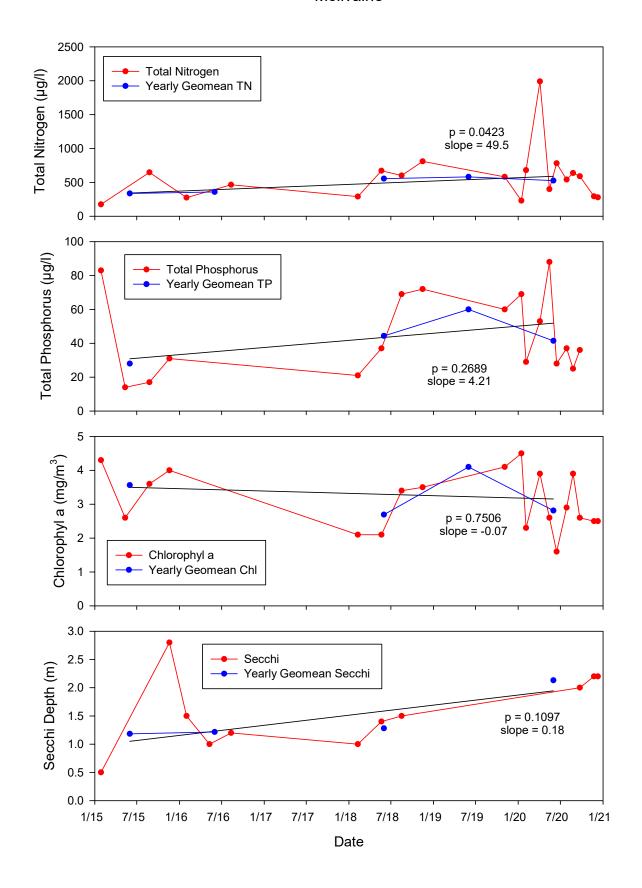


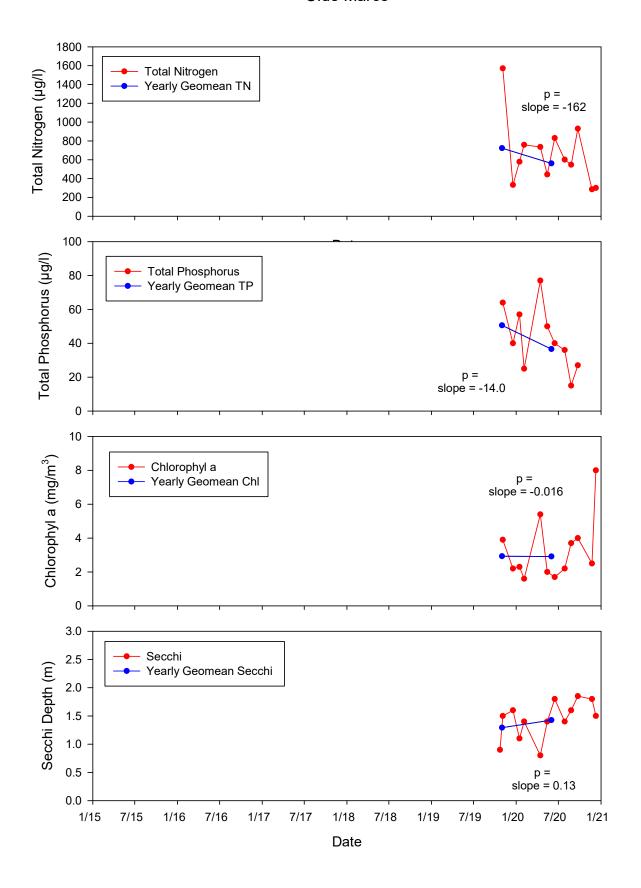
Hollyhock



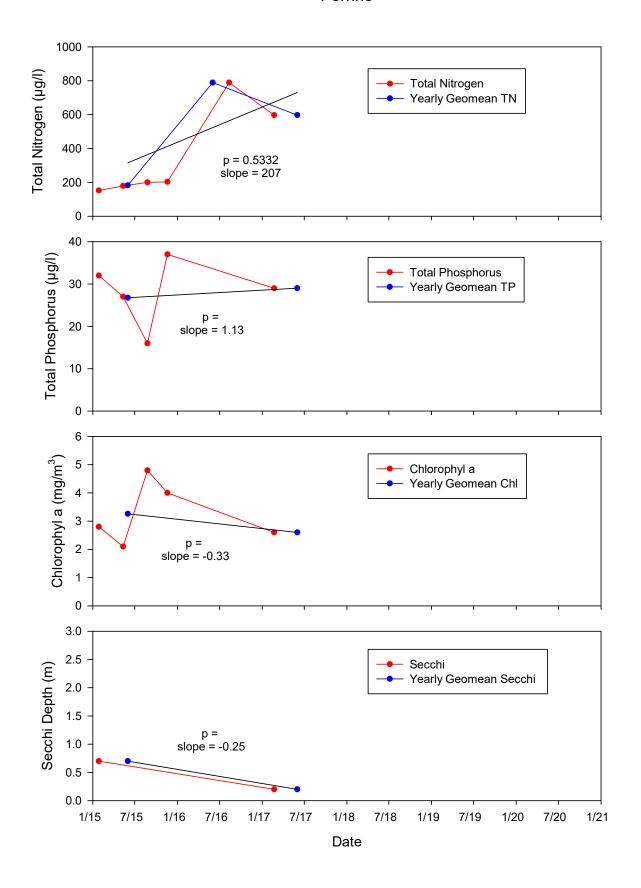
Hummingbird



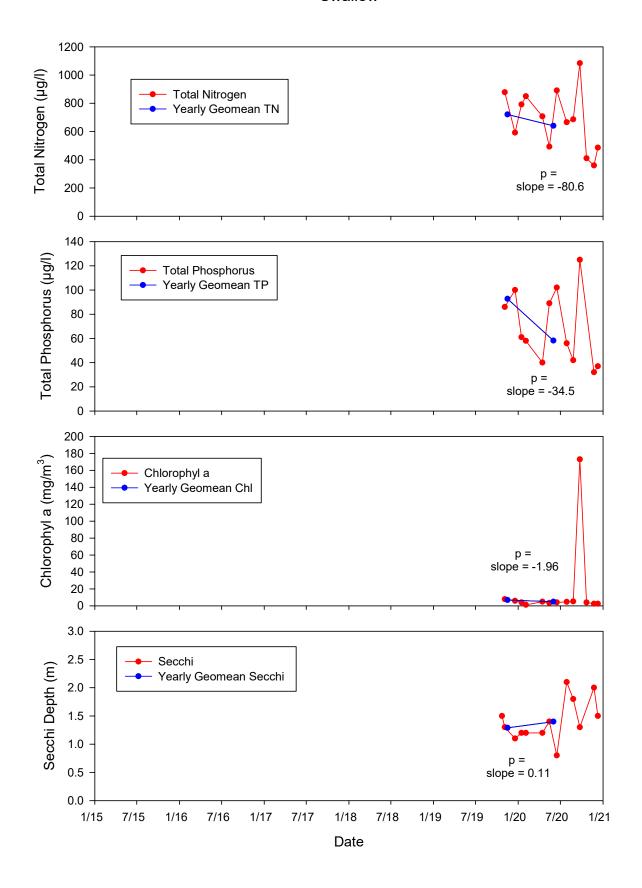

Kendall

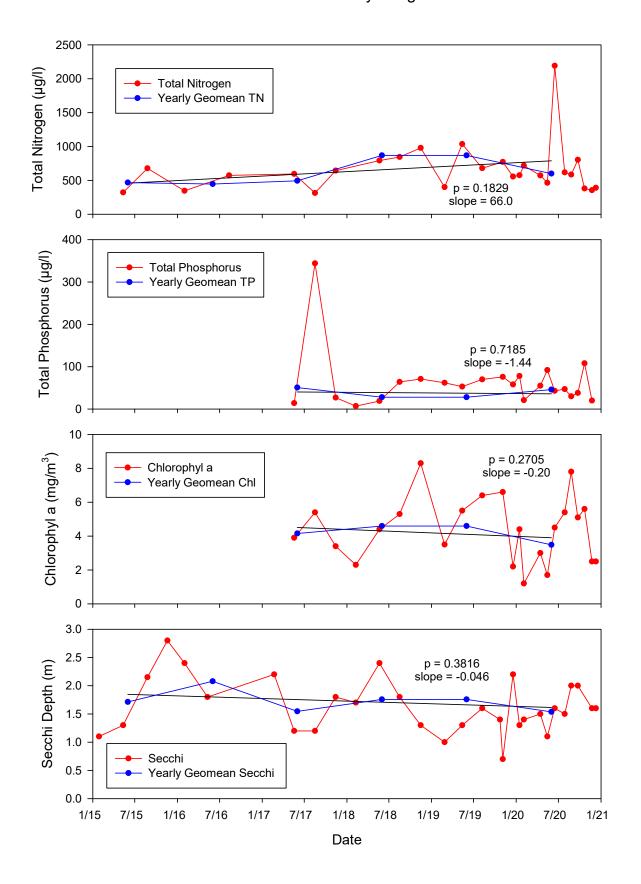


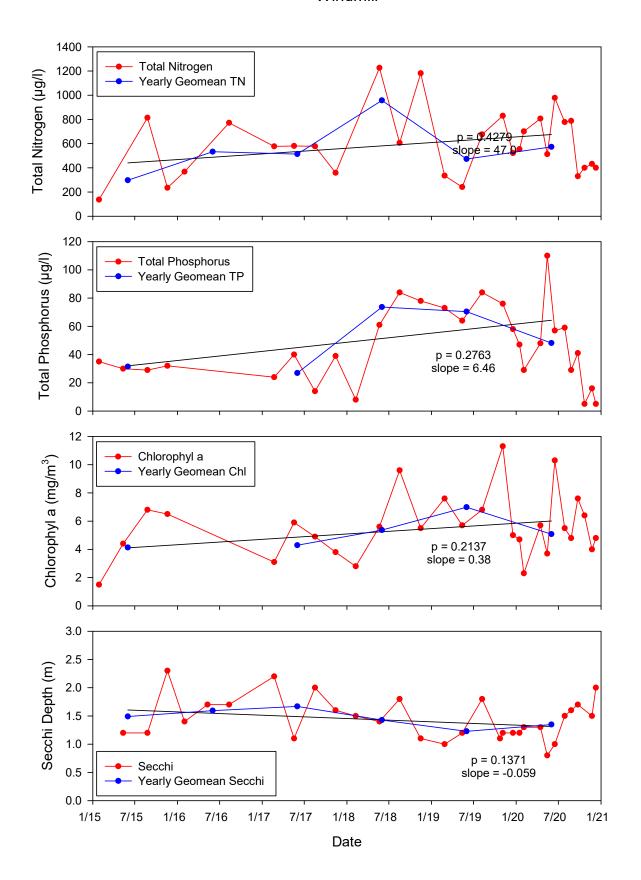
Landmark

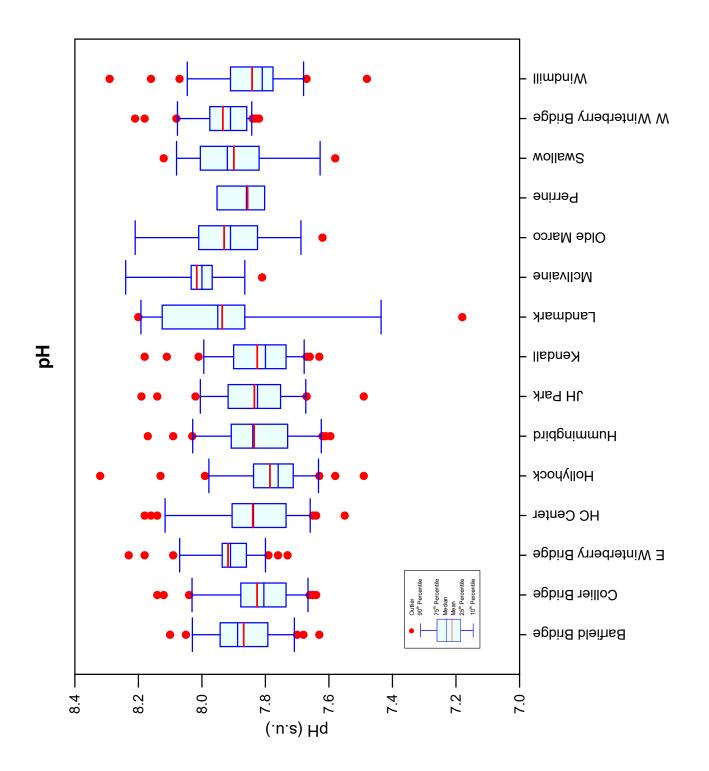


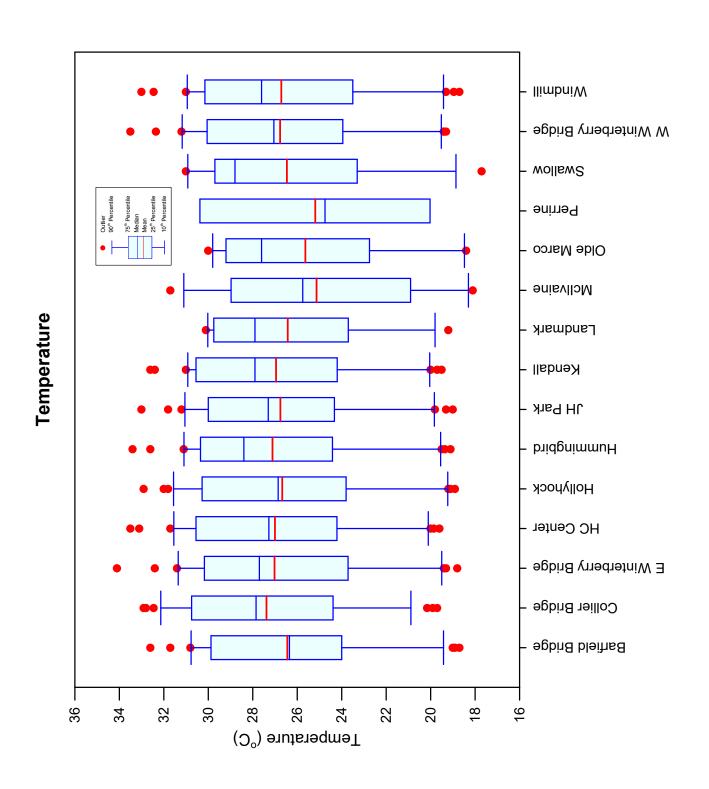
McIlvaine

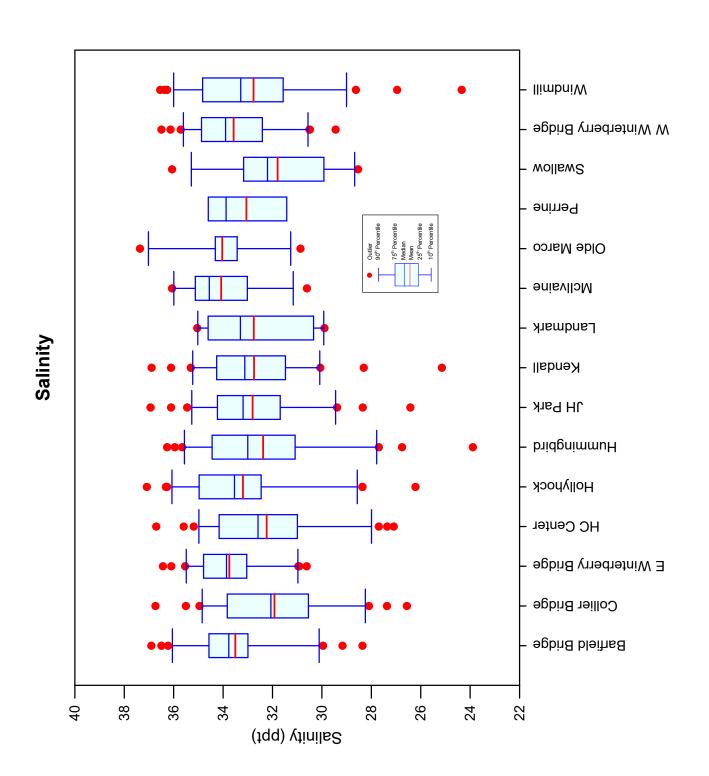


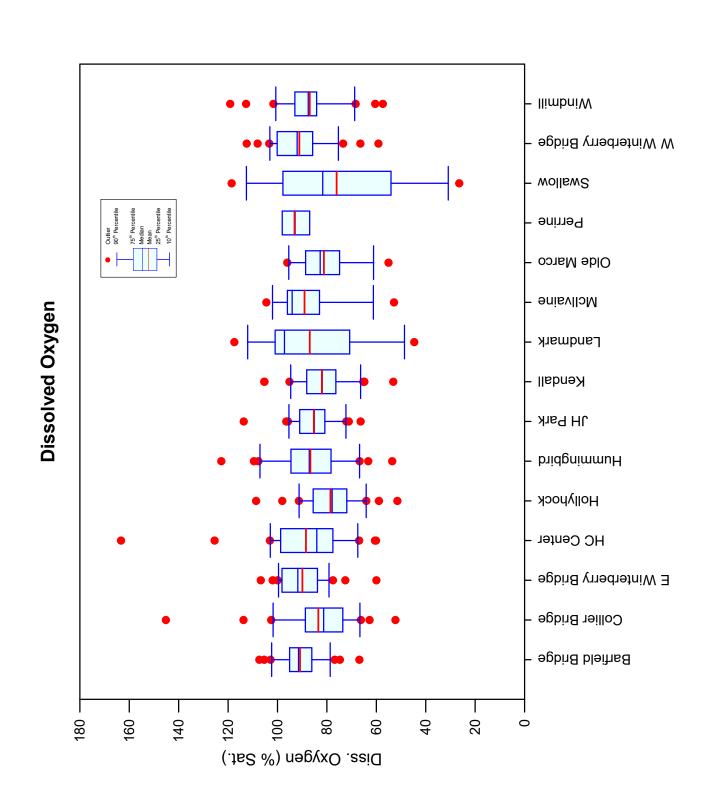

Perrine

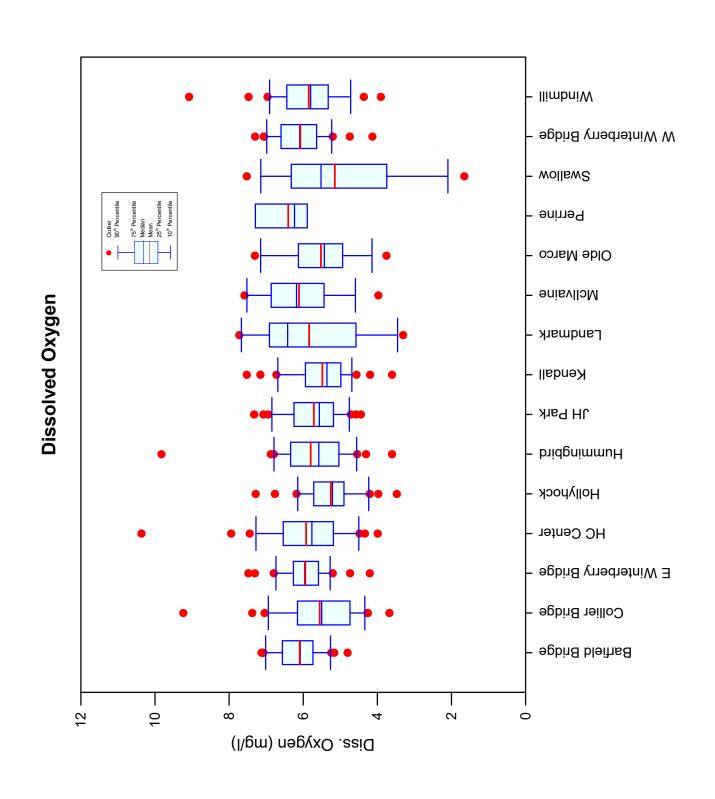

Swallow

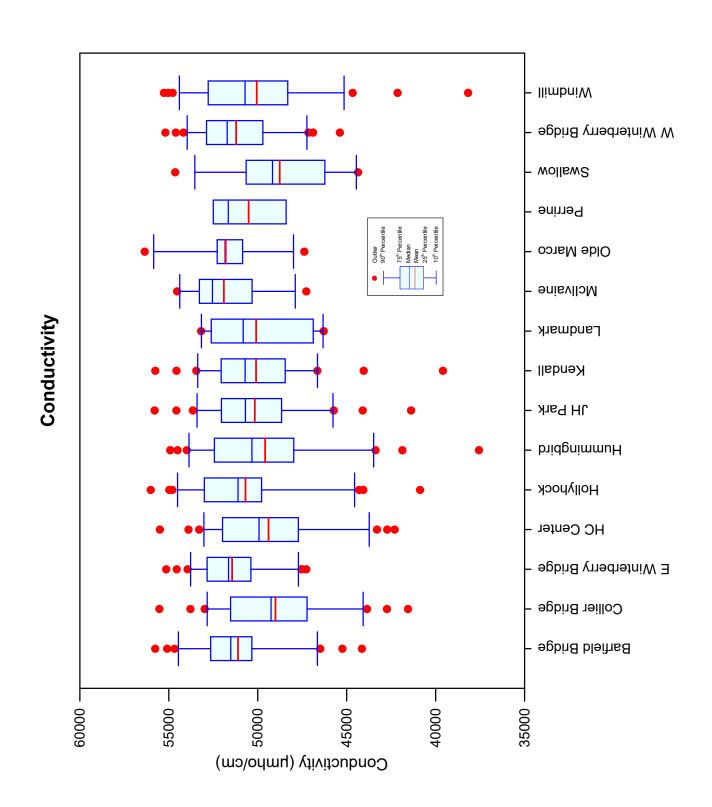

W Winterberry Bridge

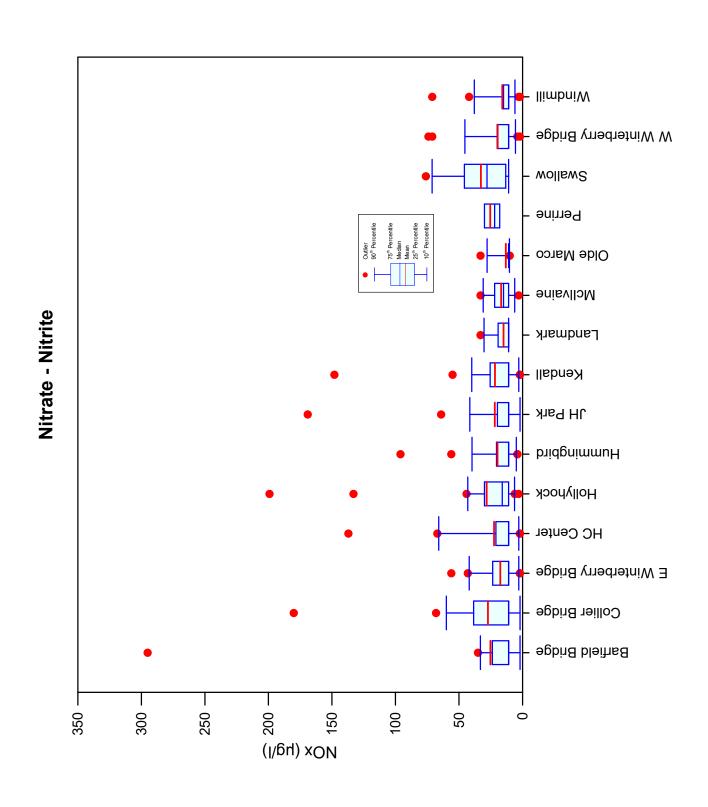


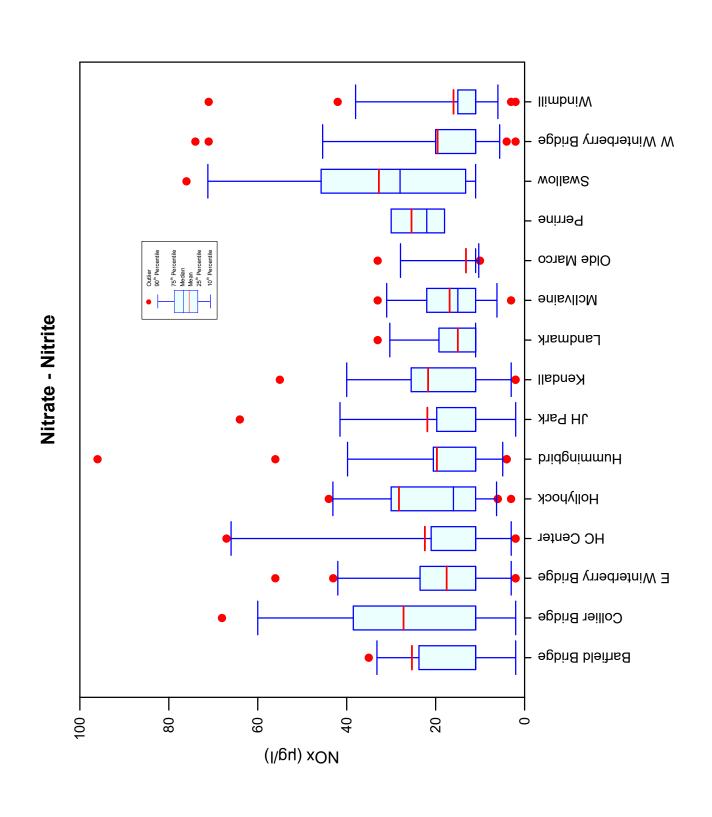

Windmill

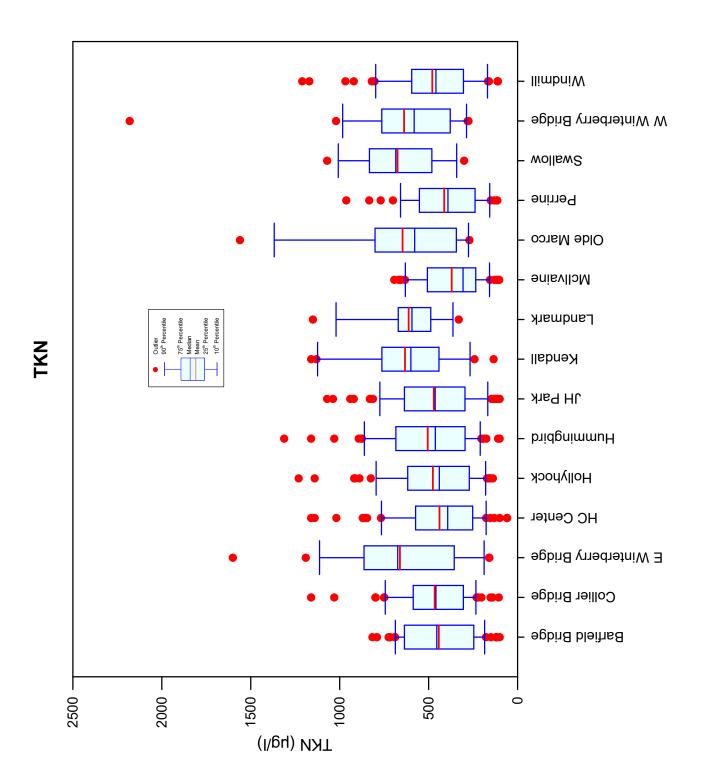


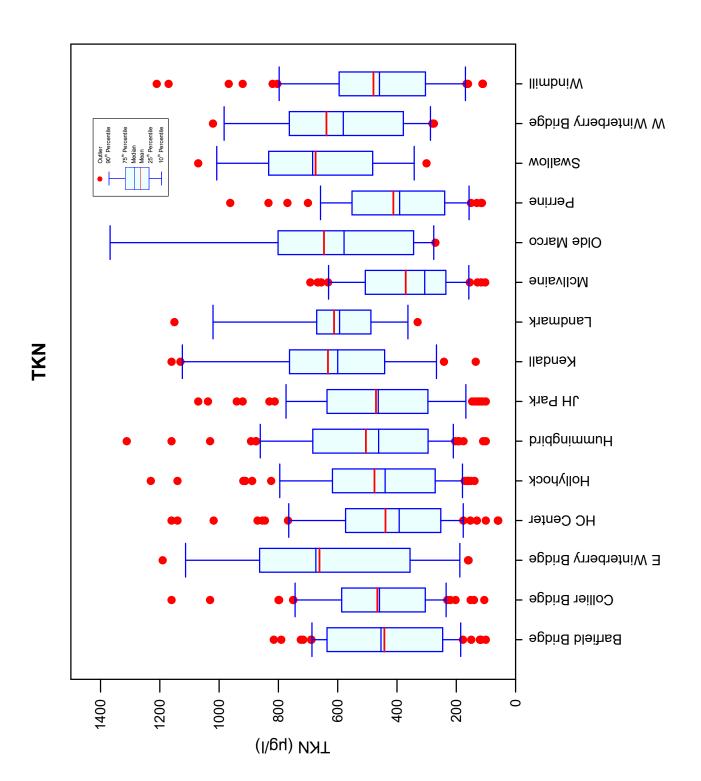

<u>A-4:</u>	Box and by Site	Whisker	Plots for I	<u> Historical</u>	Marco Isla	and Water	Quality Data
	by one						

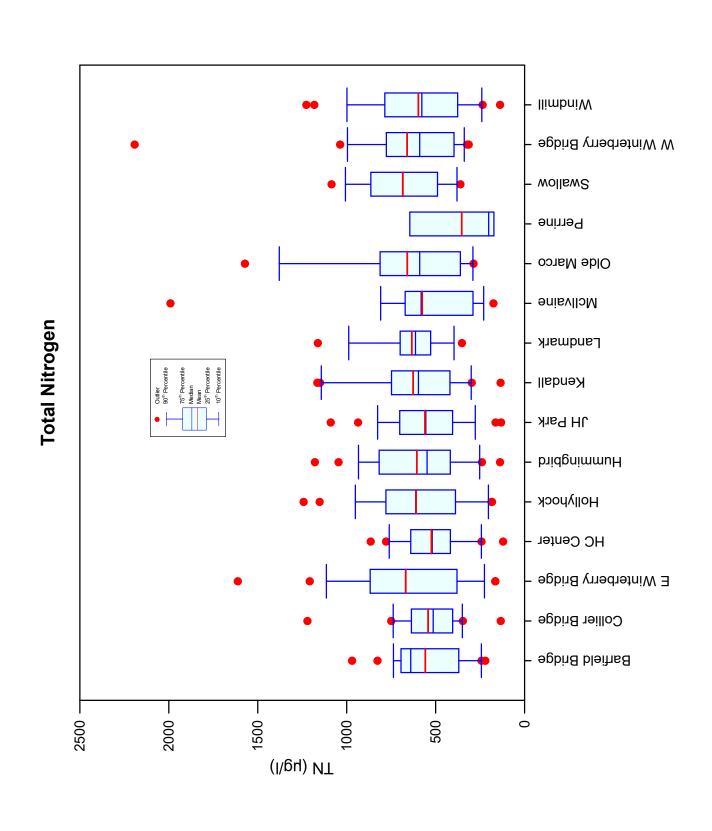


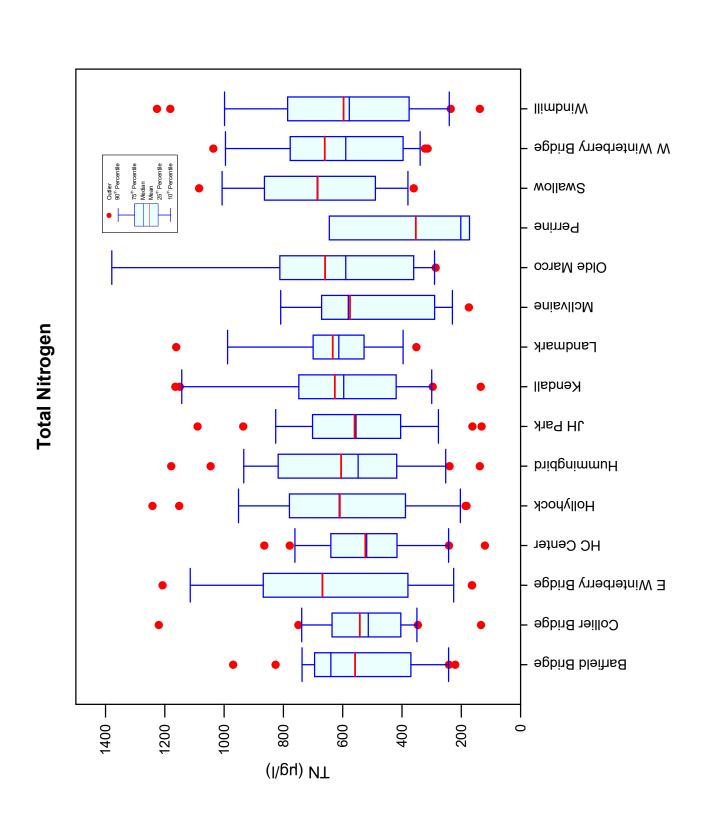


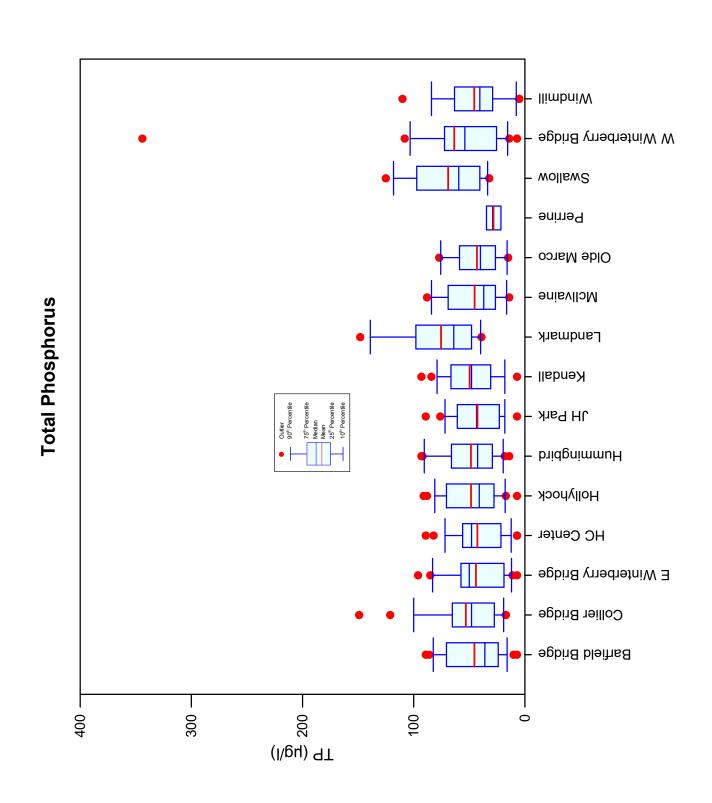


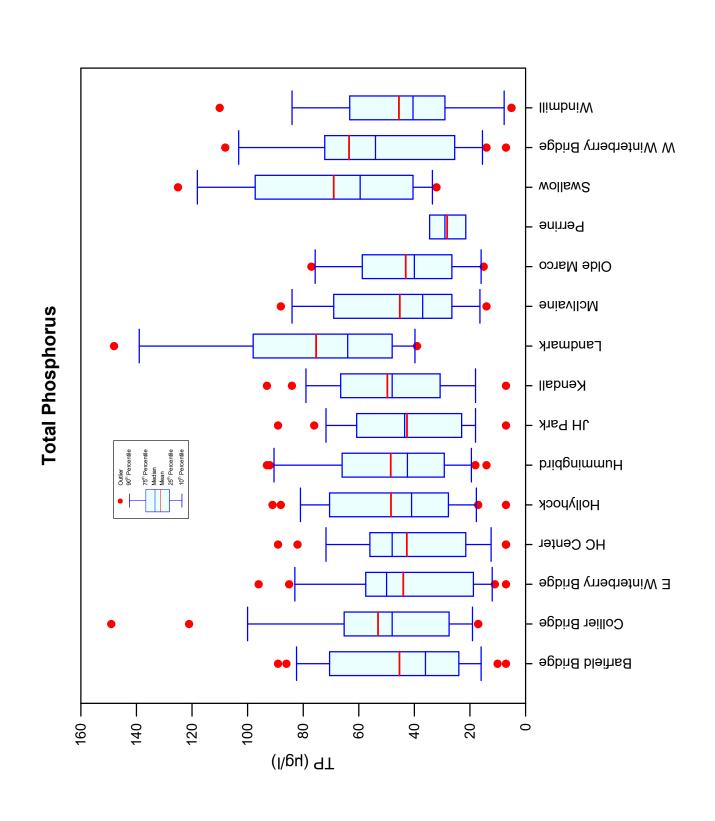


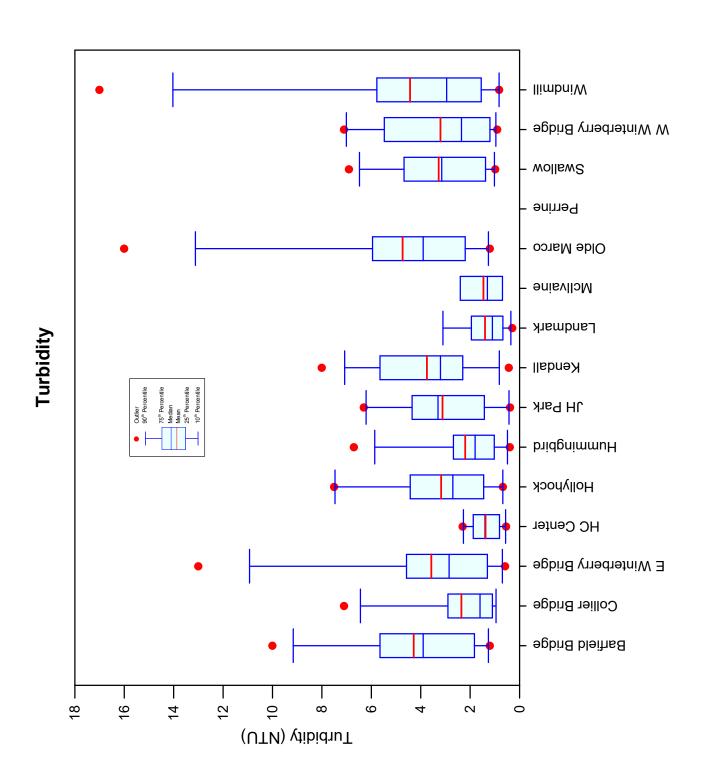


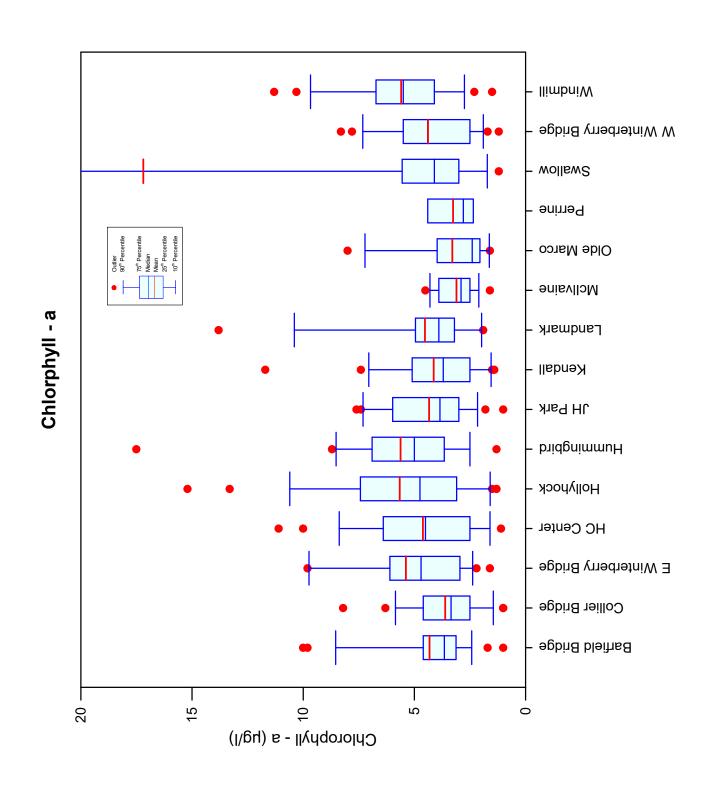


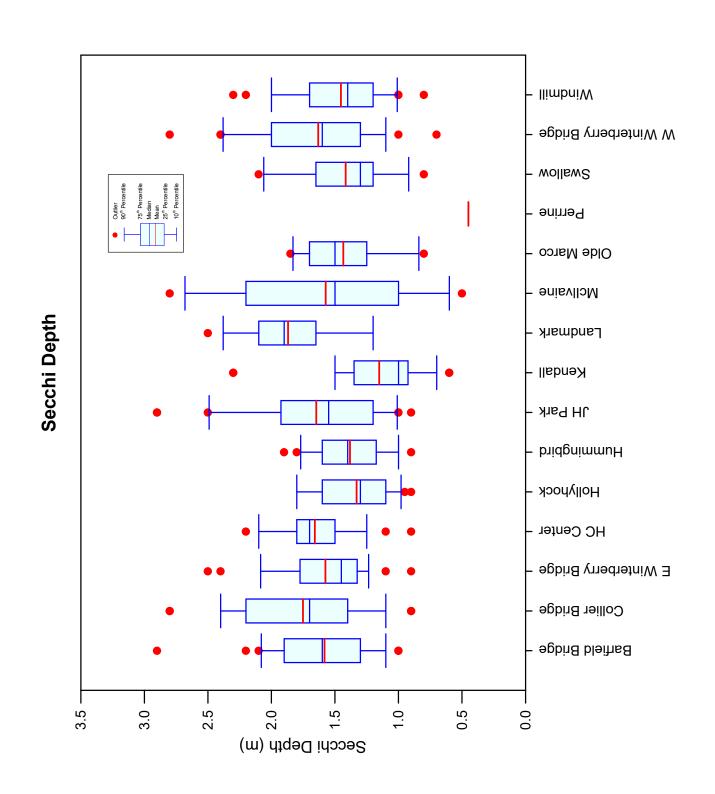


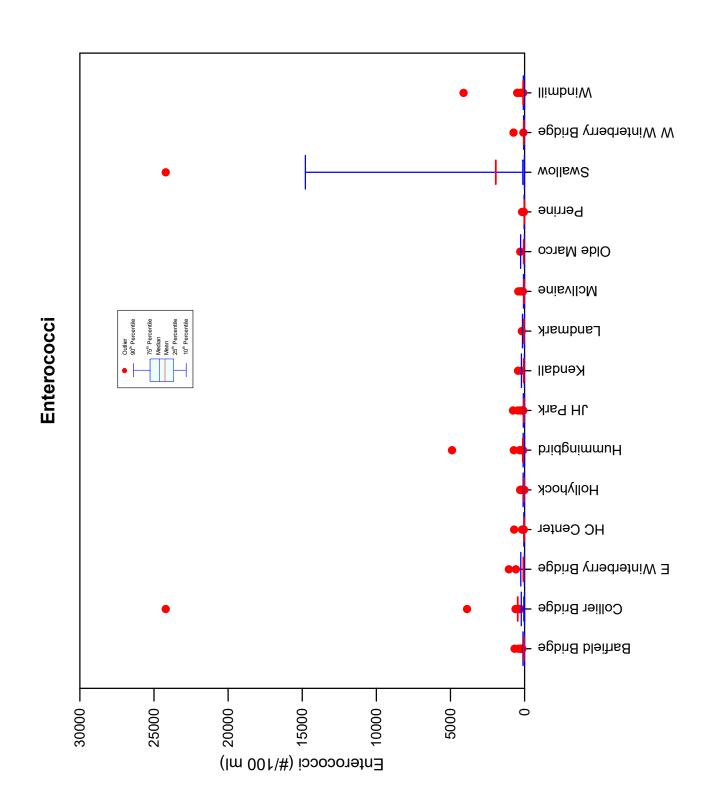


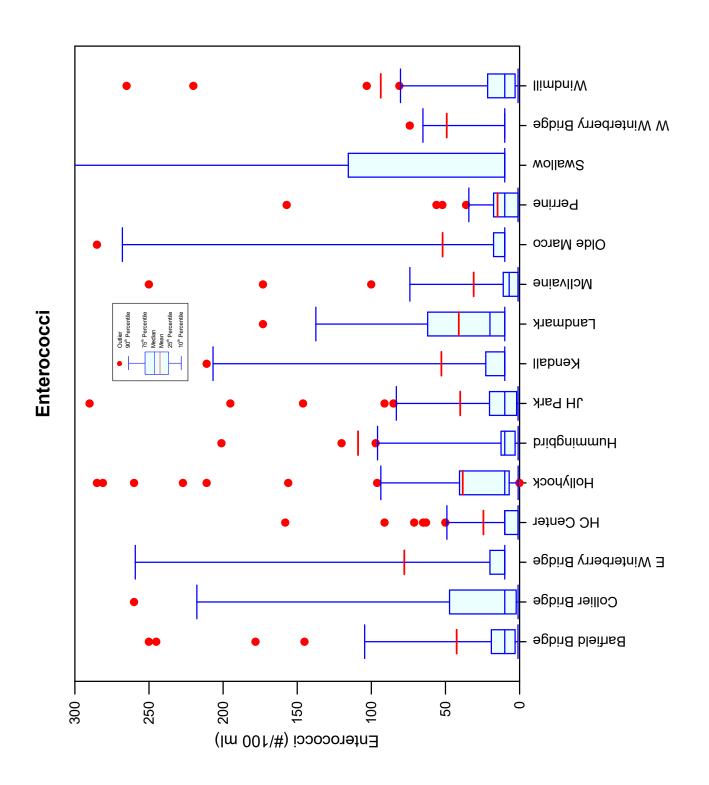












Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Sample	pH (s.u.)	(၁)	DISS. O ₂ (mg/L)	Cond. (µmho/cm)	Sallnity (ppt)	Ammonia N (µg/L)	NOX (hg/L)	(Hg/L)	Total N (µg/L)	Total P (µg/L)	cnyi-a (mg/m³)	urbidity (NTU)	Seconi Depth (m) (cfu/100 mL)	(mg/L)
SFWMD	16689	1/13/15	7.90	21.00	9.2	52,319	34.5	2	5		155	18	1.8	2.9			2.0
SFWMD	16689	3/5/15	7.80	21.30	7.4	51,368	33.8	13	5		176	20	1.3	4.3	1.1		2.7
SFWMD	16689	5/14/15	7.90	27.00	6.3	52,407	34.5	14	9		320	20		1.0	3.4		2.0
SFWMD	16689	7/7/15	8.00	30.00	5.3	53,080	34.9	5	7		471	25		1.8	1.9		2.4
SFWMD	16689	9/10/15	7.90	30.70	5.1	51,925	34.2	1	2		318	21		2.4	2.3		2.7
SFWMD	16689	11/3/15	7.80	28.10	6.4	50,373	32.9	6	6		412	23		1.4	2.1		3.1
SFWMD	16689	1/25/17	7.80	21.40	9.9	52,104	34.3	16	00		416	93	4.2	36.8	0.3		2.0
SFWMD	16689	3/6/17	8.10	21.40	7.3	52,456	34.6	2	2		208	23	1.0	2.6	1.5		2.1
SFWMD	16689	5/11/17	7.90	26.90	6.5	54,880	36.5	വ	2		234	22	1.7	2.3	2.5		2.2
SFWMD	16689	7/18/17	8.00	30.10	5.7	46,567	30.1	7	2		285	56	3.9	1.3	2.4		3.2
SFWMD	16689	9/26/17	7.60	31.40	5.4	36,826	23.1	ω ι	5 .		631	77	11.5	3.5	9.0		9.1
SFWMD	16689	11/16/17	0.90	23.70	6.4	52,237	34.5	ر د	0 4		235	77	2.7	89.0	2.0		2.0
STWIND	16689	1/9/18	Ø.10	16.40	- u	51,657	34.0	O 11	ם ע		310	2 2	7.0	7.0	2.5		0.2
SEWMD	10009	2/42/18	0 0 0 0	30.40	0.0	56,596	35.0	o r	o 10		335	3 8	ō. C	7.7	- C		8.6
SEWMD	16689	9/17/18	2.80	31.10	. r.	49 588	30.3	o w) rc		326	35 8	2.4	5. 6	0.7		0.0
SFWMD	16689	11/28/18	7.70	20.50	. 6	53.796	35.6	46	9 0		401	37	3. 5.	7.5	5.7		. w
SFWMD	16689	1/15/19	8.00	19.90	7.5	53,595	35.5	2 2	5		383	49	4.2	13.7			3.3
SFWMD	16689	3/12/19	8.00	24.50	7.1	52,304	34.5	2	2		297	18	7.0	1.0	2.7		1.7
SFWMD	16689	6/22/19	8.10	33.00	7.0	52,225	34.1	2	2		315	33	3.6	2.5	1.6		4.3
SFWMD	16689	7/31/19	8.10	31.40	5.8	52,912	34.7	9	5		300	23	1.1	0.7	2.7		3.2
SFWMD	16689	9/10/19	8.00	31.00	4.8	52,453	34.4	12	2		224	23	2.4	6.0	3.0		2.3
SFWMD	16689	11/19/19	8.10	21.70	9.7	51,682	34.0	2	2		346	38	5.7	4.0	4:1		3.2
SFWMD	16689	1/23/20	8.00	17.80	7.4	52,516	34.7	80	2		303	09	1.5	15.0	0.7		1.9
SFWMD	16689	3/10/20	7.90	20.30	7.5	52,645	34.8	2	S I		180	2 28	0.3	0.5	2.7		2.3
SEWMD	16689	0/28/20	06.7	29.90		51,321	33.6	5	o 10		302	8 6	3.4	6.2	3.2		3.0
SFWMD	16690	1/13/15	7.80	21.50	7.7	52,759	34.8	2	2		247	33	1.2	6.4	1.5		2.8
SFWMD	16690	3/5/15	7.80	23.70	6.4	49,942	32.7	15	9		333	23	6.4	13.2	0.5		3.9
SFWMD	16690	5/14/15	7.80	27.10	5.5	52,040	34.2	19	5 6		392	59		3.3	5. 5		2.5
SFWMD	16690	7/7/15	8.00	29.60	5.7	53,529	35.2	2 7	D		208	φ 24 α		6.6	0.8		t.4
SEWMD	16690	11/3/15	7.70	38.70		46,223	20.0	<u>+</u>	2 4		445	8 8		- œ	7 7		t. 4
SFWMD	16690	1/25/17	7.80	21.30	6.6	52.040	34.3	24	10		409	8 2	3.5	47.8	4.0		- 4
SFWMD	16690	3/6/17	8.00	21.50	7.3	52,432	34.5	, ro	5		222	22	1.3	t 7.	1.6		2.3
SFWMD	16690	5/11/17	7.90	27.50	7.7	55,633	36.7	13	2		348	4	4.3	7.7	1.0		2.8
SFWMD	16690	7/18/17	7.80	30.60	4.8	41,325	26.7	29	9		394	47	7.2	6.0	1.7		5.4
SFWMD	16690	9/26/17	7.20	30.20	5.1	42,346	28.7	10	2		929	85	15.0	5.5	1.1		0.9
SFWMD	16690	11/16/17	7.90	23.40	6.2	51,357	33.8	2	2		322	41	3.8	7.0	1.3		5.6
SFWMD	16690	1/9/18	8:00	16.30	8.5	52,419	34.6	ξ.	\ L		263	92 8	1.0	2.5	8:		2.7
SEWMD	16690	3/20/18	08.7	23.80	0.7	54,732	35.7	o u	0 /		320	S 4	5.7	4.0	7.1		3.2
SFWMD	16690	7/12/18	7.90	30.30	8.4	53,379	35.7	19	2		396	41	2.8	1.7	1.6		3.9
SFWMD	16690	9/17/18	7.80	31.60	4.9	48,308	31.3	8	2		459	53	6.3	4.6	4:1		5.5
SFWMD	16690	11/28/18	7.70	21.00	0.9	54,239	35.9	92	13		407	42	2.3	4.8	4:1		3.1
SFWMD	16690	1/15/19	7.80	20.10	6.8	54,100	35.8	20	9		325	5.	2.0	4.3	1.2		3.3
SFWMD	16690	3/12/19	7.90	25.50	5.7	52,627	34.7	28	10 u		386	34	1.6	2.0	1.2		2.4
SFWIND	16690	6/25/19	06.7	33.30	5.7	48,655	31.5	o G	0 4		450	2 2	5.3	0.0	0.0		o
SEWMD	16690	0/10/10	0.00	31.70	9. t	501,460	32.6	7 7	י כ		265	S 75	7.7	3.0	D 6		7.4
SFWMD	16690	11/19/19	8.00	21.10	- en	53 527	35.3	5 0	ο ro		374	88	5 K	2.9	0.7		9 6.
SFWMD	16690	1/23/20	7.90	16.70	7.3	52,448	34.6	13	7		326	52	1.8	10.7	9.0		2.1
SFWMD	16690	3/10/20	7.80	20.10	8.9	53,185	35.2	5	2		279	41	1.0	8.0	1.1		2.8
SFWMD	16690	5/26/20	7.80	27.70	5.3	53,644	35.4	2	2		395	14	4.9	4.6	0.8		3.4
SFWMD	16690	7/28/20	7.80	30.40	5.4	5,001	32.6	ω :	2		425	41	6.5	6.2	2.4		6.4
CMW16	0000	00/00/0	-	2	2	49.741	A C.F.		4		207	1	-				

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

			Samula	7	Tomp	Disc O.	Cond		A einommA	À	TKN	Total N	Total D		Turbidity	Socchi	Enforc	JOL
16662 14916 770 2120 72 62025 850 9 5 5 26 24 31 16662 36/416 770 2420 51,299 337 46 17 609 51 9 5 444 66 58 133 16662 51/416 770 2420 47 56,489 38.7 11 7 609 51 83 16662 91/416 7.00 28.00 4.3 46,582 30.4 40 17 60 51 40 17 60 51 40 70 40 <th>Collecting Agency</th> <th>Station ID</th> <th>Date</th> <th>(s.u.)</th> <th>(0,0)</th> <th>(mg/L)</th> <th>(mp/oqun)</th> <th></th> <th>(µg/L)</th> <th>(hg/L)</th> <th>(hg/L)</th> <th>(hg/L)</th> <th>(µg/L)</th> <th></th> <th>_</th> <th>Depth (m)</th> <th>(cfu/100 mL)</th> <th>(mg/L)</th>	Collecting Agency	Station ID	Date	(s.u.)	(0,0)	(mg/L)	(mp/oqun)		(µg/L)	(hg/L)	(hg/L)	(hg/L)	(µg/L)		_	Depth (m)	(cfu/100 mL)	(mg/L)
16692 35/44/16 770 24.20 6.9 61.239 33.7 28.9 16.6 6.6 6.6 6.8 13.9 16692 7/44/16 27.0 22.30 6.1 35.40 33.7 28.9 17 60.0 51 7.0 7.	SFWMD	16692	1/13/15	7.80	21.20	7.2	52,925	35.0	6	2		252	56	2.4	3.1	1.3		3.2
16682 5/14/15 770 273 47 53277 381 46 17 570 579 51 83 16682 7/17/15 280 273 61 33 17 579 51 47 17 16682 1/17/15 780 28.90 4.3 44582 38.4 47 589 54 47 170 16882 1/17/15 780 28.90 4.3 44582 28.8 47 589 37 51 77 51 77 61 77 61 77 77 77 77 77 78	SFWMD	16692	3/5/15	7.70	24.20	5.9	51,239	33.7	28	16		444	99	5.8	13.9	0.5		6.2
16692 77/15 8.00 9.30 5.1 5.49 9.32 11 7 7 578 54 7.9 7.9 16692 140/15 7.00 30.70 4.2 46.935 9.9 4 7 5.9 7.9 7.9 7.0 16692 11/315 7.00 28.90 4.3 44.562 28.9 4.7 22.9 7.79 51 4.7 1.7 16692 36/17 7.00 20.50 7.0 46.526 28.4 4.2 4.6 2.8 4.7 4.7 7.70 5.0 4.7 4.6 2.8 7.0 4.5 5.2 4.2 2.6 9 3.0 9 4.7 4.7 4.7 4.7 4.7 4.7 4.2 5.2 4.2<	SFWMD	16692	5/14/15	7.70	27.30	4.7	53,277	35.1	46	17		209	51		8.3	7.0		3.2
14662 1/13/15 7.60 20.70 4.2 46.895 20.4 4.0 11 5.61 4.5 4.5 10.1 16662 1/13/15 7.70 2.2.50 4.3 24.562 28.8 4.7 28.3 7.79 3.3 1.9 5.6 4.7 16662 1/13/15 7.70 2.2.50 2.3.50	SFWMD	16692	7/7/15	8.00	29.30	5.1	35,499	35.2	11	7		578	54		6.7	0.8		4.4
16662 11/31/5 7.00 28.50 4.3 44.522 2.8 47 28.3 779 51 47 47 16692 11/25/17 7.70 21.30 6.3 52.447 34.6 28.9 9 301 33 1,7 6.6 16692 51/11/17 7.00 27.30 6.3 6.2 2.2 5 9 301 33 1,7 6.6 7 6.6 7 30 7 6.6 7 7 7 7 7 7 7 6.2 6.2 6.2 7 6.6 7 30 7 4.7 7 7 7 8 9 30 3 7 4 7 7 9 7 7 9 7 9 7 9 7 7 9 7 9 7 9 7 9 7 9 7 7 9 7 7 9 7 7<	SFWMD	16692	9/10/15	7.80	30.70	4.2	46,935	30.4	40	11		261	45		10.1	9.0		5.6
1662 1026/17 770 2139 6.3 52,447 34.6 28 9 301 333 19 56 1662 38/11 360 20.30 4.3 52,447 34.6 28 9 301 330 19 56 1662 38/11 28/10 27.0 6.4 56,284 3.5 11 56 18 36 37 43 43 46 86 36 43 43 45 75 44 86 43 43 46 86 43 43 46 42 7 66 7 7 44 86 43 44 43 44 42 43 44 42 44 <	SFWMD	16692	11/3/15	7.60	28.50	4.3	44,552	28.8	47	283		677	51		4.7	1.0		8.4
16692 386/17 8 00 20.50 7.0 63.261 3.2 12 5 330 39 37 8.1 16692 7/11/17 7.80 20.50 4.2 36.266 37.5 4.2 4.2 4.2 4.2 4.2 7.5 4.9 7.5 4.4 6.0 4.4 6.0 4.4 5.2 5.5 5.5 4.3 4.3 4.2 5.5 4.4 7.2 7.2 4.4 4.1 4.1 4.2 5.5 5.2 5.5 5.2 5.5 5.5 5.2 5.5 5.2 5.5	SFWMD	16692	1/25/17	7.70	21.30	6.3	52,447	34.6	28	6		301	33	1.9	5.6	1.6		2.2
16692 51/11/17 7.80 27.30 5.4 66.236 37.5 21 5 43 4.9 7.5 16692 7/18/17 7.80 30.80 4.2 37.457 23.4 42 7.6 7.6 3.8 4.0 7.8 3.3 4.0 7.6 2.3 4.0 7.8 2.6 7 5.0 7.2 4.4 7.2 4.4 7.2 4.4 7.2 4.4 7.2 4.4 7.2 4.4 7.2 4.4 7.2 4.4 7.2 7.2 4.4 7.2 5.2	SFWMD	16692	3/6/17	8.00	20.50	7.0	53,261	35.2	12	2		330	39	3.7	8.1	1.7		3.0
16692 71/81/17 780 30.80 4.2 37.457 23.4 4.2 7 666 72 7.2 4.4 16692 9/52/17 7.60 30.30 3.3 40,678 24.5 1.3 5 647 56 7.2 4.4 16692 1/9/16 8.00 1640 8.2 52,853 34.9 1.2 5 647 56.3 5.3 6.7 16692 1/9/16 8.00 1640 8.2 52,853 34.9 1.2 5 647 56.3 5.3 6.7 6.1 6.4 7 6.7 6.1 6.2 5.2 6.2 6.4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 7 8 7 7 7 8 7 8 9 9 9 9 9 9 9 9 9 9 9	SFWMD	16692	5/11/17	7.80	27.30	5.4	56,236	37.5	21	2		375	43	4.9	7.5	1.1		3.3
16692 9/26/17 7,60 30.30 3.3 40,676 24.5 13 647 98 14.2 9.8 16692 11/16/17 7,80 23.30 5.7 51,112 33.6 22 5 6 34 1.2 5 647 98 14.2 9.8 16692 11/16/17 7,80 24.30 6.7 51,112 33.6 12 5 68 34 1.2 5 68 34 1.3 4.4 5 9.8 1.4 1.1 1.1 1.2 5 6.6 34 1.2 5 6.4 4.4 4.7 4.1 2.2 5 6.4 5 9.8 1.4 4.1 4.1 4.2 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 4 4 4.4 4.1 4.1 4.2 5 5 5 5 4.2 <th< th=""><th>SFWMD</th><th>16692</th><th>7/18/17</th><th>7.80</th><th>30.80</th><th>4.2</th><th>37,457</th><th>23.4</th><th>42</th><th>7</th><th></th><th>266</th><th>72</th><th>7.2</th><th>4.4</th><th>0.5</th><th></th><th>9.7</th></th<>	SFWMD	16692	7/18/17	7.80	30.80	4.2	37,457	23.4	42	7		266	72	7.2	4.4	0.5		9.7
16692 11/16/17 7.80 23.30 5.7 51,112 33.6 22 5 424 55 5.5 13.1 16692 149/18 8.00 16.40 8.2 52,853 34.9 12 5 286 34 1.3 5.3 16692 3/20/18 7.80 24.30 6.0 54,437 36.1 22 5 5 34 1.3 5.3 16692 5/60 27.80 2.9 57,215 38.0 10 5 5.20 5.2 5 3.4 4.1 4.1 4.1 4.1 6.6 5.4 3.8 1.0 6.0 5.9 3.7 4.2 4.2 4.2 4.2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	SFWMD	16692	9/26/17	7.60	30.30	3.3	40,678	24.5	13	2		647	86	14.2	9.8	6.0		8.4
16692 1/9/18 8.00 16.40 8.2 5.853 34.9 12 5 323 34 1.3 5.3 16692 3/20/18 7.80 24.30 6.0 54,437 36.1 22 5 9 1.4 4.1 4.2 5 5 5 5 4.2 5 5 5 4.2 5 5 4.3 4.2 5 5 4.3 4.3 4.2 5 5 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.4 4.0 8.2 5.2 5 4.3 4.3 4.3 4.3 4.3 4.3 4.4 6.0 8.2 5.2 5 4.3 4.3	SFWMD	16692	11/16/17	7.80	23.30	5.7	51,112	33.6	22	2		424	22	5.5	13.1	1.1		3.2
16692 3/20/18 7.80 24.30 6.0 54.437 36.1 22 5 45 7.0 4.1 4.1 4.1 16692 5/8/18 7.90 27.60 5.9 57.215 38.0 10 5 445 70 4.3 13.0 16692 9/17/18 7.80 31.60 4.7 4.1/701 26.8 4.3 15 6.6 5.2 5.2 6.8 6.3 5 5.0 5.2 6.8 7.3 4.5 6.8 6.3 7.3 4.3 7.3 4.4 6.6 5.4 3.0 4.0 4.3 4.4 3.0 4.0 4.3 4.4 4.0 4.0 4.0 4.2 5.0 8.4 4.2 5.0 8.0 8.0 8.0	SFWMD	16692	1/9/18	8.00	16.40	8.2	52,853	34.9	12	2		286	34	1.3	5.3	1.4		2.8
16692 5/8/18 7:00 27:00 6.9 57,215 38.0 10 5 445 70 4.3 13.0 16692 7/12/18 7:90 29:60 4.4 56,249 33.9 35 5 5 5 5 7.3 7.3 16692 1/1/28/18 7.80 29:60 4.7 41/701 26.8 64.37 36.0 60 25 392 42 2.4 5.6 3.4 4.0 66 5.4,37 36.1 30 11 360 36 4.5 4.6 6.6 8.4 37 4.0 60 25 392 4.2 2.4 5.6 5.4,37 36.1 30 11 360 36.2 36	SFWMD	16692	3/20/18	7.80	24.30	6.0	54,437	36.1	22	2		323	39	1.4	4.1	1.0		3.2
16692 7/12/16 7:50 29:60 4.4 56,249 33:9 35 5 5 5 5 5 7:3 7:4 40 8 8 9:2	SFWMD	16692	5/8/18	7.90	27.60	5.9	57,215	38.0	10	2		445	20	4.3	13.0	8.0		3.9
16692 9177/18 7.80 31.60 4.7 41,701 26.8 43 15 695 86 6.3 3.4 16692 11/28/18 7.70 20.90 5.5 54,317 36.0 60 25 392 42 2.4 5.6 16692 11/28/18 7.70 20.90 5.5 54,317 36.0 60 25 34.7 40 8 456 46 6.7 5.6 16692 7/31/19 7.80 31.60 4.9 47,444 30.4 6 5 60 80 8.7 8.4 5.6 16692 7/31/19 7.80 31.60 4.3 49,843 32.4 42 9 60 80 87 8.4 16692 7/31/19 7.80 31.60 4.3 49,843 32.4 42 9 60 80 87 8.4 16692 7/31/19 7.80 31.00 3.7 48,048 <t< th=""><th>SFWMD</th><th>16692</th><th>7/12/18</th><th>7.90</th><th>29.60</th><th>4.4</th><th>56,249</th><th>33.9</th><th>35</th><th>2</th><th></th><th>520</th><th>28</th><th>3.3</th><th>7.3</th><th>1.0</th><th></th><th>5.5</th></t<>	SFWMD	16692	7/12/18	7.90	29.60	4.4	56,249	33.9	35	2		520	28	3.3	7.3	1.0		5.5
16692 11/28/18 770 20.90 5.6 54.317 36.0 60 25 392 42 2.4 5.6 16692 11/5/19 7.80 19.70 6.6 54.437 36.1 30 11 360 36 14 6.6 14 6.6 5.0 6.6 14.4 36.1 36.1 46.6 36.0 36.1 46.6 36.1 46.6 47.44 40.4 6 6 50.0 80.7 80.4 46.6 80.7 80.7 80.4 80.7 80.7 80.7 80.7 80.7 80.7 80.7 80.7 80.7 80.7 80.7 80.7 80.7 80.7 80.7 80.7 <	SFWMD	16692	9/17/18	7.80	31.60	4.7	41,701	26.8	43	15		695	98	6.3	3.4	1.1		10.7
16692 1/15/19 7.80 19.70 6.6 54,37 36.1 30 11 360 36 14 6.6 16692 3/12/19 7.90 25.60 5.5 52,705 34.7 40 8 456 46 6 2.6 8 6 16692 3/12/19 7.80 33.10 4.9 47.44 30.4 6 5 60 8 7 8.4 16692 7/3/19 7.80 31.00 3.7 49,843 32.4 42 9 66 6 3.6 11.2 16692 1//3/19 8.00 21.30 6.3 52,908 35.0 13 5 440 56 3.5 57 57 57 16692 1//3/19 8.00 11.30 7.2 52,011 34.7 19 8 4 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	SFWMD	16692	11/28/18	7.70	20.90	5.5	54,317	36.0	09	25		392	42	2.4	5.6	1.1		2.8
16692 3/12/19 7:90 25.60 5.5 52.705 34.7 40 8 456 46 26 8.6 16692 6/25/19 780 33.10 4.9 47.44 30.4 6 5 600 80 8.7 8.4 16692 7/3/19 7.90 31.60 4.3 49.843 32.4 4.2 9 600 80 8.7 8.4 16692 11/19/19 7.00 21.30 66 6.3 440 56 3.5 11.2 16692 11/19/19 7.00 16.80 7.2 52.908 35.0 13 5 363 42 5.3 5.7 16692 3/10/20 7.80 16.80 7.2 52.908 35.0 13 5 363 45 1.2 5.7 16692 3/10/20 7.80 16.80 7.2 52.611 34.7 19 8 5 43 45 1.2 5 <th>SFWMD</th> <th>16692</th> <th>1/15/19</th> <th>7.80</th> <th>19.70</th> <th>9.9</th> <th>54,437</th> <th>36.1</th> <th>30</th> <th>11</th> <th></th> <th>360</th> <th>36</th> <th>1.4</th> <th>9.9</th> <th>6.0</th> <th></th> <th>3.6</th>	SFWMD	16692	1/15/19	7.80	19.70	9.9	54,437	36.1	30	11		360	36	1.4	9.9	6.0		3.6
16692 6/25/19 7.80 33.10 4.9 47.444 30.4 6 5 600 80 8.7 8.4 16692 7/31/19 7.90 31.60 4.3 49.843 32.4 42 9 530 66 3.6 11.2 16692 1/31/19 7.90 31.60 4.3 49.843 32.4 42 9 50 66 3.6 11.2 16692 1/31/19 7.90 16.80 7.2 52.908 35.0 13 6 42 42 6 6 3.6 3.5 11.2 7 16692 1/23/20 7.90 16.80 7.2 52.611 34.7 19 8 292 43 45 7 16692 3/10/20 7.80 19.50 6.5 53.840 35.6 24 5 36 45 1.4 7.9 16692 7/20 7.80 6.5 53.840 35.6 8	SFWMD	16692	3/12/19	7.90	25.60	5.5	52,705	34.7	40	89		456	46	5.6	8.6	6.0		3.2
16692 7/31/19 7:90 31.60 4.3 49,843 32.4 42 9 530 66 3.6 11.2 16692 9/10/19 7:80 31.00 3.7 48,018 40.0 66 6 440 56 3.5 5.9 16692 1/23/20 7:80 13.00 7.2 52,908 35.0 13 5 4.3 4.3 4.3 6.9 16692 3/10/20 7:80 19:50 6.5 53,840 35.6 24 5 43 45 1.4 7.9 16692 7:0 16.80 7.2 53,840 35.6 24 5 336 45 1.4 7.9 16692 7:0 16.80 7.2 53,840 35.6 24 5 336 45 1.4 7.9 16692 7:0 16.80 7.0 53.6 53.8 54.75 8.2 4.3 4.5 1.4 7.9	SFWMD	16692	6/25/19	7.80	33.10	4.9	47,444	30.4	9	2		009	80	8.7	8.4	0.8		7.5
16692 9/10/19 7.80 31.00 3.7 48,018 40.0 66 6 440 56 3.5 5.9 16892 11/19/19 8.00 21.30 6.3 52,908 35.0 13 5 4.3 4.3 4.3 4.3 16892 11/19/19 8.00 16.80 7.2 52,611 34.7 19 8 292 43 1.5 5.7 16892 3/10/20 7.80 19.50 6.5 53,840 35.6 24 5 63 45 1.4 7.9 16892 7/20 7.70 27.50 6.5 53,840 36.2 8 5 50 45 7.9 16892 7/20/20 7.70 30.50 49,245 31.3 15 7 56.3 59 13.1 16892 7/20/20 7.70 30.50 49,245 31.3 15 7 56.3 59 82.2 11.3 <t< th=""><th>SFWMD</th><th>16692</th><th>7/31/19</th><th>7.90</th><th>31.60</th><th>4.3</th><th>49,843</th><th>32.4</th><th>42</th><th>6</th><th></th><th>530</th><th>99</th><th>3.6</th><th>11.2</th><th>6.0</th><th></th><th>5.8</th></t<>	SFWMD	16692	7/31/19	7.90	31.60	4.3	49,843	32.4	42	6		530	99	3.6	11.2	6.0		5.8
16692 11/19/19 8.00 21.30 6.3 52.908 35.0 13 5 363 42 4.3 4.3 4.3 16892 1/23/20 7.90 16.80 7.2 52,611 34.7 19 8 292 43 1.5 5.7 16892 3/10/20 7.80 19.50 6.5 53.840 35.6 24 5 336 45 1.4 7.9 16892 7/20/20 7.70 27.50 6.5 53.840 35.6 24 5 57 68 8.6 1.4 7.9 16892 7/20/20 7.70 30.50 49.245 31.3 15 7 55.3 59 8.2 11.3 16892 7/20/20 7.70 30.50 44.077 28.3 64 8 55.3 59 8.2 11.3 16892 7/20/20 7.70 30.50 3.5 44.077 28.3 64 8 55.3	SFWMD	16692	9/10/19	7.80	31.00	3.7	48,018	40.0	99	9		440	26	3.5	5.9	0.8		5.2
16692 173/20 7:90 16.80 7.2 52,611 34.7 19 8 292 43 1.5 5.7 16692 3/10/20 7.80 19.50 6.5 53,840 35.6 24 5 45 1.4 7.9 7.9 16692 3/10/20 7.70 27.50 6.3 54,759 36.2 8 5 7 68 86 13.1 16692 7/10/20 7/10 30.50 49,245 31.3 15 7 653 59 86 13.1 16692 7/10/20 7/10 30.50 44,077 28.3 64 8 55 59 82 11.3	SFWMD	16692	11/19/19	8.00	21.30	6.3	52,908	35.0	13	5		363	42	4.3	4.3	0.6		4.1
16692 3/10/20 7.80 19.50 6.5 53,840 35.6 24 5 336 45 1.4 7.9 16692 5/26/20 7.70 27.50 5.3 54,759 36.2 8 5 507 68 86 13.1 16692 7/20/20 7.70 30.50 48,245 31.3 15 7 563 59 82.2 11.3 16692 7/20/20 7/20/20 3.5 44,077 28.3 64 8 5 14 7 64 8 13.1 14 7	SFWMD	16692	1/23/20	7.90	16.80	7.2	52,611	34.7	19	8		292	43	1.5	5.7	0.7		2.2
16692 5/26/20 7.70 27.50 5.3 54,759 36.2 8 5 507 68 86 13.1 16692 7/28/20 7.70 30.50 4.9 48,245 31.3 15 7 553 59 82 11.3 16692 9/29/20 7.60 29.90 3.5 44,077 28.3 64 8 564 46 43 64	SFWMD	16692	3/10/20	7.80	19.50	6.5	53,840	35.6	24	2		336	45	4.1	7.9	1.0		3.0
16692 7728/20 7.70 30.50 4.9 48.245 31.3 15 7 553 59 8.2 11.3 16892 979/20 7.60 29.90 3.5 44.077 28.3 64 8 564 46 4.3 6.4	SFWMD	16692	5/26/20	7.70	27.50	5.3	54,759	36.2	8	2		207	89	9.8	13.1	0.7		4.3
16692 9/29/20 7:60 29:90 3:5 44.077 28:3 64 8 564 46 43 6.4	SFWMD	16692	7/28/20	7.70	30.50	4.9	48,245	31.3	15	7		553	29	8.2	11.3	2.0		6.3
	SFWMD	16692	9/29/20	7.60	29.90	3.5	44,077	28.3	64	8		564	46	4.3	6.4	1.0		9.9

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Date	(s.u.)	(°C)	(mg/L)	(µmho/cm)	(ppt)	(µg/L)	(hg/L)	(hg/L)	(hg/L)	(µg/L)	(mg/m³)	(NTU)	Depth (m)	(cfu/100 mL)	(mg/L)
LAKEWATCH	COL-JO-BAY1-1	4/25/01									340				1.2		
LAKEWATCH	COL-JO-BAY1-1	6/26/01									390				1.1		
LAKEWATCH	COL-JO-BAY1-1	8/24/01									270						
LAKEWATCH	COL-JO-BAY1-1	3/20/02									310				8.0		
LAKEWATCH	COL-JO-BAY1-1	7/29/02									310				1.1		
LAKEWATCH	COL-JO-BAY1-1	4/2/03									340				1.1		
LAKEWATCH	COL-JO-BAY1-1	7/29/03									190						
LAKEWATCH	COL-JO-BAY1-1	10/9/03									150						
LAKEWATCH	COL-JO-BAY1-1	12/12/03									140				4.1		
LAKEWATCH	COL-JO-BAY1-1	12/22/03									200				1.6		
LAKEWATCH	COL-JO-BAY1-1	2/12/04									230						
LAKEWATCH	COL-JO-BAY1-1	4/7/04									150				1.7		
LAKEWATCH	COL-JO-BAY1-1	6/9/04									150				1.2		
LAKEWATCH	COL-JO-BAY1-1	8/31/04									400				1.2		
LAKEWATCH	COL-JO-BAY1-1	11/19/04									400				9.0		
LAKEWATCH	COL-JO-BAY1-1	2/23/05									290				1.3		
LAKEWATCH	COL-JO-BAY1-1	5/18/05									230				1.6		
LAKEWATCH	COL-JO-BAY1-1	8/16/05									350				1.2		
LAKEWATCH	COL-JO-BAY1-1	11/30/05									430				1.1		
LAKEWATCH	COL-JO-BAY1-1	2/24/06									190				1.2		
LAKEWATCH	COL-JO-BAY1-1	5/26/06									270				4.1		
LAKEWATCH	COL-JO-BAY1-1	90/2/6									260				1.6		
LAKEWATCH	COL-JO-BAY1-1	11/20/06									330				1.1		
LAKEWATCH	COL-JO-BAY1-1	2/21/07									250				1.1		
LAKEWATCH	COL-JO-BAY1-1	5/29/07									250				2.2		
LAKEWATCH	COL-JO-BAY1-1	8/21/07									400				1.2		
LAKEWATCH	COL-JO-BAY1-1	11/30/07									480						
LAKEWATCH	COL-JO-BAY1-1	2/29/08									250				1.3		
LAKEWATCH	COL-JO-BAY1-1	5/29/08									240						
LAKEWATCH	COL-JO-BAY1-1	8/26/08									360				1.2		
LAKEWATCH	COL-JO-BAY1-1	11/25/08									260						
LAKEWATCH	COL-JO-BAY1-1	2/20/09									360				6.0		
LAKEWATCH	COL-JO-BAY1-1	6/11/09									320				1.5		
LAKEWATCH	COL-JO-BAY1-1	9/14/09									430				1.6		
LAKEWATCH	COL-JO-BAY1-1	12/9/09									380				1.8		
LAKEWATCH	COL-JO-BAY1-1	3/23/10									340				6.0		
LAKEWATCH	COL-JO-BAY1-1	6/15/10									250				4.1		
LAKEWATCH	COL-JO-BAY1-1	9/23/10									430				0.8		
LAKEWATCH	COL-JO-BAY1-1	12/16/10									290				9.0		
LAKEWATCH	COL-JO-BAY1-1	3/31/11									400				9.0		
LAKEWATCH	COL-JO-BAY1-1	6/24/11									310				1.5		
LAKEWATCH	COL-JO-BAY1-1	9/14/11									510				9		
- CHANGE -													_)		

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Sample	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (mg/L)
LAKEWATCH	COL-JO-BAY1-2	4/25/01									350				1.2		
LAKEWATCH	COL-JO-BAY1-2	6/26/01									330						
LAKEWATCH	COL-JO-BAY1-2	8/24/01									170						
LAKEWATCH	COL-JO-BAY1-2	3/20/02									270				8.0		
LAKEWATCH	COL-JO-BAY1-2	7/29/02									300						
LAKEWATCH	COL-JO-BAY1-2	4/2/03									300						
LAKEWATCH	COL-JO-BAY1-2	7/29/03									160						
LAKEWATCH	COL-JO-BAY1-2	10/9/03									170						
LAKEWATCH	COL-JO-BAY1-2	12/12/03									130						
LAKEWATCH	COL-JO-BAY1-2	12/22/03									180						
LAKEWATCH	COL-JO-BAY1-2	2/12/04									230						
LAKEWATCH	COL-JO-BAY1-2	4/7/04									06						
LAKEWATCH	COL-JO-BAY1-2	6/9/04									160						
LAKEWATCH	COL-JO-BAY1-2	8/31/04									380						
LAKEWATCH	COL-JO-BAY1-2	11/19/04									410						
LAKEWATCH	COL-JO-BAY1-2	2/23/05									280						
LAKEWATCH	COL-JO-BAY1-2	5/18/05									230						
LAKEWATCH	COL-JO-BAY1-2	8/16/05									310						
LAKEWATCH	COL-JO-BAY1-2	11/30/05									430						
LAKEWATCH	COL-JO-BAY1-2	2/24/06									190						
LAKEWATCH	COL-JO-BAY1-2	5/26/06									280						
LAKEWATCH	COL-JO-BAY1-2	90/2/6									280						
LAKEWATCH	COL-JO-BAY1-2	11/20/06									350						
LAKEWATCH	COL-JO-BAY1-2	2/21/07									230						
LAKEWATCH	COL-JO-BAY1-2	5/29/07									250						
LAKEWATCH	COL-JO-BAY1-2	8/21/07									370						
LAKEWATCH	COL-JO-BAY1-2	11/30/07									480						
LAKEWATCH	COL-JO-BAY1-2	2/29/08									220						
LAKEWATCH	COL-JO-BAY1-2	5/29/08									240						
LAKEWATCH	COL-JO-BAY1-2	8/26/08									330						
LAKEWATCH	COL-JO-BAY1-2	11/25/08									260						
LAKEWATCH	COL-JO-BAY1-2	2/20/09									360						
LAKEWATCH	COL-JO-BAY1-2	6/11/09									300						
LAKEWATCH	COL-JO-BAY1-2	9/14/09									400						
LAKEWATCH	COL-JO-BAY1-2	12/9/09									390						
LAKEWATCH	COL-JO-BAY1-2	3/23/10									320						
LAKEWATCH	COL-JO-BAY1-2	6/15/10									250						
LAKEWATCH	COL-JO-BAY1-2	9/23/10									330						
LAKEWATCH	COL-JO-BAY1-2	12/16/10									300						
LAKEWATCH	COL-JO-BAY1-2	3/31/11									370						
LAKEWATCH	COL-JO-BAY1-2	6/24/11									280						
LAKEWATCH	COL-JO-BAY1-2	9/14/11									200						

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Sample Date	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOX (µg/L)	(µg/L)	Total N (µg/L)	Total P (μg/L)	Cnyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	(mg/L)
LAKEWATCH	COL-JO-BAY1-3	4/25/01									460				1.2		
LAKEWATCH	COL-JO-BAY1-3	6/26/01									320						
LAKEWATCH	COL-JO-BAY1-3	8/24/01									200						
LAKEWATCH	COL-JO-BAY1-3	3/20/02									300				8.0		
LAKEWATCH	COL-JO-BAY1-3	7/29/02									340						
LAKEWATCH	COL-JO-BAY1-3	4/2/03									300						
LAKEWATCH	COL-JO-BAY1-3	7/29/03									190						
LAKEWATCH	COL-JO-BAY1-3	10/9/03									150						
LAKEWATCH	COL-JO-BAY1-3	12/12/03									190						
LAKEWATCH	COL-JO-BAY1-3	12/22/03									140						
LAKEWATCH	COL-JO-BAY1-3	2/12/04									220						
LAKEWATCH	COL-JO-BAY1-3	4/7/04									110						
LAKEWATCH	COL-JO-BAY1-3	6/9/04									160						
LAKEWATCH	COL-JO-BAY1-3	8/31/04									380						
LAKEWATCH	COL-JO-BAY1-3	11/19/04									360						
LAKEWATCH	COL-JO-BAY1-3	2/23/05									280						
LAKEWATCH	COL-JO-BAY1-3	5/18/05									250						
LAKEWATCH	COL-JO-BAY1-3	8/16/05									280						
LAKEWATCH	COL-JO-BAY1-3	11/30/05									450						
LAKEWATCH	COL-JO-BAY1-3	2/24/06									210						
LAKEWATCH	COL-JO-BAY1-3	5/26/06									270						
LAKEWATCH	COL-JO-BAY1-3	90/2/6									270						
LAKEWATCH	COL-JO-BAY1-3	11/20/06									310						
LAKEWATCH	COL-JO-BAY1-3	2/21/07									230						
LAKEWATCH	COL-JO-BAY1-3	5/29/07									210						
LAKEWATCH	COL-JO-BAY1-3	8/21/07									370						
LAKEWATCH	COL-JO-BAY1-3	11/30/07									470						
LAKEWATCH	COL-JO-BAY1-3	2/29/08									240						
LAKEWATCH	COL-JO-BAY1-3	5/29/08									270						
LAKEWATCH	COL-JO-BAY1-3	8/26/08									420						
LAKEWATCH	COL-JO-BAY1-3	11/25/08									240						
LAKEWATCH	COL-JO-BAY1-3	2/20/09									330						
LAKEWATCH	COL-JO-BAY1-3	6/11/09									340						
LAKEWATCH	COL-JO-BAY1-3	9/14/09									370						
LAKEWATCH	COL-JO-BAY1-3	12/9/09									410						
LAKEWATCH	COL-JO-BAY1-3	3/23/10									310						
LAKEWATCH	COL-JO-BAY1-3	6/15/10									240						
LAKEWATCH	COL-JO-BAY1-3	9/23/10									440						
LAKEWATCH	COL-JO-BAY1-3	12/16/10									300						
LAKEWATCH	COL-JO-BAY1-3	3/31/11									360						
LAKEWATCH	COL-JO-BAY1-3	6/24/11									300						
LAKEWATCH	COL-JO-BAY1-3	9/14/11									200						
LAKEWATOL	COL IO BAY4.3	10/00/41															

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Date	(s.u.)	(°C)	(mg/L)	Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Cnyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (mg/L)
LAKEWATCH	COL-JO-BAY2-1	4/25/01									310						
LAKEWATCH	COL-JO-BAY2-1	6/26/01									400						
LAKEWATCH	COL-JO-BAY2-1	8/24/01									330				8.0		
LAKEWATCH	COL-JO-BAY2-1	3/20/02									290				7.0		
LAKEWATCH	COL-JO-BAY2-1	7/29/02									300				1.2		
LAKEWATCH	COL-JO-BAY2-1	7/29/03									190						
LAKEWATCH	COL-JO-BAY2-1	10/9/03									190						
LAKEWATCH	COL-JO-BAY2-1	12/12/03									180						
LAKEWATCH	COL-JO-BAY2-1	12/22/03									150						
LAKEWATCH	COL-JO-BAY2-1	2/12/04									240						
LAKEWATCH	COL-JO-BAY2-1	4/7/04									140						
LAKEWATCH	COL-JO-BAY2-1	6/8/04									200				1.2		
LAKEWATCH	COL-JO-BAY2-1	8/31/04									420						
LAKEWATCH	COL-JO-BAY2-1	11/19/04									310						
LAKEWATCH	COL-JO-BAY2-1	2/23/05									220						
LAKEWATCH	COL-JO-BAY2-1	5/18/05									280						
LAKEWATCH	COL-JO-BAY2-1	8/16/05									290				1.4		
LAKEWATCH	COL-JO-BAY2-1	11/30/05									440				9.0		
LAKEWATCH	COL-JO-BAY2-1	2/24/06									170						
LAKEWATCH	COL-JO-BAY2-1	2/26/06									250						
LAKEWATCH	COL-JO-BAY2-1	90/2/6									270				1.6		
LAKEWATCH	COL-JO-BAY2-1	11/20/06									300						
LAKEWATCH	COL-JO-BAY2-1	2/21/07									290				1.1		
LAKEWATCH	COL-JO-BAY2-1	5/29/07									180						
LAKEWATCH	COL-JO-BAY2-1	8/21/07									510						
LAKEWATCH	COL-JO-BAY2-1	11/30/07									440						
LAKEWATCH	COL-JO-BAY2-1	2/29/08									270						
LAKEWATCH	COL-JO-BAY2-1	5/29/08									290						
LAKEWATCH	COL-JO-BAY2-1	8/26/08									470				1.2		
LAKEWATCH	COL-JO-BAY2-1	11/25/08									270						
LAKEWATCH	COL-JO-BAY2-1	2/20/09									340				6.0		
LAKEWATCH	COL-JO-BAY2-1	6/11/09									320						
LAKEWATCH	COL-JO-BAY2-1	9/14/09									420				1.7		
LAKEWATCH	COL-JO-BAY2-1	12/9/09									460						
LAKEWATCH	COL-JO-BAY2-1	3/23/10									320						
LAKEWATCH	COL-JO-BAY2-1	6/15/10									260						
LAKEWATCH	COL-JO-BAY2-1	9/23/10									400						
LAKEWATCH	COL-JO-BAY2-1	12/16/10									300				9.0		
LAKEWATCH	COL-JO-BAY2-1	3/31/11									400				9.0		
LAKEWATCH	COL-JO-BAY2-1	6/24/11									300						
LAKEWATCH	COL-JO-BAY2-1	9/14/11									470						

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Sample Date	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOX (µg/L)	I KN (μg/L)	l otal N (μg/L)	Total P (μg/L)	Chyl-a (mg/m³)	(NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	(mg/L)
LAKEWATCH	COL-JO-BAY2-2	4/25/01									300						
LAKEWATCH	COL-JO-BAY2-2	6/26/01									440						
LAKEWATCH	COL-JO-BAY2-2	8/24/01									360				0.8		
LAKEWATCH	COL-JO-BAY2-2	3/20/02									280				0.7		
LAKEWATCH	COL-JO-BAY2-2	7/29/02									330						
LAKEWATCH	COL-JO-BAY2-2	7/29/03									230						
LAKEWATCH	COL-JO-BAY2-2	10/9/03									180						
LAKEWATCH	COL-JO-BAY2-2	12/12/03									190						
LAKEWATCH	COL-JO-BAY2-2	12/22/03									140						
LAKEWATCH	COL-JO-BAY2-2	2/12/04									250						
LAKEWATCH	COL-JO-BAY2-2	6/8/04									220						
LAKEWATCH	COL-JO-BAY2-2	8/31/04									380						
LAKEWATCH	COL-JO-BAY2-2	11/19/04									290						
LAKEWATCH	COL-JO-BAY2-2	2/23/05									220						
LAKEWATCH	COL-JO-BAY2-2	5/18/05									260						
LAKEWATCH	COL-JO-BAY2-2	8/16/05									310						
LAKEWATCH	COL-JO-BAY2-2	11/30/05									420						
LAKEWATCH	COL-JO-BAY2-2	2/24/06									170						
LAKEWATCH	COL-JO-BAY2-2	5/26/06									270						
LAKEWATCH	COL-JO-BAY2-2	90/2/6									260						
LAKEWATCH	COL-JO-BAY2-2	11/20/06									290						
LAKEWATCH	COL-JO-BAY2-2	2/21/07									260						
LAKEWATCH	COL-JO-BAY2-2	5/29/07									240						
LAKEWATCH	COL-JO-BAY2-2	8/21/07									610						
LAKEWATCH	COL-JO-BAY2-2	11/30/07									440						
LAKEWATCH	COL-JO-BAY2-2	2/29/08									250						
LAKEWATCH	COL-JO-BAY2-2	5/29/08									300						
LAKEWATCH	COL-JO-BAY2-2	8/26/08									490						
LAKEWATCH	COL-JO-BAY2-2	11/25/08									280						
LAKEWATCH	COL-JO-BAY2-2	2/20/09									380						
LAKEWATCH	COL-JO-BAY2-2	6/11/09									290						
LAKEWATCH	COL-JO-BAY2-2	9/14/09									350						
LAKEWATCH	COL-JO-BAY2-2	12/9/09									480						
LAKEWATCH	COL-JO-BAY2-2	3/23/10									320						
LAKEWATCH	COL-JO-BAY2-2	6/15/10									290						
LAKEWATCH	COL-JO-BAY2-2	9/23/10									390						
LAKEWATCH	COL-JO-BAY2-2	12/16/10									300						
LAKEWATCH	COL-JO-BAY2-2	3/31/11									340						
LAKEWATCH	COL-JO-BAY2-2	6/24/11									320						
LAKEWATCH	COL-JO-BAY2-2	9/14/11									520						

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Sample Date	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (mg/L)
LAKEWATCH	COL-JO-BAY2-3	4/25/01									250						
LAKEWATCH	COL-JO-BAY2-3	6/26/01									420						
LAKEWATCH	COL-JO-BAY2-3	8/24/01									410				8.0		
LAKEWATCH	COL-JO-BAY2-3	3/20/02									340				7.0		
LAKEWATCH	COL-JO-BAY2-3	7/29/02									330						
LAKEWATCH	COL-JO-BAY2-3	7/29/03									210						
LAKEWATCH	COL-JO-BAY2-3	10/9/03									180						
LAKEWATCH	COL-JO-BAY2-3	12/12/03									210						
LAKEWATCH	COL-JO-BAY2-3	12/22/03									180						
LAKEWATCH	COL-JO-BAY2-3	2/12/04									250						
LAKEWATCH	COL-JO-BAY2-3	6/8/04									240						
LAKEWATCH	COL-JO-BAY2-3	8/31/04									390						
LAKEWATCH	COL-JO-BAY2-3	11/19/04									330						
LAKEWATCH	COL-JO-BAY2-3	2/23/05									220						
LAKEWATCH	COL-JO-BAY2-3	5/18/05									290						
LAKEWATCH	COL-JO-BAY2-3	8/16/05									300						
LAKEWATCH	COL-JO-BAY2-3	11/30/05									420						
LAKEWATCH	COL-JO-BAY2-3	2/24/06									180						
LAKEWATCH	COL-JO-BAY2-3	5/26/06									270						
LAKEWATCH	COL-JO-BAY2-3	90/2/6									270						
LAKEWATCH	COL-JO-BAY2-3	11/20/06									310						
LAKEWATCH	COL-JO-BAY2-3	2/21/07									300						
LAKEWATCH	COL-JO-BAY2-3	5/29/07									250						
LAKEWATCH	COL-JO-BAY2-3	8/21/07									530						
LAKEWATCH	COL-JO-BAY2-3	11/30/07									460						
LAKEWATCH	COL-JO-BAY2-3	2/29/08									260						
LAKEWATCH	COL-JO-BAY2-3	5/29/08									310						
LAKEWATCH	COL-JO-BAY2-3	8/26/08									450						
LAKEWATCH	COL-JO-BAY2-3	11/25/08									220						
LAKEWATCH	COL-JO-BAY2-3	2/20/09									370						
LAKEWATCH	COL-JO-BAY2-3	6/11/09									320						
LAKEWATCH	COL-JO-BAY2-3	9/14/09									330						
LAKEWATCH	COL-JO-BAY2-3	12/9/09									450						
LAKEWATCH	COL-JO-BAY2-3	3/23/10									280						
LAKEWATCH	COL-JO-BAY2-3	6/15/10									330						
LAKEWATCH	COL-JO-BAY2-3	9/23/10									390						
LAKEWATCH	COL-JO-BAY2-3	12/16/10									290						
LAKEWATCH	COL-JO-BAY2-3	3/31/11									360						
LAKEWATCH	COL-JO-BAY2-3	6/24/11									260						
LAKEWATCH	COL-JO-BAY2-3	9/14/11									200						
I AKEWATCH	COL-JO-BAY2-3	12/20/11									280						

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

COL-DO-BAY3-1 1/19004 COL-DO-BAY3-1	Collocking Agono,	Cl. acitot	Sample	Н	Temp.	Diss. O ₂	Cond.	Salinity	Ammonia N	×ON	TKN	Total N	Total P	Chyl-a	Turbidity	Secchi	Entero	T0C
COL.JO-BAY3-1 2/12/04 COL.JO-BAY3-1 2/12/04 COL.JO-BAY3-1 6/17/04 COL.JO-BAY3-1 6/17/04 COL.JO-BAY3-1 6/17/04 COL.JO-BAY3-1 1/17/04 COL.JO-BAY3-1 1/17/04 COL.JO-BAY3-1 1/17/04 COL.JO-BAY3-1 1/17/04 COL.JO-BAY3-1 1/17/04 COL.JO-BAY3-1 1/17/04 COL.JO-BAY3-1 2/24/06 COL.JO-BAY3-1	Collecting Agency	Station ID	Date	(s.u.)	(°C)	(mg/L)	(hmho/cm)	(ppt)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(mg/m ₃)	(NTU)	Depth (m)	(cfu/100 mL)	(mg/L)
COL-JO-BAY3-1 47/04 G8904 COL-JO-BAY3-1 11/1804 COL-JO-BAY3-1 11/1804 COL-JO-BAY3-1 11/1804 COL-JO-BAY3-1 11/1804 COL-JO-BAY3-1 11/18005 COL-JO-BAY3-1 11/18005 COL-JO-BAY3-1 11/18005 COL-JO-BAY3-1 11/18006 COL-JO-BAY3-1 11/18006 COL-JO-BAY3-1 11/18006 COL-JO-BAY3-1 11/18006 COL-JO-BAY3-1 11/18006 COL-JO-BAY3-1 11/18007 COL-JO-BAY3-1 11/18000 COL-JO-BAY3-1 11/18000 COL-JO-BAY3-1 12/18/10 COL-JO-BAY3-1 12/1	LAKEWATCH	COL-JO-BAY3-1	2/12/04									210				1.9		
COL-JO-BAY3-1 69004 COL-JO-BAY3-1 69004 COL-JO-BAY3-1 11/19004 COL-JO-BAY3-1 11/19004 COL-JO-BAY3-1 11/19005 COL-JO-BAY3-1 11/19006	LAKEWATCH	COL-JO-BAY3-1	4/7/04									120				1.2		
COL-JO-BAY3-1 8/31/04	LAKEWATCH	COL-JO-BAY3-1	6/9/04									140				1.7		
COL-JO-BAY3-1 111904 COL-JO-BAY3-1 111904 COCL-JO-BAY3-1 272305 COL-JO-BAY3-1 272305 COL-JO-BAY3-1 272305 COL-JO-BAY3-1 272305 COL-JO-BAY3-1 272406 COL-JO-BAY3-1 272406 COL-JO-BAY3-1 272407 COL-JO-BAY3-1 272407 COL-JO-BAY3-1 272908 COL-JO-BAY3-1	LAKEWATCH	COL-JO-BAY3-1	8/31/04									320				1.9		
COL-JO-BAY3-1 2123/06 COL-JO-BAY3-1 5/18/05 COL-JO-BAY3-1 5/18/05 COL-JO-BAY3-1 5/18/05 COL-JO-BAY3-1 11/30/05 COL-JO-BAY3-1 11/30/05 COL-JO-BAY3-1 5/28/06 COL-JO-BAY3-1 5/28/06 COL-JO-BAY3-1 5/28/06 COL-JO-BAY3-1 5/28/07 COL-JO-BAY3-1 5/28/07 COL-JO-BAY3-1 5/28/07 COL-JO-BAY3-1 5/28/08 COL-JO-BAY3-1 5/28/09 COL-JO-BAY3-1 5/28/09 COL-JO-BAY3-1 5/28/10 COL-JO-BAY3-1 5/28/10 COL-JO-BAY3-1 5/28/10 COL-JO-BAY3-1 5/28/11	LAKEWATCH	COL-JO-BAY3-1	11/19/04									260				1.9		
COL-JO-BAY3-1 \$/18/06 COL-JO-BAY3-1 \$/18/06 COL-JO-BAY3-1 1/28/06 COL-JO-BAY3-1 5/28/06 COL-JO-BAY3-1 5/28/06 COL-JO-BAY3-1 5/28/06 COL-JO-BAY3-1 5/28/06 COL-JO-BAY3-1 1/28/06 COL-JO-BAY3-1 6/28/06 COL-JO-BAY3-1 6/28/07 COL-JO-BAY3-1 6/	LAKEWATCH	COL-JO-BAY3-1	2/23/05									310				1.1		
COL-JO-BAY3-1 8/16/06 COL-JO-BAY3-1 1/130/06 COL-JO-BAY3-1 5/26/06 COL-JO-BAY3-1 5/26/06 COL-JO-BAY3-1 1/120/06 COL-JO-BAY3-1 1/120/06 COL-JO-BAY3-1 1/120/07 COL-JO-BAY3-1 1/120/07 COL-JO-BAY3-1 1/120/07 COL-JO-BAY3-1 1/120/07 COL-JO-BAY3-1 1/120/08 COL-JO-BAY3-1 1/126/08 COL-JO-BAY3-1 1/126/08 COL-JO-BAY3-1 1/126/08 COL-JO-BAY3-1 1/126/08 COL-JO-BAY3-1 1/126/08 COL-JO-BAY3-1 1/126/09 COL-JO-BAY3-1 1/126/10	LAKEWATCH	COL-JO-BAY3-1	5/18/05									210				1.9		
COL_JO_BAY3-1 1/130/05 COL_JO_BAY3-1 5/24/06 COL_JO_BAY3-1 5/24/06 COL_JO_BAY3-1 1/120/06 COL_JO_BAY3-1 1/120/06 COL_JO_BAY3-1 1/120/06 COL_JO_BAY3-1 1/120/06 COL_JO_BAY3-1 1/120/06 COL_JO_BAY3-1 1/120/06 COL_JO_BAY3-1 1/120/08 COL_JO_BAY3-1 1/120/09 C	LAKEWATCH	COL-JO-BAY3-1	8/16/05									340				2.0		
COL-JO-BAY3-1 2/24/06 COL-JO-BAY3-1 5/26/06 COL-JO-BAY3-1 1/20/06 COL-JO-BAY3-1 1/20/06 COL-JO-BAY3-1 1/20/06 COL-JO-BAY3-1 1/20/06 COL-JO-BAY3-1 1/20/08 COL-JO-BAY3-1 1/20/09 COL-JO-BAY3-1 1/20/09 COL-JO-BAY3-1 1/20/09 COL-JO-BAY3-1 1/20/09 COL-JO-BAY3-1 1/20/04	LAKEWATCH	COL-JO-BAY3-1	11/30/05									420				1.2		
COL_JO-BAY3-1 5/26/06 COL_JO-BAY3-1 1/20/06 COL_JO-BAY3-1 1/20/06 COL_JO-BAY3-1 1/20/06 COL_JO-BAY3-1 1/20/06 COL_JO-BAY3-1 1/20/07 COL_JO-BAY3-1 1/20/08 COL_JO-BAY3-1 1/20/09	LAKEWATCH	COL-JO-BAY3-1	2/24/06									240				1.4		
COL_JO-BAY3-1 9/7/06 COL_JO-BAY3-1 1/20/06 COL_JO-BAY3-1 1/20/06 COL_JO-BAY3-1 1/20/07 COL_JO-BAY3-1 1/20/07 COL_JO-BAY3-1 1/20/07 COL_JO-BAY3-1 1/20/08 COL_JO-BAY3-1 1/20/08 COL_JO-BAY3-1 1/20/09 COL_JO-BAY3-1 1/20/04	LAKEWATCH	COL-JO-BAY3-1	5/26/06									260				2.5		
COL_JO-BAY3-1 1/120/06 COL_JO-BAY3-1 2/21/07 COL_JO-BAY3-1 2/21/07 COL_JO-BAY3-1 1/130/07 COL_JO-BAY3-1 1/130/07 COL_JO-BAY3-1 1/120/08 COL_JO-BAY3-1 1/120/08 COL_JO-BAY3-1 1/125/08 COL_JO-BAY3-1 1/125/08 COL_JO-BAY3-1 1/10/09 COL_JO-BAY3-1 1/10/10	LAKEWATCH	COL-JO-BAY3-1	90/2/6									270				1.9		
COL_JO-BAY3-1 5/29/07 COL_JO-BAY3-1 5/29/08 COL_JO-BAY3-1 1/30/07 COL_JO-BAY3-1 1/32/08 COL_JO-BAY3-1 1/32/09 COL_JO-BAY3-1 1/32/01	LAKEWATCH	COL-JO-BAY3-1	11/20/06									270				6.0		
COL_JO-BAY3-1 5/29/07 COL_JO-BAY3-1 1/130/07 COL_JO-BAY3-1 1/130/07 COL_JO-BAY3-1 1/126/08 COL_JO-BAY3-1 1/26/08 COL_JO-BAY3-1 1/26/08 COL_JO-BAY3-1 1/26/08 COL_JO-BAY3-1 1/29/09 COL_JO-BAY3-1 1/29/01 COL_JO-BAY3-1 1/29/01 COL_JO-BAY3-1 1/29/01 COL_JO-BAY3-1 1/29/01	LAKEWATCH	COL-JO-BAY3-1	2/21/07									230				1.5		
COL_JO-BAY3-1 8/21/07 COL_JO-BAY3-1 1/133/07 COL_JO-BAY3-1 2/29/08 COL_JO-BAY3-1 1/125/08 COL_JO-BAY3-1 1/125/08 COL_JO-BAY3-1 1/125/08 COL_JO-BAY3-1 1/125/08 COL_JO-BAY3-1 1/125/08 COL_JO-BAY3-1 1/29/09 COL_JO-BAY3-1 1/29/09 COL_JO-BAY3-1 1/216/10	LAKEWATCH	COL-JO-BAY3-1	5/29/07									220						
COL_JO-BAY3-1 1/130/07 COL_JO-BAY3-1 2/29/08 COL_JO-BAY3-1 5/29/08 COL_JO-BAY3-1 1/25/08 COL_JO-BAY3-1 1/125/08 COL_JO-BAY3-1 1/109 COL_JO-BAY3-1 1/29/09 COL_JO-BAY3-1 1/29/09 COL_JO-BAY3-1 1/29/09 COL_JO-BAY3-1 6/15/10 COL_JO-BAY3-1 1/216/10	LAKEWATCH	COL-JO-BAY3-1	8/21/07									430				4.1		
COL.JO-BAY3-1 2/29/08 COL.JO-BAY3-1 5/29/08 COL.JO-BAY3-1 1/25/08 COL.JO-BAY3-1 1/25/08 COL.JO-BAY3-1 1/25/08 COL.JO-BAY3-1 1/29/09	LAKEWATCH	COL-JO-BAY3-1	11/30/07									440				1.7		
COL_JO-BAY3-1 5/29/08 COL_JO-BAY3-1 8/26/08 COL_JO-BAY3-1 1/25/08 COL_JO-BAY3-1 1/25/08 COL_JO-BAY3-1 1/29/09 COL_JO-BAY3-1 1/29/01	LAKEWATCH	COL-JO-BAY3-1	2/29/08									230				1.1		
COL_JO-BAY3-1 8/26/08 COL_JO-BAY3-1 1/25/08 COL_JO-BAY3-1 2/20/09 COL_JO-BAY3-1 1/26/09 COL_JO-BAY3-1 1/26/09 COL_JO-BAY3-1 1/26/09 COL_JO-BAY3-1 1/26/10	LAKEWATCH	COL-JO-BAY3-1	5/29/08									280						
COL_JO-BAY3-1 1/1/26/08 COL_JO-BAY3-1 2/20/09 COL_JO-BAY3-1 6/11/09 COL_JO-BAY3-1 1/29/09 COL_JO-BAY3-1 3/23/10 COL_JO-BAY3-1 4/21/61/0 COL_JO-BAY3-1 4/21/61/0 COL_JO-BAY3-1 3/23/11 COL_JO-BAY3-1 3/20/11	LAKEWATCH	COL-JO-BAY3-1	8/26/08									360				1.2		
COL_JO-BAY3-1 2/20/09 COL_JO-BAY3-1 6/11/09 COL_JO-BAY3-1 12/9/09 COL_JO-BAY3-1 12/9/09 COL_JO-BAY3-1 3/23/10 COL_JO-BAY3-1 12/16/10	LAKEWATCH	COL-JO-BAY3-1	11/25/08									290						
COL_JO-BAY3-1 6/11/09 COL_JO-BAY3-1 9/14/09 COL_JO-BAY3-1 12/9/09 COL_JO-BAY3-1 3/23/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 6/12/11 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 6/24/11 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 12/16/10	LAKEWATCH	COL-JO-BAY3-1	2/20/09									340				1.1		
COL_JO-BAY3-1 9/14/09 COL_JO-BAY3-1 12/9/09 COL_JO-BAY3-1 3/23/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 3/31/11 COL_JO-BAY3-1 3/31/11 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 12/16/10	LAKEWATCH	COL-JO-BAY3-1	6/11/09									330				1.9		
COL_JO-BAY3-1 129/09 COL_JO-BAY3-1 3/23/10 COL_JO-BAY3-1 9/23/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 9/23/11 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 12/16/10	LAKEWATCH	COL-JO-BAY3-1	9/14/09									350				1.4		
COL_JO-BAY3-1 3/23/10 COL_JO-BAY3-1 6/15/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 3/31/11 COL_JO-BAY3-1 3/31/11 COL_JO-BAY3-1 3/31/11 COL_JO-BAY3-1 3/21/11	LAKEWATCH	COL-JO-BAY3-1	12/9/09									470				1.6		
COL_JO-BAY3-1 6/15/10 COL_JO-BAY3-1 9/23/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 3/31/11 COL_JO-BAY3-1 6/24/11 COL_JO-BAY3-1 1/20/11	LAKEWATCH	COL-JO-BAY3-1	3/23/10									340				6.0		
COL_JO-BAY3-1 9/23/10 COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 3/31/11 COL_JO-BAY3-1 6/24/11 COL_JO-BAY3-1 1/20/11	LAKEWATCH	COL-JO-BAY3-1	6/15/10									270				2.0		
COL_JO-BAY3-1 12/16/10 COL_JO-BAY3-1 3/31/11 COL_JO-BAY3-1 6/24/11 COL_JO-BAY3-1 12/20/11	LAKEWATCH	COL-JO-BAY3-1	9/23/10									330						
COL_JO-BAY3-1 9/31/11 COL_JO-BAY3-1 9/24/11 COL_JO-BAY3-1 19/24/11 COL_JO-BAY3-1 19/20/11	LAKEWATCH	COL-JO-BAY3-1	12/16/10									330				9.0		
COL_JO_BAY3-1 6/24/11 COL_JO_BAY3-1 9/14/11 COL_JO_BAY3-1 12/20/11	LAKEWATCH	COL-JO-BAY3-1	3/31/11									320				9.0		
COL-JO-BAY3-1 9/14/11 COL-IO-BAY3-1 12/20/11	LAKEWATCH	COL-JO-BAY3-1	6/24/11									310				1.7		
COL-10-BAY3-1 12/20/11	LAKEWATCH	COL-JO-BAY3-1	9/14/11									440				1.6		
	LAKEWATCH	COL-JO-BAY3-1	12/20/11									320				1.1		

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Sample Date	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (μg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (mg/L)
LAKEWATCH	COL-JO-BAY3-2	2/12/04									180						
LAKEWATCH	COL-JO-BAY3-2	4/7/04									140						
LAKEWATCH	COL-JO-BAY3-2	6/9/04									120						
LAKEWATCH	COL-JO-BAY3-2	8/31/04									340						
LAKEWATCH	COL-JO-BAY3-2	11/19/04									230						
LAKEWATCH	COL-JO-BAY3-2	2/23/05									290						
LAKEWATCH	COL-JO-BAY3-2	5/18/05									240						
LAKEWATCH	COL-JO-BAY3-2	8/16/05									330						
LAKEWATCH	COL-JO-BAY3-2	11/30/05									460						
LAKEWATCH	COL-JO-BAY3-2	2/24/06									230						
LAKEWATCH	COL-JO-BAY3-2	5/26/06									250						
LAKEWATCH	COL-JO-BAY3-2	90/2/6									270						
LAKEWATCH	COL-JO-BAY3-2	11/20/06									290						
LAKEWATCH	COL-JO-BAY3-2	2/21/07									270						
LAKEWATCH	COL-JO-BAY3-2	5/29/07									230						
LAKEWATCH	COL-JO-BAY3-2	8/21/07									460						
LAKEWATCH	COL-JO-BAY3-2	11/30/07									450						
LAKEWATCH	COL-JO-BAY3-2	2/29/08									250						
LAKEWATCH	COL-JO-BAY3-2	5/29/08									250						
LAKEWATCH	COL-JO-BAY3-2	8/26/08									350						
LAKEWATCH	COL-JO-BAY3-2	11/25/08									290						
LAKEWATCH	COL-JO-BAY3-2	2/20/09									260						
LAKEWATCH	COL-JO-BAY3-2	6/11/09									320						
LAKEWATCH	COL-JO-BAY3-2	9/14/09									460						
LAKEWATCH	COL-JO-BAY3-2	12/9/09									400						
LAKEWATCH	COL-JO-BAY3-2	3/23/10									280						
LAKEWATCH	COL-JO-BAY3-2	6/15/10									230						
LAKEWATCH	COL-JO-BAY3-2	9/23/10									360						
LAKEWATCH	COL-JO-BAY3-2	12/16/10									300						
LAKEWATCH	COL-JO-BAY3-2	3/31/11									370						
LAKEWATCH	COL-JO-BAY3-2	6/24/11									360						
LAKEWATCH	COL-JO-BAY3-2	9/14/11									470						
TAKEWATCH	C 5240 CI 100	100001									0.50						

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Agonory Agonory	Station ID	Sample	퓝	Temp.	Diss. O ₂	Cond.	Salinity	Ammonia N	Ň	T K N	Total N	Total P		Turbidity	Secchi		ဥ
collecting Agency	Olation in	Date	(s.u.)	(°C)	(mg/L)	(hmho/cm)	(bbt)	(µg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(mg/m ₃)	(NTU)	Depth (m)	(cfu/100 mL)	(mg/L)
LAKEWATCH	COL-JO-BAY3-3	2/12/04									190						
LAKEWATCH	COL-JO-BAY3-3	4/7/04									130						
LAKEWATCH	COL-JO-BAY3-3	6/9/04									150						
LAKEWATCH	COL-JO-BAY3-3	8/31/04									360						
LAKEWATCH	COL-JO-BAY3-3	11/19/04									250						
LAKEWATCH	COL-JO-BAY3-3	2/23/05									290						
LAKEWATCH	COL-JO-BAY3-3	5/18/05									240						
LAKEWATCH	COL-JO-BAY3-3	8/16/05									340						
LAKEWATCH	COL-JO-BAY3-3	11/30/05									440						
LAKEWATCH	COL-JO-BAY3-3	2/24/06									260						
LAKEWATCH	COL-JO-BAY3-3	5/26/06									220						
LAKEWATCH	COL-JO-BAY3-3	90/2/6									240						
LAKEWATCH	COL-JO-BAY3-3	11/20/06									290						
LAKEWATCH	COL-JO-BAY3-3	2/21/07									250						
LAKEWATCH	COL-JO-BAY3-3	5/29/07									220						
LAKEWATCH	COL-JO-BAY3-3	8/21/07									370						
LAKEWATCH	COL-JO-BAY3-3	11/30/07									430						
LAKEWATCH	COL-JO-BAY3-3	2/29/08									240						
LAKEWATCH	COL-JO-BAY3-3	5/29/08									280						
LAKEWATCH	COL-JO-BAY3-3	8/26/08	_								340						
LAKEWATCH	COL-JO-BAY3-3	11/25/08									270						
LAKEWATCH	COL-JO-BAY3-3	2/20/09									370						
LAKEWATCH	COL-JO-BAY3-3	6/11/09									310						
LAKEWATCH	COL-JO-BAY3-3	9/14/09									400						
LAKEWATCH	COL-JO-BAY3-3	12/9/09									410						
LAKEWATCH	COL-JO-BAY3-3	3/23/10									240						
LAKEWATCH	COL-JO-BAY3-3	6/15/10									250						
LAKEWATCH	COL-JO-BAY3-3	9/23/10									400						
LAKEWATCH	COL-JO-BAY3-3	12/16/10									310						
LAKEWATCH	COL-JO-BAY3-3	3/31/11									380						
LAKEWATCH	COL-JO-BAY3-3	6/24/11									280						
LAKEWATCH	COL-JO-BAY3-3	9/14/11									510						
LAKEWATCH	COL-JO-BAY3-3	12/20/11									290						

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Date	(s.u.)	<u>(</u> ပ	(mg/L)	(hmho/cm)	(bbt)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(mg/m ₃)	(NTU)	Depth (m) ((cfu/100 mL)	(mg/L)
Fla. Dept. of Health	COLLIER310	4/4/17										1				10	
Fla. Dept. of Health	COLLIER310	4/10/17														10	
Fla. Dept. of Health	COLLIER310	4/18/17														10	
Fla. Dept. of Health	COLLIER310	4/25/17														10	
Fla. Dept. of Health	COLLIER310	5/1/17														10	
Fla. Dept. of Health	COLLIER310	5/8/17														10	
Fla. Dept. of Health	COLLIER310	5/15/17														10	
Fla. Dept. of Health	COLLIER310	5/22/17														10	
Fla. Dept. of Health	COLLIER310	5/30/17														10	
Fla. Dept. of Health	COLLIER310	6/5/17														168	
Fla. Dept. of Health	COLLIER310	6/7/17														130	
Fla. Dept. of Health	COLLIER310	6/8/17														20	
Fla. Dept. of Health	COLLIER310	6/12/17														10	
Fla. Dept. of Health	COLLIER310	6/19/17														10	
Fla. Dept. of Health	COLLIER310	6/26/17														10	
Fla. Dept. of Health	COLLIER310	7/10/17														10	
Fla. Dept. of Health	COLLIER310	71/17/17														30	
Fla. Dept. of Health	COLLIER310	7/24/17														10	
Fla. Dept. of Health	COLLIER310	8/7/17														10	
Fla. Dept. of Health	COLLIER310	8/14/17														10	
Fla. Dept. of Health	COLLIER310	8/21/17														10	
Fla. Dept. of Health	COLLIER310	8/29/17														10	
Fla. Dept. of Health	COLLIER310	9/5/17														31	
Fla. Dept. of Health	COLLIER310	9/19/17														31	
Fla. Dept. of Health	COLLIER310	9/25/17														31	
Fla. Dept. of Health	COLLIER310	10/2/17														20	
Fla. Dept. of Health	COLLIER310	10/9/17														20	
Fla. Dept. of Health	COLLIER310	10/16/17														10	
Fla. Dept. of Health	COLLIER310	10/23/17														20	
Fla. Dept. of Health	COLLIER310	10/31/17														10	
Fla. Dept. of Health	COLLIER310	11/6/17														10	
Fla. Dept. of Health	COLLIER310	11/13/17														10	
Fla. Dept. of Health	COLLIER310	11/20/17														10	
Fla. Dept. of Health	COLLIER310	11/28/17														10	
Fla. Dept. of Health	COLLIER310	12/4/17														10	
Fla. Dept. of Health	COLLIER310	12/12/17														20	
Fla. Dept. of Health	COLLIER310	12/18/17														10	
Fla. Dept. of Health	COLLIER310	1/8/18														10	
Fla. Dept. of Health	COLLIER310	1/16/18														10	
Fla. Dept. of Health	COLLIER310	1/22/18														10	
Fla. Dept. of Health	COLLIER310	1/29/18														134	
Fla. Dept. of Health	COLLIER310	1/31/18														10	
Fla. Dept. of Health	COLLIER310	2/5/18														10	
Fla. Dept. of Health	COLLIER310	2/12/18														10	
Fla. Dept. of Health	COLLIER310	2/20/18														10	
Fla. Dept. of Health	COLLIER310	2/26/18														10	
Fla. Dept. of Health	COLLIER310	3/5/18														31	
Fla. Dept. of Health	COLLIER310	3/12/18														10	
Fla. Dept. of Health	COLLIER310	3/19/18														10	
Fla. Dept. of Health	COLLIER310	3/26/18														10	
Fla. Dept. of Health	COLLIER310	4/3/18														10	
Fla. Dept. of Health	COLLIER310	4/9/18														10	
Fla. Dept. of Health	COLLIER310	4/16/18														84	
Fla. Dept. of Health	COLLIER310	4/18/18															
		2 5 F														10	

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

COLLER310 COLLER	Collecting Agency	Station ID	Sample Date	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (mg/L)
COLLIERON 920718 25718 2	la. Dept. of Health	COLLIER310	4/30/18														10	
COUTERSON 525/16	la. Dept. of Health	COLLIER310	5/7/18														10	
COLLEGNO STATE SERIES COLLEGNO STATE SERIES <t< td=""><td>la. Dept. of Health</td><td>COLLIER310</td><td>5/15/18</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>76</td><td></td></t<>	la. Dept. of Health	COLLIER310	5/15/18														76	
COLLERON 567/18 COLLERON 562/18 COLLERON 562/18 COLLERON 77/18 COLLERON 77/18 COLLERON 77/18 COLLERON 77/18 COLLERON 77/18 COLLERON 87/18 COLLERON 17/18/18 COLLER	la. Dept. of Health	COLLIER310	5/17/18														63	
COLIERNO 2020/10	Fla. Dept. of Health	COLLIER310	5/21/18														63	
COLIERTO 64/45	la. Dept. of Health	COLLIER310	5/29/18														10	
COLLERON 6/19/19 COLLERON 10/19/19 COLLERON 10/1	la. Dept. of Health	COLLIER310	6/4/18														10	
COLLEGIO 77/10/10 COLLEGIO 77/	la. Dept. of Health	COLLIER310	6/11/18														10	
COLLEGIO 77/01/6 COLLEGIO 77/01/6 COLLEGIO 20/01/6 COLLEGIO 20/	la. Dept. of Health	COLLIER310	6/18/18														52	
COLLEGIO 77/21/2 COLLEGIO 77/21/2 COLLEGIO 77/21/2 COLLEGIO 20/21/2	la. Dept. of Health	COLLIER310	7/2/18														10	
COLLEGATO 77/10/10	la. Dept. of Health	COLLIER310	7/9/18														10	
COLLEGATO 7725/16 COLLEGATO 7725/16 COLLEGATO 7725/16 COLLEGATO 7725/16 COLLEGATO 7725/16 COLLEGATO 7725/16 COLLEGATO 7225/16	la. Dept. of Health	COLLIER310	7/16/18														10	
COLLIERANO 778/16 COLLIERANO 78/16 COLLIERANO 88/16 COLLIERANO 88/16 COLLIERANO 88/16 COLLIERANO 88/16 COLLIERANO 88/16 COLLIERANO 88/16 COLLIERANO 19/16 COLLIERANO 28/16 COLLIERANO 28/16 COLLIERANO 28/16 COLLIERANO 28/16 COLLIERANO 28/16	la. Dept. of Health	COLLIER310	7/25/18														10	
COLLIERANO GRIVIS COLLIERANO GRIVIS COLLIERANO GRADIS COLLIERANO GRADIS<	la. Dept. of Health	COLLIER310	7/31/18														10	
COLLIERRO 807/18 COLLIERRO 807/18 COLLIERRO 94/18 COLLIERRO 94/18 COLLIERRO 91/218 COLLIERRO 91/218 COLLIERRO 91/218 COLLIERRO 91/218 COLLIERRO 10/22/18 COLLIERRO 10/22/18 COLLIERRO 11/20/18 COLLIERRO <t< td=""><td>la. Dept. of Health</td><td>COLLIER310</td><td>8/6/18</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>31</td><td></td></t<>	la. Dept. of Health	COLLIER310	8/6/18														31	
COLLESTON BACTIVE COLLESTON BACTIVE COLLESTON BACTIVE COLLESTON BACTIVE COLLESTON BACTIVE COLLESTON COLLESTON COLLESTON TOWER COLLESTON TOWER COLLESTON TOWER COLLESTON TOWER COLLESTON TOWER COLLESTON TOWER COLLESTON TATIVE	la. Dept. of Health	COLLIER310	8/13/18														63	
COLLESTO 68/718 COLLESTO 68/718 COLLESTO 68/718 COLLESTO 91/718 COLLESTO 91/718 COLLESTO 107/718 COLLESTO 107/718 COLLESTO 107/718 COLLESTO 107/718 COLLESTO 107/718 COLLESTO 117/718 COLLESTO 117/718 COLLESTO 117/718 COLLESTO 117/718 COLLESTO 127/718 COLLESTO 127/718 <t< td=""><td>la. Dept. of Health</td><td>COLLIER310</td><td>8/20/18</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td></td></t<>	la. Dept. of Health	COLLIER310	8/20/18														10	
COLLERNO 96/16 COLLERNO 96/16 COLLERNO 96/16 COLLERNO 97/18 COLLERNO 107/18 COLLERNO 107/18 COLLERNO 107/18 COLLERNO 17/19/18 COLLERNO 20/19 COLLERNO 20/19 COLLERNO 20/19 COLLERNO 20/19	la. Dept. of Health	COLLIER310	8/27/18														10	
COLLERNO 900/18	la. Dept. of Health	COLLIER310	9/4/18														148	
COLLER310 91/218	la. Dept. of Health	COLLIER310	9/6/18														20	
COLLERS10 91718 STR18 COLLERS10 91718 STR18	la. Dept. of Health	COLLIER310	9/10/18														86	
COLLEGATO 91778 92478 92478 92478 92478 92478 92478 92478 92478 92478 92428 92428 92428 92428 92228	la. Dept. of Health	COLLIER310	9/12/18														10	
COLLIERNO 10/1/18 COLLIERNO 11/1/18 COLLIERNO 11/1/19 COLLIERNO 11/19 COLLIERNO 11	la. Dept. of Health	COLLIER310	9/17/18														10	
COLLERATO OR/18 OR/18 COLLERATO OR/18 OR/1	a. Dept. of Health	COLLIER310	9/24/18														10	
COLLIER310 10/08/18	a. Dept. of Health	COLLIER310	10/1/18														10	
COLLERATO 1076/18 COLLERATO 1076/18 COLLERATO 1076/18 COLLERATO 176/18 COLLERATO 176/19 COLL	a. Dept. of Health	COLLIER310	10/8/18														10	
COLLERAND 10/22/18 COLLERAND 1/16/18 COLLERAND 1/16/18 COLLERAND 1/16/18 COLLERAND 1/16/18 COLLERAND 1/20/18 COLLERAND 2/20/18	a. Dept. of Health	COLLIER310	10/15/18														20	
COLLERSIO 1028/18 COLLERSIO 1/16/18 COLLERSIO 1/16/18 COLLERSIO 1/16/18 COLLERSIO 1/16/18 COLLERSIO 1/20/18 COLLERSIO 1/20/19 COLLERSIO 1/20/19 COLLERSIO 1/20/19 COLLERSIO 1/20/19 COLLERSIO 1/20/19 COLLERSIO 2/4/19 COLLERSIO 3/4/19 COLLERSIO 3/4/19 COLLERSIO 3/4/19 COLLERSIO 3/4/19 COLLERSIO 3/4/19 COLLERSIO 3/4/19	a. Dept. of Health	COLLIER310	10/22/18														20	
COLIERATO 11/6/18 COLLERATO 11/6/18 COLLERATO 11/26/18 COLLERATO 12/20/18 COLLERATO 12/10/18 COLLERATO 12/10/18 COLLERATO 12/10/19 COLLERATO 1/6/19 COLLERATO 1/6/19 COLLERATO 2/4/19 COLLERATO 2/4/19 COLLERATO 2/4/19 COLLERATO 2/4/19 COLLERATO 2/4/19 COLLERATO 2/4/19 COLLERATO 2/20/19 COLLERATO 2/20/19 <td>a. Dept. of Health</td> <td>COLLIER310</td> <td>10/29/18</td> <td></td> <td>10</td> <td></td>	a. Dept. of Health	COLLIER310	10/29/18														10	
COLLERATO 11/18/18 COLLERATO 11/18/18 COLLERATO 12/2/18 COLLERATO 12/2/18 COLLERATO 17/2/18 COLLERATO 17/2/19 COLLERATO 17/2/19 COLLERATO 17/2/19 COLLERATO 17/2/19 COLLERATO 17/2/19 COLLERATO 17/2/19 COLLERATO 24/19 COLLERATO 24/19 COLLERATO 24/19 COLLERATO 22/2/19 COLLERATO 22/2/2/19 COLLERATO 22/2	a. Dept. of Health	COLLIER310	11/5/18														10	
COLLER310 1/19/18 COLLER310 1/19/18 COLLER310 1/20/18 COLLER310 1/21/16 COLLER310 1/21/16 COLLER310 1/21/19 COLLER310 1/4/19 COLLER310 1/4/19 COLLER310 1/21/19 COLLER310 1/22/19 COLLER310 1/20/19 COLLER310 2/4/19 COLLER310 2/4/19 COLLER310 2/4/19 COLLER310 2/4/19 COLLER310 2/4/19 COLLER310 2/20/19 COLLER310 2/20/19 COLLER310 2/20/19 COLLER310 3/4/19	la. Dept. of Health	COLLIER310	11/13/18														20	
COLLER310 11/26/18 COLLER310 12/17/18 COLLER310 12/17/18 COLLER310 12/17/19 COLLER310 1/17/19 COLLER310 1/17/19 COLLER310 1/17/19 COLLER310 1/12/19 COLLER310 1/12/19 COLLER310 2/11/19 COLLER310 2/11/19 COLLER310 2/11/19 COLLER310 2/11/19 COLLER310 2/11/19 COLLER310 2/11/19 COLLER310 2/25/19	a. Dept. of Health	COLLIER310	11/19/18														10	
COLLIERATO 12/27/18	a. Dept. of Health	COLLIER310	11/26/18														30	
COLLER310 12/10/18 COLLER310 1/2/17/18 COLLER310 1/2/19 COLLER310 1/7/19 COLLER310 1/7/19 COLLER310 1/22/19 COLLER310 1/22/19 COLLER310 2/4/19 COLLER310 2/8/19 COLLER310 3/4/19 COLLER310 3/4/19 COLLER310 3/4/19 COLLER310 3/8/19 COLLER310 3/8/19 COLLER310 3/8/19 COLLER310 3/8/19 COLLER310 3/8/19	a. Dept. of Health	COLLIER310	12/3/18														10	
COLIER310 12/17/18 COLIER310 17/19 COLIER310 22/19 COLIER310 31/19 COLIER310 31/19	a. Dept. of Health	COLLIER310	12/10/18														10	
COLLER310 1/2/19 COLLER310 1/2/19 COLLER310 1/1/19 COLLER310 1/1/19 COLLER310 1/1/19 COLLER310 1/2/19 COLLER310 1/2/19 COLLER310 2/4/19 COLLER310 2/1/19 COLLER310 2/1/19 COLLER310 2/1/19 COLLER310 2/1/19 COLLER310 2/2/19 COLLER310 2/2/19 COLLER310 2/2/19 COLLER310 2/2/19 COLLER310 2/2/19 COLLER310 3/4/19 COLLER310 3/4/19 COLLER310 3/4/19 COLLER310 3/4/19 COLLER310 3/2/19 COLLER310 3/2/2/20 COLLER310 3/2/2/20 COLLER310 3/2/2/20 C	a. Dept. of Health	COLLIER310	12/17/18														10	
COLLERAND 1/7/19 COLLERAND 1/9/19 COLLERAND 1/22/19 COLLERAND 1/22/19 COLLERAND 2/8/19 COLLERAND 3/4/19 COLLERAND 3/4/19 COLLERAND 3/4/19 COLLERAND 3/8/19 COLLERAND 3/8/19 COLLERAND 3/8/19 COLLERAND 3/8/19	a. Dept. of Health	COLLIER310	1/2/19														10	
COLLIER310 1/9/19 COLLIER310 1/1/119 COLLIER310 1/28/19 (COLLIER310 1/30/19 COLLIER310 1/30/19 (COLLIER310 2/8/19 COLLIER310 2/8/19 (COLLIER310 2/8/19 COLLIER310 2/11/19 (COLLIER310 2/20/19 COLLIER310 2/20/19 (COLLIER310 3/4/19 COLLIER310 3/4/19 (COLLIER310 3/4/19 COLLIER310 3/4/19 (COLLIER310 3/4/19 COLLIER310 3/4/19 (COLLIER310 3/4/19 COLLIER310 3/4/19 (COLLIER310 3/4/19	a. Dept. of Health	COLLIER310	1/7/19														86	
COLLER310 1/14/19 1/27/19 1/22/19	a. Dept. of Health	COLLIER310	1/9/19														10	
COLLIER310 1/22/19 COLLIER310 1/28/19 COLLIER310 2/4/19 2/4/19 2/4/19 COLLIER310 2/8/19 2/8/19 2/8/19 COLLIER310 2/19/19 2/20/19 COLLIER310 2/20/19 2/20/19 COLLIER310 2/20/19 2/20/19 COLLIER310 3/14/19 2/20/19	a. Dept. of Health	COLLIER310	1/14/19														10	
COLLIER310 1/28/19 COLLIER310 1/30/19 COLLIER310 1/30/19 COLLIER310 2/4/19 COLLIER310 2/8/19 COLLIER310 2/8/19 COLLIER310 2/20/19 COLLIER310 2/20/19 COLLIER310 2/20/19 COLLIER310 2/20/19 COLLIER310 3/4/19 COLLIER310 3/4/19 COLLIER310 3/25/19 COLLIER310	a. Dept. of Health	COLLIER310	1/22/19														62	
COLLIER310 1/30/19 COLLIER310 2/4/19 COLLIER310 2/4/19 COLLIER310 2/11/19 COLLIER310 2/15/19 COLLIER310 2/15/19 COLLIER310 2/25/19 COLLIER310 2/25/19 COLLIER310 3/14/19 COLLIER310 3/14/19 COLLIER310 3/14/19 COLLIER310 3/14/19 COLLIER310 3/15/19 COLLIER310 3/15/19	a. Dept. of Health	COLLIER310	1/28/19														521	
COLLIER310 22419 COLLIER310 2/6/19 COLLIER310 2/10/19 COLLIER310 2/20/19 COLLIER310 2/20/19 COLLIER310 2/20/19 COLLIER310 3/4/19 COLLIER310 3/4/19 COLLIER310 3/4/19 COLLIER310 3/4/19 COLLIER310 3/4/19 COLLIER310 3/25/19 COLLIER310 3/25/19	a. Dept. of Health	COLLIER310	1/30/19														10	
COLLIER310 22619 COLLIER310 218/19 COLLIER310 217919 COLLIER310 272019 COLLIER310 272019 COLLIER310 314/19 COLLIER310 318/19 COLLIER310 318/19 COLLIER310 3125/19	a. Dept. of Health	COLLIER310	2/4/19														009	
COLLER310 2/8/19 COLLER310 2/11/19 COLLER310 2/20/19 COLLER310 2/25/19 COLLIER310 3/4/19 COLLIER310 3/4/19 COLLIER310 3/1/19 COLLIER310 3/25/19 COLLIER310 3/25/19 COLLIER310 3/25/19	a. Dept. of Health	COLLIER310	2/6/19														213	
COLLIER310 2/11/19 COLLIER310 2/11/19 COLLIER310 2/20/19 COLLIER310 2/25/19 COLLIER310 3/41/19 COLLIER310 3/41/19 COLLIER310 3/48/19 COLLIER310 3/48/19 COLLIER310 3/25/19 COLLIER310 3/25/19	a. Dept. of Health	COLLIER310	2/8/19														63	
COLLIER310 2/19/19 COLLIER310 2/25/19 COLLIER310 3/11/19 COLLIER310 3/11/19 COLLIER310 3/11/19 COLLIER310 3/18/19 COLLIER310 3/18/19 COLLIER310 3/18/19	a. Dept. of Health	COLLIER310	2/11/19														10	
COLLIER310 2/20/19 COLLIER310 2/25/19 COLLIER310 3/14/19 COLLIER310 3/15/19 COLLIER310	a. Dept. of Health	COLLIER310	2/19/19														86	
COLLIER310 2/25/19 COLLIER310 3/4/19 COLLIER310 3/18/19 COLLIER310 3/18/19 COLLIER310 3/25/19 3/25/19 3/25/19 3/25/19	a. Dept. of Health	COLLIER310	2/20/19														10	
COLLIER310 3/4/19 COLLIER310 3/11/19 COLLIER310 3/18/19 COLLIER310 3/25/19	a. Dept. of Health	COLLIER310	2/25/19														10	
COLLIER310 3/11/19 COLLIER310 3/25/19 COLLIER310 3/25/19	a. Dept. of Health	COLLIER310	3/4/19														20	
COLLIER310 3/18/19 COLLIER310 3/25/19	la. Dept. of Health	COLLIER310	3/11/19														52	
COLLIER310 3/25/19	la. Dept. of Health	COLLIER310	3/18/19														10	
	Fla. Dept. of Health	COLLIER310	3/25/19														10	

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

COLLIER310	4/8/19 4/15/19 4/15/19 4/22/19 4/22/19 5/6/19 5/6/19 5/13/19 6/13/19								41	
COLIER310	4/15/19 4/22/19 4/22/19 4/22/19 4/22/19 5/13/19 5/13/19 6/13/19								2	
COLIER310	4/22/19 4/29/19 4/29/19 5/20/19 5/20/19 5/20/19 6/20/19								26	
COLIER310	4/29/19 5/6/19 5/13/19 5/13/19 6/23/19 6/13/19 6/13/19 6/13/19 6/13/19 7/11/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 10/11/19 10/11/19								10	
COLLIER310	5/6/19 5/13/19 5/13/19 5/20/19 6/3/19 6/3/19 6/13/19 6/13/19 6/13/19 6/13/19 7/11/19 7/11/19 7/11/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 10/1/19								10	
COLLIER310	5,573.19 5,20.19 6,20.19 6,13.19 6,11.19 6,12.19 6,12.19 7,11.19 7,11.19 7,11.19 7,11.19 8,12.19 8,12.19 8,10.19 9,10.11								30	
COLLIER310	5/20/19 5/28/19 6/11/19 6/11/19 6/19/19 6/20/19 6/20/19 6/20/19 7/11/5/19 7/11/5/19 7/11/5/19 7/11/5/19 8/11/19 8/11/19 8/11/19 8/11/19 8/11/19 8/11/19 8/11/19 8/11/19 8/11/19								10	
COLLIER310	6/28/19 6/11/19 6/11/19 6/10/19 6/10/19 6/20/19								10	
COLLIER310	6(3/19 6(1/1/19 6(1/1/19 6(20/19 6(20/19 6(20/19 7/1/19 7/1/19 7/1/19 7/1/2/19 7/1/2/19 7/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 9/1/2/19								10	
COLLIER310	6/11/19 6/19/19 6/19/19 7/11/19 7/11/19 7/11/19 7/15/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19 8/12/19								10	
COLLIER310	6/20/19 6/20/19 6/20/19 7/1/19 7/1/10/19 7/1/0/19 7/1/2/19 8/7/2/19 8/7/19 8/7/19 8/7/19 8/20/19 9/9/19 9/9/19 9/2/19								10	
COLLIER310	6/20/19 6/24/19 7/10/19 7/10/19 7/15/19 7/12/19 8/7/19 8/7/19 8/7/19 8/7/19 8/7/19 8/7/19 8/7/19 8/7/19 8/7/19 10/7/19								160	
COLIER310 COLLIER310	662419 7/1/19 7/1/19 7/1/19 7/1/2/19 7/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 8/1/2/19 9/1/2/19 9/1/2/19								10	
COLIER310 COLLIER310	7/1/19 7/1/19 7/1/10/19 7/1/2/19 7/1/2/19 8/1/19 8/1/19 8/1/19 8/1/19 8/1/19 8/1/19 8/1/19 8/1/19 8/1/19 8/1/19 8/1/19 1/10/1/19								10	
COLIER310 COLLIER310	7/10/19 7/17/19 7/17/19 7/17/19 8/17/19 8/17/19 8/17/19 8/17/19 9/16/19 9/16/19 9/16/19 9/16/19								10	
COLLER310	7/15/19 7/122/19 7/122/19 8/1729/19 8/12/19 9/16/19 9/16/19 9/23/19 10/2/19	+							10	
COLLIER310	7/122/19 7/129/19 8/12/19 8/12/19 8/20/19 9/15/19 10/2/19								02 8	
COLLIER310	8/20/19 8/20/19 9/9/19 9/23/19 10/2/19								707	
COLLIER310	8/12/19 8/20/19 8/20/19 9/9/19 9/23/19 10/2/19								2 6	
COLLIER310	9/9/19 9/9/19 9/16/19 9/23/19 10/2/19								9 2	
COLLIER310	9/9/19 9/16/19 9/23/19 10/2/19								2	
COLLIER310	9/16/19 9/23/19 10/2/19								31	
COLLIER310	9/23/19 10/2/19 10/7/19								20	
COLLER310	10/2/19								10	
COLLER310	10/7/19								41	
COLLIER310 COLLIER310 COLLIER310 COLLIER310 COLLIER310 COLLIER310 COLLIER310	07/0/07								201	
COLLIER310 COLLIER310 COLLIER310 COLLIER310 COLLIER310 COLLIER310 COLLIER310	61/6/01								10	
COLLIER310 COLLIER310 COLLIER310 COLLIER310 COLLIER310 COLLIER310	10/14/19								30	
COLLIER310 COLLIER310 COLLIER310 COLLIER310 COLLIER310	10/21/19								70	
COLLIER310 COLLIER310 COLLIER310	11/5/10								2 6	
COLLIER310 COLLIER310	11/12/19								3. 5.	
COLLIER310	11/18/19								50	
	11/25/19								20	
Fla. Dept. of Health COLLIER310 1:	12/9/19								10	
COLLIER310	12/16/19								10	
	1/6/20								121	
COLLIER310	1/8/20								10	
COLLIER310	1/13/20								10	
Fla. Dept. of Health COLLIER310	1/27/20								10	
COLLIERS10	2/10/20								000	
COLLIER310	2/18/20								10	
COLLIER310	2/24/20								30	
COLLIER310	3/2/20								10	
COLLIER310	3/9/20								41	
COLLIER310	3/16/20								10	
COLLIER310	3/23/20								10	
COLLIER310	5/6/20								10	
COLLIER310	5/11/20								10	
COLLIER310	5/19/20								82	
COLLIER310	5/21/20								20	
COLLIER310	5/26/20								30	
Fla. Dept. of Health COLLIER310	6/1/20								10	

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collocation Account	Cl. stotics	Sample	Hd	Temp.	Diss. O ₂	Cond.	Salinity	Ammonia N	XON	TKN	Total N	_		Turbidity	Secchi		100
Collecting Agency	Station ID	Date	(s.u.)	(°C)	(mg/L)	(mp/oum)	(bbt)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(mg/m³)	(NTN)	Depth (m)	(cfu/100 mL)	(mg/L)
Fla. Dept. of Health	COLLIER310	6/15/20														20	
Fla. Dept. of Health	COLLIER310	6/22/20														10	
Fla. Dept. of Health	COLLIER310	6/29/20														10	
Fla. Dept. of Health	COLLIER310	7/7/20														20	
Fla. Dept. of Health	COLLIER310	7/13/20														10	
Fla. Dept. of Health	COLLIER310	7/20/20														41	
Fla. Dept. of Health	COLLIER310	7/28/20														10	
Fla. Dept. of Health	COLLIER310	8/3/20														41	
Fla. Dept. of Health	COLLIER310	8/10/20														10	
Fla. Dept. of Health	COLLIER310	8/17/20														20	
Fla. Dept. of Health	COLLIER310	8/24/20														10	
Fla. Dept. of Health	COLLIER310	8/31/20														74	
Fla. Dept. of Health	COLLIER310	9/2/20														63	
Fla. Dept. of Health	COLLIER310	9/8/20														20	
Fla. Dept. of Health	COLLIER310	9/15/20														74	
Fla. Dept. of Health	COLLIER310	9/17/20														10	
Fla. Dept. of Health	COLLIER310	9/21/20														41	
Fla. Dept. of Health	COLLIER310	9/28/20														40	
Fla. Dept. of Health	COLLIER310	10/5/20														52	
Fla. Dept. of Health	COLLIER310	10/12/20														63	
Fla. Dept. of Health	COLLIER310	10/26/20														10	
Fla. Dept. of Health	COLLIER310	11/16/20														10	
Fla. Dept. of Health	COLLIER310	11/23/20														10	
Fla. Dept. of Health	COLLIER310	11/30/20														30	
Fla. Dept. of Health	COLLIER310	12/7/20														009	
Fla. Dept. of Health	COLLIER310	12/9/20														10	
Fla. Dept. of Health	COLLIER310	12/14/20														20	

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

10.00000000000000000000000000000000000	Collecting Agency	Station ID	Sample Date	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L) (Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (mg/L)
COLLEGN COLL	Fla. Dept. of Health	COLLIER311	4/4/17														10	
COLLIERENT ALVENTY A	Fla. Dept. of Health	COLLIER311	4/10/17														10	
COLLEGENT SCORE) COLLEGENT S	Fla. Dept. of Health	COLLIER311	4/18/17														10	
COLLEGATI SOLITY SOLITY SOLIT	Fla. Dept. of Health	COLLIER311	4/25/17														10	
COLLEGENT SOUTH COLLEGENT SOUT	Fla. Dept. of Health	COLLIER311	5/1/17														10	
COLLEGATION SOUTH	Fla. Dept. of Health	COLLIER311	5/8/17														10	
CONTRIBUTION CONT	Fla. Dept. of Health	COLLIER311	5/15/17														10	
COLLEGATION	Fla. Dept. of Health	COLLIER311	5/22/17														10	
COLLERY 6/19/7 6/19/2	Fla. Dept. of Health	COLLIER311	5/30/17														2 6	
COLIERTI 179777 COLIERTI 17977	Fla. Dept. of Health	COLLIERS	6/12/17														2 6	
COLLERAIL STATE	Fla. Dept. of Health	COLLIER311	6/19/17														2 5	
COLLEGY 77/077 COLLEGY 77/077 COLLEGY 18/077 COLLEG	Fla Dept of Health	COLLIER311	6/26/17														2 (2	
COLIERTY 707777 COLIERTY 202177 COLIERTY 20217 COLIERTY 20217 COLIERTY 20217 C	la Dept of Health	COLLIED341	7/10/17														2 6	
COLLEGATI 277477 COLLEGA	la Dept. of Health	COLLIER311	7/17/17														2 0	
COLLEGATI SHITTY SHIT	la. Dept. of Health	COLLIER311	7/24/17														10	
COLLEGATI STATE	la. Dept. of Health	COLLIER311	8/7/17														10	
OOLLIERATI \$871/T	la. Dept. of Health	COLLIER311	8/14/17														41	
COLLERANI 96/2017 COLLERANI 96/2017 COLLERANI 96/2017 COLLERANI 96/2017 COLLERANI 100/2017 COLLERANI 100/2017 COLLERANI 100/2017 COLLERANI 11/2017 COLLERANI 20/2018 COLLERANI 20/20	la. Dept. of Health	COLLIER311	8/21/17														10	
OOLILERSHY 96/17 COLILERSHY 96/17 COLILERSHY 96/17 COLILERSHY 96/17 COLILERSHY 10/21/7 COLILERSHY 10/21/7 COLILERSHY 10/21/7 COLILERSHY 11/23/7 COLILERSHY 11/23/7 COLILERSHY 12/21/2 COLILERSHY 12/21/2 COLILERSHY 12/21/2 COLILERSHY 12/21/2 COLILERSHY 12/21/2 COLILERSHY 22/21/2 COLILERSHY 22/21/2 COLILERSHY 24/21/2 COLILERSHY	Fla. Dept. of Health	COLLIER311	8/29/17														10	
OOLIERSH 99/07 OOLIERSH 99/07 OOLIERSH 100/07 OOLIERSH 100/07 COLLERSH 100/07 COLLERSH <t< td=""><td>Fla. Dept. of Health</td><td>COLLIER311</td><td>9/5/17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td></td></t<>	Fla. Dept. of Health	COLLIER311	9/5/17														10	
COLLERANT 025/17 COLLERANT 025/18 COLLERA	la. Dept. of Health	COLLIER311	9/19/17														20	
COLLERAII 1002/17 COLLERAII 1002/17 COLLERAII 1004/17 COLLERAII 1204/17 COLLERAII 1204/18	la. Dept. of Health	COLLIER311	9/25/17														10	
COLLERAI 1009/17 1009/17 1009/17 1000/17 100	la. Dept. of Health	COLLIER311	10/2/17														10	
COLLERAY OLOSITY	la. Dept. of Health	COLLIER311	10/9/17														31	
COLLEGAT 1002/317 1002/317 1002/317 1002/317 1002/317 1002/317 1002/317 1003/31 1003	la. Dept. of Health	COLLIER311	10/16/17														20	
COLLEGAT 11031/T	la. Dept. of Health	COLLIER311	10/23/17														10	
COLLEGAT 1 1/1/17 COLL	la. Dept. of Health	COLLIER311	10/31/17														10	
COLLERNI 17/21/1 17/	la. Dept. of Health	COLLIER311	11/6/17														0 6	
COLLERANT 17/28/17 17/28/17 17/28/17 17/28/17 17/28/17 17/28/17 17/28/17 17/28/17 17/28/17 17/28/17 17/28/17 17/28/17 17/28/17 17/28/17 17/28/18	la. Dept. of Health	COLLIER311	11/13/17														2 5	
COLLER311 124/17 COLLER311 12/18/17 COLLER311 1/21/817 COLLER311 1/21/81 COLLER311 1/22/18 COLLER311 2/21/8 COLLER311 2/21/8 COLLER311 2/20/18 COLLER311 3/26/18 COLLER311 3/26/18 COLLER311 3/26/18 COLLER311 4/3/18 COLLER311 5/2/18 COLLER311 5/2/18 COLLER311 5/2/18 COLLER311 5/2/18 COLLER311 5/2/18 COLLER311 5/2/18 COLLER311 6/1/18 COLLER311 6/1/18	la. Dept. of Health	COLLIER311	11/28/17														2 0	
COLIER311 1/21/217 COLIER311 1/21/217 COLIER311 1/21/217 COLIER311 1/21/21 COLIER311 1/21/21 COLIER311 1/21/21 COLIER311 1/21/21 COLIER311 1/21/21 COLIER311 2/21/21	la. Dept. of Health	COLLIER311	12/4/17														10	
COLLER311 12/18/17 COLLER312 1/8/18 COLLER313 1/8/18 COLLER314 1/8/18 COLLER314 1/8/18 COLLER314 1/8/18 COLLER314 2/8/18 COLLER314 2/8/18 COLLER314 2/8/18 COLLER314 3/8/18 COLLER314 3/8/18 COLLER314 3/8/18 COLLER314 4/8/18 COLLER314 4/8/1	la. Dept. of Health	COLLIER311	12/12/17														10	
COLLER311 1/8/18 COLLER312 1/8/18 COLLER313 1/2/18 COLLER313 2/2/18 COLLER313 2/2/2/18 COLLER313	la. Dept. of Health	COLLIER311	12/18/17														10	
COLIER311 1/16/18 COLIER311 1/16/18 COLIER311 1/20/18 COLIER311 1/20/18 COLIER311 2/20/18 COLIER311 2/20/18 COLIER311 2/20/18 COLIER311 3/21/18 COLIER311 3/21/18 COLIER311 4/31/18 COLIER311 4/31/18 COLIER311 4/31/18 COLIER311 4/31/18 COLIER311 4/31/18 COLIER311 4/31/18 COLIER311 4/31/18 COLIER311 5/21/18 COLIER311 5/21/18 COLIER311 5/21/18 COLIER311 5/21/18 COLIER311 5/21/18 COLIER311 5/21/18	la. Dept. of Health	COLLIER311	1/8/18														10	
COLLERAIT 1/22/18 COLLERAIT 2/12/18 COLLERAIT 2/12/18 COLLERAIT 2/12/18 COLLERAIT 2/12/18 COLLERAIT 3/12/18 COLLERAIT 3/12/18 COLLERAIT 4/3/18 COLLERAIT 5/3/18 COLLERAIT 6/1/18 COLLERAIT 6/1/18	la. Dept. of Health	COLLIER311	1/16/18														10	
COLLIER311 1/29/18 COLLIER311 2/5/18 COLLIER311 2/20/18 COLLIER311 2/20/18 COLLIER311 3/21/18 COLLIER311 3/40/18 COLLIER311 4/30/18 COLLIER311 4/30/18 COLLIER311 4/30/18 COLLIER311 4/30/18 COLLIER311 4/30/18 COLLIER311 4/30/18 COLLIER311 5/21/18 COLLIER311 5/21/18 COLLIER311 6/11/18 COLLIER311 6/11/18	la. Dept. of Health	COLLIER311	1/22/18														10	
COLLER311 2/5/18 COLLER31 2/5/18 COLLER311 2/20/18 COLLER31 2/20/18 COLLER311 3/5/18 COLLER31 3/5/18 COLLER311 3/5/18 COLLER31 4/3/18 COLLER311 4/3/18 COLLER31 4/3/18 COLLER311 4/3/18 COLLER31 4/3/18 COLLER311 4/3/18 COLLER31 4/3/18 COLLER311 4/3/18 COLLER31 4/3/18 COLLER311 5/1/18 5/1/18 COLLER31 COLLER311 6/4/18 COLLER31 6/4/18 COLLER311 6/4/18 COLLER31 6/4/18	la. Dept. of Health	COLLIER311	1/29/18														10	
COLLER311 2/12/18 COLLER311 2/20/18 COLLER311 2/20/18 COLLER311 2/20/18 COLLER311 3/20/18 COLLER311 3/20/18 COLLER311 4/3/18 COLLER311 4/3/18 COLLER311 4/3/18 COLLER311 4/3/18 COLLER311 5/15/18 COLLER311 6/11/18 CO	a. Dept. of Health	COLLIER311	2/2/18														10	
COLLER311 2/20/18 COLLER31 3/26/18 COLLER31 3/12/18 COLLER31 3/12/18 COLLER31 3/26/18 COLLER31 4/3/18 COLLER31 4/3/18 COLLER31 4/3/18 COLLER31 4/3/3/18 COLLER31 4/3/3/18 COLLER31 5/1/3/18 COLLER31 5/1/3/18 COLLER31 5/1/3/18 COLLER31 5/2/18 COLLER31 5/2/18 COLLER31 6/1/3/18 COLLER31 6/1/3/18 COLLER31 6/1/3/18	a. Dept. of Health	COLLIER311	2/12/18														10	
COLIER311 2/26/18 COLLER31 3/5/18 COLLER31 3/5/18 COLLER31 3/5/18 COLLER31 3/26/18 COLLER31 4/9/18 COLLER31 4/9/18 COLLER31 4/30/18 COLLER31 4/30/18 COLLER31 4/30/18 COLLER31 5/7/18 COLLER31 6/20/18 COLLER31 5/25/18 COLLER31 6/11/18 COLLER31 6/11/18 COLLER31 6/11/18	a. Dept. of Health	COLLIER311	2/20/18														10	
COLLIER311 3/5/18	a. Dept. of Health	COLLIER311	2/26/18														10	
COLLER311 3/12/18 COLLER312 3/12/18 COLLER313 3/12/18 COLLER313 3/12/18 COLLER314 4/3/18 COLLER314 4/3/18 COLLER314 4/30/18 COLLER314 4/30/18 COLLER314 5/17/18 COLLER314 5/17/18 COLLER314 5/17/18 COLLER314 5/12/18 COLLER314 6/4/18 C	la. Dept. of Health	COLLIERS11	3/5/18														10	
COLLIER311 3/26/18 COLLIER311 4/3/18 COLLIER311 4/3/18 COLLIER311 4/30/18 COLLIER311 4/30/18 COLLIER311 4/30/18 COLLIER311 4/30/18 COLLIER311 5/27/18 COLLIER311 5/27/18 COLLIER311 6/47/18 COLLIER31	la. Dept. of Health	COLLIERS11	3/12/18														2 6	
COLLIER311 4/3/18 COLLIER311 4/9/18 COLLIER311 4/9/18 COLLIER311 4/30/18 COLLIER311 5/27/18 COLLIER311 5/27/18 COLLIER311 5/27/18 COLLIER311 5/27/18 COLLIER311 6/47/18 COLLIER311 6/47/18 COLLIER311 6/47/18	la Dent of Health	COLLIER311	3/26/18														2 0	
COLLIER311 4/9/18 COLLIER311 4/16/18 COLLIER311 4/16/18 COLLIER311 5/15/18 COLLIER311 5/15/18 COLLIER311 5/15/18 COLLIER311 5/29/18 COLLIER311 6/4/18 COLLIER311 6/4/18 COLLIER311 6/4/18 COLLIER311 6/4/18	la Dent of Health	COLLIER311	4/3/18														01	
COLLIER311 4/16/18 COLLIER311 4/23/18 COLLIER311 5/37/18 COLLIER311 5/23/18 COLLIER311 5/23/18 COLLIER311 6/29/18 COLLIER311 6/41/18 COLLIER311 6/41/18 COLLIER311 6/41/18	la. Dept. of Health	COLLIER311	4/9/18														9 0	
COLLIER311 4/23/18 COLLIER31 4/23/18 COLLIER31 5/7/18 5/7/18 COLLIER31 5/25/18 COLLIER31 5/25/18 COLLIER31 6/4/18 COLLIER31 6/4/18 COLLIER31 6/4/18	la. Dept. of Health	COLLIER311	4/16/18														10	
COLLIER311 4/30/18 COLLIER31 5/7/18 COLLIER31 5/20/18 COLLIER31 5/20/18 COLLIER31 5/20/18 COLLIER31 6/4/18 COLLIER31 6/4/18 COLLIER31 6/4/18	la. Dept. of Health	COLLIER311	4/23/18														10	
COLLIER311 5/7/18 6/7/18 6/2/1/8 COLLIER311 5/2/1/8 6/2/1/8 6/2/1/8 COLLIER314 6/4/18 6/4/18 6/4/18 COLLIER314 6/1/1/8 6/1/1/8	la. Dept. of Health	COLLIER311	4/30/18														10	
COLLIER311 5/16/18 S/21/18 COLLIER31 S/22/18 COLLIER31 S/22/18 COLLIER31 S/22/18	la. Dept. of Health	COLLIER311	5/7/18														10	
COLLIER311 5/21/18 5/21/18 COLLIER311 5/29/18 6/4/18 COLLIER311 6/4/18 6/4/18	la. Dept. of Health	COLLIER311	5/15/18														10	
COLLIER311 5/29/18 COLLIER311 6/4/18 COLLIER311 6/11/18	la. Dept. of Health	COLLIER311	5/21/18														10	
COLLIER311 6/4/18 6/11/18	la. Dept. of Health	COLLIER311	5/29/18														10	
COLLIER311 6/11/18	la. Dept. of Health	COLLIER311	6/4/18														10	
	la. Dept. of Health	COLLIER311	6/11/18														10	

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Decetoration Contents 2010 20	Collecting Agency	Station ID	Sample Date	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (mg/L)
COLLEGIN 700'00	Fla. Dept. of Health	COLLIER311	7/2/18														10	
COLLERNY 77/10/10 COLLERNY 10/20/10 COLLERNY 10/	Fla. Dept. of Health	COLLIER311	7/9/18														10	
COLLEGENT 7229/18 2011/28 20	Fla. Dept. of Health	COLLIER311	7/16/18														10	
COLLEGENT 1771/18 26/19 COLLEGENT 1771/18 COLLEGENT 1771/18 COLLEGENT 1771/18 COLLEGENT 1771/18 COLLEGENT 1771/18 COLLEGENT 1771/18 COLLEGENT 1772/18 COLLEGENT 1772/1	Fla. Dept. of Health	COLLIER311	7/25/18														10	
COLLEGENT SOUND STATE STATE SOUND STATE STATE STATE STATE SOUND STATE SOUND STATE	Fla. Dept. of Health	COLLIER311	7/31/18														10	
COLLEGATION 2027/19	Fla. Dept. of Health	COLLIER311	8/6/18														10	
COUNTENSAIL 1993/16	Fla. Dept. of Health	COLLIER311	8/13/18														10	
COLLEGATI 1927/19 19	Fla. Dept. of Health	COLLIER311	8/20/18														10	
COLIERY SEATO	Fla. Dept. of Health	COLLIER311	8/27/18														10	
COLIERTY S VAN	Fla. Dept. of Health	COLLIER311	9/4/18														51	
COLLERY SOUTH	Fig. Dept. of Health	COLLIER311	9/10/18														2 6	
COLLEGY 1 702/19 COLLEG	Fla Dept of Health	COLLIER311	9/1//10														2 €	
COLLEGAT 1992/18	Fla Dent of Health	COLLIER311	10/1/18														2 6	
COLLEGATI 10/201/8	Fla. Dept. of Health	COLLIER311	10/8/18														2 0	
COLLEGATI 10020183 COLLEGATI 10020183 COLLEGATI 1176/16 COLLEGATI 1176/16 COLLEGATI 1176/16 COLLEGATI 1176/16 COLLEGATI 1176/16 COLLEGATI 120/16 COLLEGATI 20/16 COLLEGATI 20/16 <t< td=""><td>Fla. Dept. of Health</td><td>COLLIER311</td><td>10/15/18</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td></td></t<>	Fla. Dept. of Health	COLLIER311	10/15/18														10	
COLLEGATI 1102/1818 COLLEGATI 1102/1818 COLLEGATI 111/21/21 COLLEGATI 111/21 COLLEGATI	Fla. Dept. of Health	COLLIER311	10/22/18														10	
COLLERANT 1116/18 COLLERANT 1116/18 COLLERANT 1117/10 COLLERANT 1170/10 COLLERANT 1270/18 COLLERANT 1270/18 COLLERANT 1270/19 COLLERANT 1720/19 COLLERANT 1720/19 COLLERANT 1720/19 COLLERANT 240/19 COLLERANT 240/19 COLLERANT 240/19 COLLERANT 440/19	Fla. Dept. of Health	COLLIER311	10/29/18														10	
COLLERATI 11/10/108 COLLERATI 11/10/108 COLLERATI 11/10/108 COLLERATI 11/20/108 COLLERATI 12/20/108 COLLERATI 12/20/108 COLLERATI 12/20/108 COLLERATI 12/20/108 COLLERATI 12/20/208	Fla. Dept. of Health	COLLIER311	11/5/18														10	
COLIERATI 11/60/16	Fla. Dept. of Health	COLLIER311	11/13/18														10	
COLLERAIT 17,25/18 COLLERAIT 17,25/18 COLLERAIT 17,25/18 COLLERAIT 17,25/18 COLLERAIT 17,25/18 COLLERAIT 17,21/8 COLLERAIT 17,21/8 COLLERAIT 17,21/8 COLLERAIT 17,21/8 COLLERAIT 22,21/8 COLLERAIT 22,	Fla. Dept. of Health	COLLIER311	11/19/18														10	
COLLERAII 17/2/18 COLLERAII 17/2/18 COLLERAII 17/2/18 COLLERAII 17/2/19 COLLERAII 22/2/19 COLLERAII 22/2/19 COLLERAII 22/2/19 COLLERAII 22/2/2/19 COLLERAII 22/2/2/2 COLLERAII 22/2/2/2 COLLERAII 22/2/2 COLLERA	Fla. Dept. of Health	COLLIER311	11/26/18														10	
COLLEGAT 12/10/10 COLLEGAT 12/10/10 COLLEGAT 17/10 COLLE	Fla. Dept. of Health	COLLIER311	12/3/18														9 9	
COLLEGAT 1/2/19 1/2/19 1/2/19 1/2/19 1/2/19 1/2/19 1/2/19 1/2/19 1/2/19 1/2/19 1/2/19 1/2/19 1/2/2/19 1/2/2/19 1/2/2/19 1/2/2/2/29 1/2/29 1/2/2	Fig. Dept. of Health	COLLIER311	12/10/18														70	
COLLEGAT 17719 1	Fla. Dept. of Health	COLLIERSII	12/11/10														2 6	
COLLEGATI 11/479 11/479 11/479 11/479 11/479 11/479 11/2219	Fla Dent of Health	COLLIER311	1/7/19														2 6	
COLLEGAT 1/22/19 COLLEGAT 1/22/19 COLLEGAT 1/22/19 COLLEGAT 2/21/19 COLLEGAT 2/	Fla. Dept. of Health	COLLIER311	1/14/19														9 0	
COLLEGAT 172819 COLLEGAT 172819 COLLEGAT 172819 COLLEGAT 172819 COLLEGAT 24/19 COLLEGA	Fla. Dept. of Health	COLLIER311	1/22/19														10	
COLLERA11 1/30/19 COLLERA11 1/30/19 COLLERA11 1/30/19 COLLERA11 2/4/19 COLLERA11 2/4/19 COLLERA11 3/4/19 COLLERA11 3/4/19 COLLERA11 3/4/19 COLLERA11 4/4/19 COLLERA11 6/4/19 COLLERA11 7/4/19 COLL	Fla. Dept. of Health	COLLIER311	1/28/19														74	
COLLERS11 24/19 COLLERS11 24/19 COLLERS11 24/19 COLLERS11 34/19 COLLERS11 34/19 COLLERS11 34/19 COLLERS11 4/8/19 COLLERS11 4/8/19 COLLERS11 4/8/19 COLLERS11 4/8/19 COLLERS11 4/8/19 COLLERS11 6/8/19 COLLERS11 7/1/19 COLLERS11 7/1/19 <th< td=""><td>Fla. Dept. of Health</td><td>COLLIER311</td><td>1/30/19</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td></td></th<>	Fla. Dept. of Health	COLLIER311	1/30/19														10	
COLIERATI 27/17/9 COLIERATI 27/25/19 COLIERATI 27/25/19 COLIERATI 37/17/9 COLIERATI 47/15/10 COLIERATI 47/25/19 COLIERATI 47/25/19 COLIERATI 47/25/19 COLIERATI 56/19 COLIERATI 56/19 COLIERATI 56/19 COLIERATI 56/19 COLIERATI 56/19 COLIERATI 56/19 COLIERATI 67/119 COLIERATI 7/17/9 COLIERATI 7/17/9 <t< td=""><td>Fla. Dept. of Health</td><td>COLLIER311</td><td>2/4/19</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td></td></t<>	Fla. Dept. of Health	COLLIER311	2/4/19														10	
COLLER311 22/3/19 COLLER311 3/4/19 COLLER311 3/4/19 COLLER311 4/6/19 COLLER311 4/6/19 COLLER311 4/6/19 COLLER311 4/20/19 COLLER311 4/20/19 COLLER311 4/20/19 COLLER311 6/6/19 COLLER311 6/6/19 COLLER311 6/6/19 COLLER311 6/6/19 COLLER311 6/10/19 COLLER311 6/10/19 COLLER311 7/10/19 COLLER311 8/10/19	Fla. Dept. of Health	COLLIER311	2/11/19														10	
COLLERAIT 34/179 COLLERAIT 34/179 COLLERAIT 34/179 COLLERAIT 34/179 COLLERAIT 34/179 COLLERAIT 44/179 COLLERAIT 44/179 COLLERAIT 5/20/19 COLLERAIT 7/10/19 COLLERAIT 7/10/19 COLLERAIT 7/10/19 COLLERAIT 7/10/19 COLLERAIT 7/10/19 COLLERAIT 7/10/19 COLLERAIT 7/20/19 COLLERAIT 7	ria. Dept. of nearm	COLLIERST	2/19/19								T						7 7	
COLLERANT 3/17/9 COLLERANT 3/18/19 COLLERANT 4/18/19 COLLERANT 4/18/19 COLLERANT 4/18/19 COLLERANT 4/18/19 COLLERANT 4/18/19 COLLERANT 4/18/19 COLLERANT 5/18/19 COLLERANT 5/18/19 COLLERANT 5/18/19 COLLERANT 5/18/19 COLLERANT 6/18/19 COLLERANT 6/18/19 COLLERANT 7/18/19	Fla Dept of Health	COLLIER311	3/4/19														2 6	
COLLIER311 3/18/19 3/1	Fla Dent of Health	COLLIFR311	3/11/19														2 6	
COLLER311 3/25/19 COLLER311 4/1/19 COLLER311 4/1/19 COLLER311 4/1/21/9 COLLER311 4/22/19 COLLER311 4/22/19 COLLER311 5/20/19 COLLER311 5/20/19 COLLER311 6/3/19 COLLER311 6/3/19 COLLER311 6/1/19 COLLER311 6/1/19 COLLER311 7/1/19 COLLER311 7/1/21/9 COLLER311 7/1/21/9 COLLER313 7/1/21/9 COLLER313 8/1/21/9 COLLER313 8/1/21/9	Fla. Dept. of Health	COLLIER311	3/18/19														9 0	
COLLER311 4/1/19 COLLER31 4/1/19 COLLER311 4/15/19 COLLER31 4/22/19 COLLER311 4/22/19 COLLER31 5/6/19 COLLER311 5/6/19 COLLER31 5/20/19 COLLER311 6/3/19 COLLER31 6/11/19 COLLER311 6/11/19 COLLER31 6/11/19 COLLER311 6/11/19 COLLER31 6/11/19 COLLER311 7/10/19 COLLER31 6/11/19 COLLER311 7/10/19 COLLER31 6/11/19 COLLER311 7/10/19 COLLER31 7/10/19 COLLER311 7/10/19 COLLER31 8/1/19 COLLER311 8/1/19 8/1/19 COLLER31 COLLER311 8/1/19 COLLER31 8/1/19 COLLER311 8/1/19 COLLER31 8/1/19	Fla. Dept. of Health	COLLIER311	3/25/19														10	
COLLER311 4/8/19 COLLER311 4/15/19 COLLER311 4/28/19 COLLER311 4/28/19 COLLER311 5/6/19 COLLER311 5/20/19 COLLER311 5/28/19 COLLER311 6/19/19 COLLER311 6/19/19 COLLER311 7/1/19 COLLER311 7/15/19 COLLER311 8/1/19	Fla. Dept. of Health	COLLIER311	4/1/19														10	
COLLER31 4/15/19 COLLER31 4/25/19 COLLER31 5/6/19 COLLER31 5/20/19 COLLER31 6/3/19 COLLER31 6/3/19 COLLER31 6/3/19 COLLER31 6/3/19 COLLER31 7/10/19 COLLER31 8/1/19	Fla. Dept. of Health	COLLIER311	4/8/19														10	
COLLER311 4/22/19 COLLER311 5//291 COLLER311 5//291 COLLER311 5//291 COLLER311 6//3/19 COLLER311 6//3/19 COLLER311 6//3/19 COLLER311 6//3/19 COLLER311 7/13/19 COLLER311 7//2919 COLLER311 7//2919 COLLER311 7//2919 COLLER311 7//2919 COLLER311 8//7/19	Fla. Dept. of Health	COLLIER311	4/15/19														10	
COLLIER311 5/6/10 COLLIER311 5/13/19 COLLIER311 5/13/19 COLLIER311 6/13/19 COLLIER311 6/13/19 COLLIER311 6/13/19 COLLIER311 7/13/19 COLLIER311 7/13/19 COLLIER311 7/13/19 COLLIER311 7/13/19 COLLIER311 7/13/19 COLLIER311 7/13/19 COLLIER311 8/17/19 COLLIER311 8/17/19 COLLIER311 8/17/19 COLLIER311 8/17/19	Fla Dept of Health	COLLIER311	4/22/19														2 6	
COLIER311 5/1319 COLIER31 5/2019 COLIER31 5/2019 COLLIER31 COLLIER31 COLLIER31 6/19/19 COLLIER31 COLLIER31 COLLIER31 7/10/19 COLLIER31 COLLIER31 COLLIER31 7/15/19 COLLIER31 COLLIER31 COLLIER31 7/25/19 COLLIER31 COLLIER31 COLLIER31 8/7/19 COLLIER31 S/12/19 COLLIER311 8/7/19 COLLIER31 S/12/19	Fla. Dept. of Health	COLLIER311	5/6/19														0	
COLLIER311 5/28/19 COLLIER314 5/28/19 COLLIER314 6/13/19 COLLIER314 6/13/19 COLLIER314 6/13/19 COLLIER314 7/11/19 COLLIER314 7/11/19 COLLIER314 7/11/19 COLLIER314 7/12/19 COLLIER314 7/12/19 COLLIER314 8/17/19 COLLIER314 8/12/19 COLLIER314 8/12/19 Residual of the property of the proper	Fla. Dept. of Health	COLLIER311	5/13/19														10	
COLLIER31 5/28/19 COLLIER31 6/31/9 COLLIER31 6/11/19 COLLIER31 7/11/9 COLLIER31 7/11/9 COLLIER31 7/15/19 COLLIER31 7/15/19 COLLIER31 7/15/19 COLLIER31 7/15/19 COLLIER31 8/7/19 COLLIER31 8/7/19 COLLIER31 8/12/19	Fla. Dept. of Health	COLLIER311	5/20/19														10	
COLLER31 6/3/19 6/3/19 COLLER31 6/1/10 6/1/10 COLLER31 7/1/19 6/1/10 COLLER31 7/1/10 7/1/10 COLLER31 7/1/10 7/1/10 COLLER31 7/1/10 7/1/10 COLLER31 7/1/10 7/1/10 COLLER31 8/1/19 7/1/10 COLLER31 8/1/19 8/1/10 COLLER31 8/1/10 7/1/10	Fla. Dept. of Health	COLLIER311	5/28/19														10	
COLLER31 6/119 COLLER31 6/119 COLLER31 7/1019 COLLER31 7/2019 COLLER31 7/2019 COLLER31 8/7/9 COLLER31 8/7/9 COLLER31 8/7/9 COLLER31 8/7/9 COLLER31 8/7/9	Fla. Dept. of Health	COLLIER311	6/3/19														10	
COLLER311 6/19/19 COLLER311 7/10/19 COLLER311 7/10/19 COLLER311 7/22/19 COLLER311 8/7/19 COLLER311 8/7/19 COLLER311 8/7/19 COLLER311 8/7/19 COLLER311 8/7/19	Fla. Dept. of Health	COLLIER311	6/11/19														10	
COLLER31 7/10/19 COLLER31 7/20/19 COLLER31 7/20/19 COLLER31 7/20/19 COLLER31 8/7/19 COLLER31 8/7/19 COLLER31 8/7/19 COLLER31 8/7/19	Fla. Dept. of Health	COLLIER311	6/19/19														63	
COLLIER311 7/72/19 COLLIER311 7/22/19 COLLIER311 8/7/19 COLLIER311 8/7/19 COLLIER311 8/7/19 COLLIER311 8/7/19	Fla. Dept. of Health	COLLIER311	01/01/2														5 5	
COLLIER31 7/22/19 COLLIER31 7/29/19 COLLIER31 8/7/19 COLLIER31 8/7/19 COLLIER31 8/12/19	Fla Dent of Health	COLLIER311	7/15/19														2 6	
COLLIER311 7/29/19 COLLIER311 8/7/19 COLLIER311 8/12/19	Fla. Dept. of Health	COLLIER311	7/22/19														20	
COLLIER311 8/7/19 Residue Collier	Fla. Dept. of Health	COLLIER311	7/29/19														20	
COLLIER311 8/12/19	Fla. Dept. of Health	COLLIER311	8/7/19														10	
	Fla. Dept. of Health	COLLIER311	8/12/19														10	

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

	Station ID	Date	(s.u.)	(၁)	(mg/L) ((hmho/cm)	(bbt)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(µg/L)	(mg/m³)	(NTU)	Depth (m) ((cfu/100 mL)	(mg/L)
Fla. Dept. of Health	COLLIER311	9/9/19														10	
Fla. Dept. of Health	COLLIER311	9/16/19														10	
Fla. Dept. of Health	COLLIER311	9/23/19														10	
Fla. Dept. of Health	COLLIER311	10/7/19														10	
Fla. Dept. of Health	COLLIER311	10/14/19														10	
Fla. Dept. of Health	COLLIER311	10/21/19														10	
Fla. Dept. of Health	COLLIER311	10/28/19														10	
Fla. Dept. of Health	COLLIER311	11/5/19														10	
Fla. Dept. of Health	COLLIER311	11/12/19														10	
Fla. Dept. of Health	COLLIER311	11/18/19														10	
Fla. Dept. of Health	COLLIER311	11/25/19														10	
Fla. Dept. of Health	COLLIER311	12/9/19														10	
Fla. Dept. of Health	COLLIER311	12/16/19														41	
Fla. Dept. of Health	COLLIER311	1/6/20														31	
Fla. Dept. of Health	COLLIER311	1/13/20														10	
Fla. Dept. of Health	COLLIER311	1/27/20														10	
Fla. Dept. of Health	COLLIER311	2/3/20														10	
Fla. Dept. of Health	COLLIER311	2/10/20														10	
Fla. Dept. of Health	COLLIER311	2/18/20														10	
Fla. Dept. of Health	COLLIER311	2/24/20														10	
Fla. Dept. of Health	COLLIER311	3/2/20														10	
Fla. Dept. of Health	COLLIER311	3/9/20														10	
Fla. Dept. of Health	COLLIER311	3/16/20														10	
Fla. Dept. of Health	COLLIER311	3/23/20														20	
Fla. Dept. of Health	COLLIER311	5/6/20														10	
Fla. Dept. of Health	COLLIER311	5/11/20														10	
Fla. Dept. of Health	COLLIER311	5/19/20														10	
Fla. Dept. of Health	COLLIER311	5/26/20														10	
Fla. Dept. of Health	COLLIER311	6/1/20														10	
Fla. Dept. of Health	COLLIER311	6/9/20														10	
Fla. Dept. of Health	COLLIER311	6/15/20														10	
Fla. Dept. of Health	COLLIER311	6/22/20														10	
Fla. Dept. of Health	COLLIER311	6/29/20														10	
Fla. Dept. of Health	COLLIER311	7/7/20														10	
Fla. Dept. of Health	COLLIER311	7/13/20														10	
Fla. Dept. of Health	COLLIER311	7/20/20														10	
Fla. Dept. of Health	COLLIER311	7/28/20														10	
Fla. Dept. of Health	COLLIER311	8/3/20														10	
Fla. Dept. of Health	COLLIER311	8/10/20														10	
Fla. Dept. of Health	COLLIER311	8/17/20														10	
Fla. Dept. of Health	COLLIER311	8/24/20														10	
Fla. Dept. of Health	COLLIER311	8/31/20														10	
Fla. Dept. of Health	COLLIER311	9/8/20														10	
Fla. Dept. of Health	COLLIER311	9/15/20														10	
Fla. Dept. of Health	COLLIER311	9/21/20														20	
Fla. Dept. of Health	COLLIER311	9/28/20														10	
Fla. Dept. of Health	COLLIER311	10/5/20														10	
Fla. Dept. of Health	COLLIER311	10/12/20														20	
Fla. Dept. of Health	COLLIER311	10/26/20														10	
Fla. Dept. of Health	COLLIER311	11/16/20														10	
Fla. Dept. of Health	COLLIER311	11/23/20														10	
Fla. Dept. of Health	COLLIER311	11/30/20														10	
Fla. Dept. of Health	COLLIER311	12/7/20														10	

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Sample Date	pH (s.u.)	Temp.	Diss. O ₂ (mg/L)	Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (mg/L)
Fla. Dept. of Health	COLLIER347	4/4/17														10	
Fla. Dept. of Health	COLLIER347	4/10/17														10	
Fla. Dept. of Health	COLLIER347	4/18/17														10	
Fla. Dept. of Health	COLLIER347	4/25/17														10	
Fla. Dept. of Health	COLLIER347	5/1/17														10	
Fla. Dept. of Health	COLLIER347	5/8/17														10	
Fig. Dept. of Health	COLLIER34/	5/15/1/														0 5	
Fig. Dept. of Health	COLLIED347	5/30/17														2 5	
Fla. Dept. of Health	COLLIER347	6/5/17														9 0	
Fla. Dept. of Health	COLLIER347	6/12/17														10	
Fla. Dept. of Health	COLLIER347	6/19/17														10	
Fla. Dept. of Health	COLLIER347	6/26/17														10	
Fla. Dept. of Health	COLLIER347	7/10/17														10	
Fla. Dept. of Health	COLLIER347	7/17/17														10	
Fla. Dept. of Health	COLLIER347	7/24/17														10	
Fla. Dept. of Health	COLLIER347	8/7/17														10	
Fla. Dept. of Health	COLLIER34/	8/14/1/														2 5	
Fla Dept. of Health	COLLIER347	8/20/17														2 5	
Fla Dent of Health	COLLIER347	9/5/17														2 6	
	COLLIER347	9/19/17														9 2	
Fla. Dept. of Health	COLLIER347	9/25/17														10	
Fla. Dept. of Health	COLLIER347	10/2/17														10	
Fla. Dept. of Health	COLLIER347	10/9/17														10	
Fla. Dept. of Health	COLLIER347	10/16/17														10	
Fla. Dept. of Health	COLLIER347	10/23/17														0 %	
Fla Dent of Health	COLLIER347	11/6/17														2 8	
Fla. Dept. of Health	COLLIER347	11/13/17														10	
Fla. Dept. of Health	COLLIER347	11/20/17														10	
Fla. Dept. of Health	COLLIER347	11/28/17														10	
Fla. Dept. of Health	COLLIER347	12/4/17														10	
Fla. Dept. of Health	COLLIER347	12/12/17														10	
Fla Dent of Health	COLLIER347	1/8/18														2 6	
Fla. Dept. of Health	COLLIER347	1/16/18														20	
Fla. Dept. of Health	COLLIER347	1/22/18														10	
Fla. Dept. of Health	COLLIER347	1/29/18														10	
Fla. Dept. of Health	COLLIER347	2/5/18														10	
Fla. Dept. of Health	COLLIER34/	2/12/18														2 6	
Fla. Dept. of Health	COLLIER347	2/26/18														9 0	
Fla. Dept. of Health	COLLIER347	3/5/18														10	
Fla. Dept. of Health	COLLIER347	3/12/18														10	
Fig. Dept. of Health	COLLIER34/	3/19/18														10	
Fla Dent of Health	COLLIER347	3/20/10														2 6	
Fla. Dept. of Health	COLLIER347	4/9/18														10	
Fla. Dept. of Health	COLLIER347	4/16/18														10	
Fla. Dept. of Health	COLLIER347	4/23/18														10	
Fla. Dept. of Health	COLLIER347	4/30/18														10	
Fla. Dept. of Health	COLLIER347	5/7/18														9 9	
Fla. Dept. of Health	COLLIER347	5/21/18														2 6	
Fla. Dept. of Health	COLLIER347	5/29/18														10	
Fla. Dept. of Health	COLLIER347	6/4/18														10	
Fla. Dept. of Health	COLLIER347	6/11/18														10	
Fla. Dept. of Health	COLLIER347	6/18/18														10	
Fla. Dept. of Health	COLLIER347	7/9/18														2 6	
Fla. Dept. of Health	COLLIER347	7/16/18														01	
Ela Dont of Health	COI 1 1ED 3.47	7/25/18														40	

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Date	(s.u.)	(၁)	(mg/L)	Cond. (µmho/cm)	(ppt)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/m³)	Turbidity (NTU) D	Depth (m) ((cfu/100 mL)	(mg/L)
Fla. Dept. of Health	COLLIER347	7/31/18			Н											10	
Fla. Dept. of Health	COLLIER347	8/6/18														10	
Fla. Dept. of Health	COLLIER347	8/13/18														10	
Fla. Dept. of Health	COLLIER347	8/20/18														10	
Fla. Dept. of Health	COLLIER347	8/27/18														10	
Fla. Dept. of Health	COLLIER347	9/4/18														20	
Fig. Dept. of Health	COLLIER347	9/10/18														700	
Fig. Dept. of Health	COLLIER34/	9/1/18														2 5	
Fla Dept of Health	COLLIER347	10/1/18														2 6	
Fla Dent of Health	COLLIFR347	10/8/18														009	
Fla. Dept. of Health	COLLIER347	10/9/18														110	
Fla. Dept. of Health	COLLIER347	10/11/18														10	
Fla. Dept. of Health	COLLIER347	10/15/18														10	
Fla. Dept. of Health	COLLIER347	10/22/18														10	
Fla. Dept. of Health	COLLIER347	10/29/18														10	
Fla. Dept. of Health	COLLIER347	11/5/18														10	
Fla. Dept. of Health	COLLIER347	11/13/18														0 6	
Fla. Dept. of Health	COLLIER347	11/26/18														2 22	
Fla Dept of Health	COLLIER347	12/3/18														10	
Fla. Dept. of Health	COLLIER347	12/10/18														10	
Fla. Dept. of Health	COLLIER347	12/17/18														10	
Fla. Dept. of Health	COLLIER347	1/2/19														10	
Fla. Dept. of Health	COLLIER347	1/7/19														10	
Fla. Dept. of Health	COLLIER347	1/14/19														10	
Fla. Dept. of Health	COLLIER347	1/22/19														10	
Fla. Dept. of Health	COLLIER347	1/28/19														30	
Fla. Dept. of Health	COLLIER347	2/4/19														5 6	
Fla. Dept. of Health	COLLIER347	2/10/10														2 6	
Fla. Dept. of Health	COLLIER347	2/25/19														2 6	
Fla. Dept. of Health	COLLIER347	3/4/19														10	
Fla. Dept. of Health	COLLIER347	3/11/19														10	
Fla. Dept. of Health	COLLIER347	3/18/19														10	
Fla. Dept. of Health	COLLIER347	3/25/19														10	
Fla. Dept. of Health	COLLIER347	4/1/19														0 6	
Fla. Dept. of Health	COLLIER347	4/15/19														2 0	
Fla. Dept. of Health	COLLIER347	4/22/19														2 0	
Fla. Dept. of Health	COLLIER347	4/29/19														10	
Fla. Dept. of Health	COLLIER347	5/6/19														10	
Fla. Dept. of Health	COLLIER347	5/13/19														10	
Fla. Dept. of Health	COLLIER347	5/20/19														10	
Fla. Dept. of Health	COLLIER34/	5/28/19														2 5	
Fla. Dept. of Health	COLLIER347	6/11/19														2 6	
Fla. Dept. of Health	COLLIER347	6/16/19														10	
Fla. Dept. of Health	COLLIER347	6/24/19														10	
Fla. Dept. of Health	COLLIER347	7/1/19														10	
Fla. Dept. of Health	COLLIER347	7/10/19														10	
Fla. Dept. of Health	COLLIER347	7/15/19														5 6	
Fig. Dept. of Health	COLLIER34/	7/20/10														2 5	
Fla. Dept. of Health	COLLIER347	8/7/19														2 6	
Fla. Dept. of Health	COLLIER347	8/12/19														10	
Fla. Dept. of Health	COLLIER347	8/20/19														10	
Fla. Dept. of Health	COLLIER347	9/9/19														10	
Fla. Dept. of Health	COLLIER347	9/16/19														20	
Fla. Dept. of Health	COLLIER347	9/23/19														10	
Fla. Dept. of Health	COLLIER347	10/2/19														9 ;	
Fla. Dept. of Health	COLLERS4/	50//00															

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Date	(s.u.)	(C)	(mg/L)	Cond. (µmho/cm)	(ppt)	(µg/L)	(hg/L)	(µg/L)	(µg/L)	l otal P (µg/L)	(mg/m³)	(NTU)	Depth (m)	(cfu/100 mL)	(mg/L)
Fla. Dept. of Health	COLLIER347	10/21/19														10	
Fla. Dept. of Health	COLLIER347	10/28/19														10	
Fla. Dept. of Health	COLLIER347	11/5/19														10	
Fla. Dept. of Health	COLLIER347	11/12/19														10	
Fla. Dept. of Health	COLLIER347	11/18/19														10	
Fla. Dept. of Health	COLLIER347	11/25/19														10	
Fla. Dept. of Health	COLLIER347	12/9/19														10	
Fla. Dept. of Health	COLLIER347	12/16/19														10	
Fla. Dept. of Health	COLLIER347	1/6/20														10	
Fla. Dept. of Health	COLLIER347	1/13/20														10	
Fla. Dept. of Health	COLLIER347	1/27/20														10	
Fla. Dept. of Health	COLLIER347	2/3/20														10	
Fla. Dept. of Health	COLLIER347	2/10/20														10	
Fla. Dept. of Health	COLLIER347	2/18/20														10	
Fla. Dept. of Health	COLLIER347	2/24/20														10	
Fla. Dept. of Health	COLLIER347	3/2/20														10	
Fla. Dept. of Health	COLLIER347	3/9/20														20	
Fla. Dept. of Health	COLLIER347	3/16/20														10	
Fla. Dept. of Health	COLLIER347	3/23/20														10	
Fla. Dept. of Health	COLLIER347	5/6/20														10	
Fla. Dept. of Health	COLLIER347	5/11/20														10	
Fla. Dept. of Health	COLLIER347	5/19/20														63	
Fla. Dept. of Health	COLLIER347	5/26/20														10	
Fla. Dept. of Health	COLLIER347	6/1/20														10	
Fla. Dept. of Health	COLLIER347	6/9/20														10	
Fla. Dept. of Health	COLLIER347	6/15/20														10	
Fla. Dept. of Health	COLLIER347	6/22/20														10	
Fla. Dept. of Health	COLLIER347	6/29/20														10	
Fla. Dept. of Health	COLLIER347	7/7/20														10	
Fla. Dept. of Health	COLLIER347	7/13/20														10	
Fla. Dept. of Health	COLLIER347	7/20/20														10	
Fla. Dept. of Health	COLLIER347	7/28/20														10	
Fla. Dept. of Health	COLLIER347	8/3/20														30	
Fla. Dept. of Health	COLLIER347	8/10/20														10	
Fla. Dept. of Health	COLLIER347	8/17/20														10	
Fla. Dept. of Health	COLLIER347	8/24/20														10	
Fla. Dept. of Health	COLLIER347	8/31/20														10	
Fla. Dept. of Health	COLLIER347	9/8/20														10	
Fla. Dept. of Health	COLLIER347	9/15/20														10	
Fla. Dept. of Health	COLLIER347	9/21/20														20	
Fla. Dept. of Health	COLLIER347	9/28/20														10	
Fla. Dept. of Health	COLLIER347	10/5/20														10	
Fla. Dept. of Health	COLLIER347	10/12/20														10	
Fla. Dept. of Health	COLLIER347	10/26/20														10	
Fla. Dept. of Health	COLLIER347	11/16/20														10	
Fla. Dept. of Health	COLLIER347	11/23/20														10	
Fla. Dept. of Health	COLLIER347	11/30/20														10	
Fla. Dept. of Health	COLLIER347	12/7/20														10	
							-										

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Date	рн (s.u.)	(°C)	Diss. O ₂ (mg/L)	Cond. (µmho/cm)	(ppt)	(µg/L)	(µg/L)	(µg/L)	l otal N (μg/L)	(µg/L)	(mg/m³)	(NTU)	Depth (m)	(cfu/100 mL)	(mg/L)
Fla. Dept. of Health	COLLIER58	4/4/17														10	
Fla. Dept. of Health	COLLIER58	4/10/17														10	
Fla. Dept. of Health	COLLIER58	4/18/17														10	
Fla. Dept. of Health	COLLIER58	4/25/17														10	
Fla. Dept. of Health	COLLIER58	5/1/17														10	
Fla. Dept. of Health	COLLIER58	5/8/17														10	
Fla. Dept. of Health	COLLIERS8	5/15/17														0 9	
Fig. Dept. of Health	COLLIERS	5/22/1/														2 5	
Fla. Dept. of Health	COLLIEBS	5/30/17														2 5	
Fla. Dept. of Health	COLLIERS8	6/12/17														2 0	
Fla. Dept. of Health	COLLIERS8	6/19/17														20	
Fla. Dept. of Health	COLLIER58	6/26/17														10	
Fla. Dept. of Health	COLLIER58	7/10/17														10	
Fla. Dept. of Health	COLLIER58	7/17/17														10	
Fla. Dept. of Health	COLLIER58	7/24/17														10	
Fla. Dept. of Health	COLLIER58	8/7/17														10	
Fla. Dept. of Health	COLLIER58	8/14/17														10	
Fla. Dept. of Health	COLLIER58	8/21/17														10	
Fla. Dept. of Health	COLLIERS	8/29/17														2 5	
Fig. Dept. of Health	COLLIERS	9/5/1/														2 6	
Fig. Dept. of Health	COLLIEDS	9/19/1/														2 5	
Fla. Dept. of Health	COLLIERS8	10/2/17														2 0	
Fla. Dept. of Health	COLLIER58	10/9/17														10	
Fla. Dept. of Health	COLLIER58	10/16/17														10	
Fla. Dept. of Health	COLLIER58	10/23/17														10	
Fla. Dept. of Health	COLLIER58	10/31/17														10	
Fla. Dept. of Health	COLLIERS8	11/6/17														9 9	
Fla. Dept. of Health	COLLIERS	11/13/1/														2 5	
Fla. Dept. of Health	COLLIERS8	11/28/17														0	
Fla. Dept. of Health	COLLIER58	12/4/17														10	
Fla. Dept. of Health	COLLIER58	12/12/17														10	
Fla. Dept. of Health	COLLIER58	12/18/17														10	
Fla. Dept. of Health	COLLIERS8	1/8/18														10	
Fla. Dept. of Health	COLLIERS	1/16/18														2 5	
Fla. Dept. of Health	COLLIERS	1/29/18														2 0	
Fla. Dept. of Health	COLLIER58	2/5/18														10	
Fla. Dept. of Health	COLLIER58	2/12/18														10	
Fla. Dept. of Health	COLLIER58	2/20/18														10	
Fla. Dept. of Health	COLLIERS8	2/26/18														0 4	
Fla Dent of Health	COLLERS	3/12/18														2 €	
Fla. Dept. of Health	COLLIER58	3/19/18														9 0	
Fla. Dept. of Health	COLLIER58	3/26/18														10	
Fla. Dept. of Health	COLLIER58	4/3/18														10	
Fla. Dept. of Health	COLLIER58	4/9/18														10	
Fla. Dept. of Health	COLLIERS8	4/16/18														50	
Fla. Dept. of Health	COLLIERS	4/23/18														2 5	
Fla Dept of Health	COLLIERS	5/7/18														2 €	
Fla. Dept. of Health	COLLIERS	5/15/18														9 0	
Fla. Dept. of Health	COLLIER58	5/21/18														10	
Fla. Dept. of Health	COLLIER58	5/29/18														10	
Fla. Dept. of Health	COLLIER58	6/4/18														20	
Fla. Dept. of Health	COLLIER58	6/11/18														10	
Fla. Dept. of Health	COLLIERS8	6/18/18														9 9	
Fla. Dept. of Health	COLLIERS	7/0/18														2 5	
Fla Dopt of Hoalth	COLLIERSO	7/16/10								1						2	
																-	

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Sample Date	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (mg/L)
Fla. Dept. of Health	COLLIERS	7/31/18			Н								1	-		10	
Fla. Dept. of Health	COLLIERS8	8/6/18														9 0	
Fla. Dept. of Health	COLLIER58	8/13/18														20	
Fla. Dept. of Health	COLLIER58	8/20/18														10	
Fla. Dept. of Health	COLLIER58	8/27/18														30	
Fla. Dept. of Health	COLLIERS	9/4/18														L 4	
Fla. Dept. of Health	COLLIERS	9/17/18														2 6	
Fla. Dept. of Health	COLLIER58	9/24/18														10	
Fla. Dept. of Health	COLLIER58	10/1/18														10	
Fla. Dept. of Health	COLLIER58	10/8/18														009	
Fla. Dept. of Health	COLLIER58	10/9/18														109	
Fla. Dept. of Health	COLLIER58	10/11/18														20	
Fla. Dept. of Health	COLLIER58	10/15/18														10	
Fla. Dept. of Health	COLLIERS8	10/22/18														97	
Fla. Dept. of Health	COLLIERS	10/24/18														2 5	
Fla Dent of Health	COLLIFES	11/5/18														2 02	
Fla Dept of Health	COLLIERS	11/13/18														10	
Fla. Dept. of Health	COLLIERS8	11/19/18														2 0	
	COLLIER58	11/26/18														10	
Fla. Dept. of Health	COLLIER58	12/3/18														10	
Fla. Dept. of Health	COLLIER58	12/10/18														10	
Fla. Dept. of Health	COLLIER58	12/17/18														10	
Fla. Dept. of Health	COLLIERS8	1/2/19														10	
Fla. Dept. of Health	COLLIERS	1/7/19														0 5	
Fla Dent of Health	COLLERS	1/22/19														2 €	
Fla. Dept. of Health	COLLIERS8	1/28/19														2 0	
Fla. Dept. of Health	COLLIER58	2/4/19														10	
Fla. Dept. of Health	COLLIER58	2/11/19														10	
	COLLIER58	2/19/19														10	
Fla. Dept. of Health	COLLIERS	3/4/19														0 5	
Fla. Dept. of Health	COLLIERS8	3/11/19														2 0	
Fla. Dept. of Health	COLLIER58	3/18/19														10	
Fla. Dept. of Health	COLLIER58	3/25/19														10	
Fla. Dept. of Health	COLLIER58	4/1/19														10	
Fla. Dept. of Health	COLLIERS8	4/8/19														10	
Fla. Dept. of Health	COLLIERS	4/15/19														0 6	
Fla. Dept. of Health	COLLIERS8	4/29/19														9 0	
Fla. Dept. of Health	COLLIER58	5/6/19														10	
Fla. Dept. of Health	COLLIER58	5/13/19														20	
Fla. Dept. of Health	COLLIER58	5/20/19														10	
Fla Dept. of Health	COLLIERS	5/28/19														2 5	
Fla. Dept. of Health	COLLIERS8	6/11/19														0 0	
Fla. Dept. of Health	COLLIER58	6/19/19														63	
Fla. Dept. of Health	COLLIER58	6/24/19														10	
Fla. Dept. of Health	COLLIERS8	7/1/19														10	
Fig. Dept. of Health	COLLIERS	61/01//														S &	
Fla. Dept. of Health	COLLIERS	7/22/19														0 0	
	COLLIERS8	7/29/19														9 0	
Fla. Dept. of Health	COLLIER58	8/7/19														10	
Fla. Dept. of Health	COLLIER58	8/12/19														10	
Fla. Dept. of Health	COLLIERS8	8/20/19														0 9	
Fla. Dept. of Health	COLLIERS	9/9/19														0 5	
Fla. Dept. of Health	COLLIERS	9/16/19														2 6	
Fla. Dept. of Health	COLLIER58	10/2/19														10	
		07/1/07															

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

6	Station ID	Date	(s.u.)	(°C)	(mg/L)	(hmho/cm)	(bbt)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(mg/m³)	(NTU)	Depth (m) ((cfu/100 mL)	(mg/L)
Fla. Dept. of Health	COLLIER58	10/14/19														20	
Fla. Dept. of Health	COLLIER58	10/21/19														31	
Fla. Dept. of Health	COLLIER58	10/28/19														10	
Fla. Dept. of Health	COLLIER58	11/5/19														10	
Fla. Dept. of Health	COLLIER58	11/12/19														10	
Fla. Dept. of Health	COLLIER58	11/18/19														10	
Fla. Dept. of Health	COLLIER58	11/25/19														10	
Fla. Dept. of Health	COLLIER58	12/9/19														63	
Fla. Dept. of Health	COLLIER58	12/16/19														10	
Fla. Dept. of Health	COLLIER58	1/6/20														10	
Fla. Dept. of Health	COLLIER58	1/13/20														10	
Fla. Dept. of Health	COLLIER58	1/27/20														10	
Fla. Dept. of Health	COLLIER58	2/3/20														10	
Fla. Dept. of Health	COLLIER58	2/10/20														10	
Fla. Dept. of Health	COLLIER58	2/18/20														10	
Fla. Dept. of Health	COLLIER58	2/24/20														10	
Fla. Dept. of Health	COLLIER58	3/2/20														10	
Fla. Dept. of Health	COLLIER58	3/9/20														10	
Fla. Dept. of Health	COLLIER58	3/16/20														10	
Fla. Dept. of Health	COLLIER58	5/6/20														10	
Fla. Dept. of Health	COLLIER58	5/11/20														10	
Fla. Dept. of Health	COLLIER58	5/26/20														10	
Fla. Dept. of Health	COLLIER58	6/1/20														10	
Fla. Dept. of Health	COLLIER58	6/9/20														10	
Fla. Dept. of Health	COLLIER58	6/15/20														10	
Fla. Dept. of Health	COLLIER58	6/22/20														10	
Fla. Dept. of Health	COLLIER58	6/29/20														31	
Fla. Dept. of Health	COLLIER58	7/7/20														10	
Fla. Dept. of Health	COLLIER58	7/13/20														10	
Fla. Dept. of Health	COLLIER58	7/20/20														10	
Fla. Dept. of Health	COLLIER58	8/3/20														10	
Fla. Dept. of Health	COLLIER58	8/10/20														10	
Fla. Dept. of Health	COLLIER58	8/17/20														10	
Fla. Dept. of Health	COLLIER58	8/24/20														10	
Fla. Dept. of Health	COLLIER58	8/31/20														10	
Fla. Dept. of Health	COLLIER58	9/8/20														10	
Fla. Dept. of Health	COLLIER58	9/15/20														10	
Fla. Dept. of Health	COLLIER58	9/21/20														10	
Fla. Dept. of Health	COLLIER58	9/28/20														10	
Fla. Dept. of Health	COLLIER58	10/5/20														10	
Fla. Dept. of Health	COLLIER58	10/12/20														10	
Fla. Dept. of Health	COLLIER58	10/26/20														10	
Fla. Dept. of Health	COLLIER58	11/16/20														10	
Fla. Dept. of Health	COLLIER58	11/23/20														10	
Fla. Dept. of Health	COLLIER58	11/30/20														10	
Fla. Dept. of Health	COLLIER58	12/7/20														7	
						ì						1				2	

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Sample	Hd (n.s)	Temp.	Diss. O ₂	Cond.	Salinity (ppf)	Ammonia N (uq/L)	NOx (ua/L)	TKN (ua/L)	Total N	Total P (ug/L)	Chyl-a	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (ma/L)
			(::::)	6	(11.8/L)	()	(500)	(F84)	(184)	1 (61)	(F8, F)	(184)	1	-	()daa	(200,000)	(i.g.,
LAKEWATCH	COL-PON BAY 1-1	4/25/01									420				1.2		
LAKEWATCH	COL-PON BAY 1-1	6/25/01									390				6.0		
LAKEWATCH	COL-PON BAY 1-1	8/24/01									320				1.3		
LAKEWATCH	COL-PON BAY 1-1	3/20/02									410				2.3		
LAKEWATCH	COL-PON BAY 1-1	7/29/02									200						
LAKEWATCH	COL-PON BAY 1-1	4/2/03									310						
LAKEWATCH	COL-PON BAY 1-1	7/29/03									410						
LAKEWATCH	COL-PON BAY 1-1	10/9/03									400						
LAKEWATCH	COL-PON BAY 1-1	12/12/03									270						
LAKEWATCH	COL-PON BAY 1-1	12/22/03									230						
LAKEWATCH	COL-PON BAY 1-1	2/12/04									310				1.6		
LAKEWATCH	COL-PON BAY 1-1	4/7/04									200				1.3		
LAKEWATCH	COL-PON BAY 1-1	6/9/04									370				4:1		
LAKEWATCH	COL-PON BAY 1-1	8/31/04									540				1.4		
LAKEWATCH	COL-PON BAY 1-1	11/19/04									280				1.6		
LAKEWATCH	COL-PON BAY 1-1	2/23/05									330				1.9		
LAKEWATCH	COL-PON BAY 1-1	5/18/05									360				1.4		
LAKEWATCH	COL-PON BAY 1-1	8/16/05									410				1.6		
LAKEWATCH	COL-PON BAY 1-1	11/30/05									460				1.6		
LAKEWATCH	COL-PON BAY 1-1	2/24/06									009				1.7		
LAKEWATCH	COL-PON BAY 1-1	5/26/06									450				1.4		
LAKEWATCH	COL-PON BAY 1-1	90/2/6									370				1.2		
LAKEWATCH	COL-PON BAY 1-1	11/20/06									340				1.1		
LAKEWATCH	COL-PON BAY 1-1	2/21/07									320				1.6		
LAKEWATCH	COL-PON BAY 1-1	5/29/07									380				1.6		
LAKEWATCH	COL-PON BAY 1-1	8/21/07									290				1.4		
LAKEWATCH	COL-PON BAY 1-1	11/30/07									460				1.2		
LAKEWATCH	COL-PON BAY 1-1	2/29/08									380				1.2		
LAKEWATCH	COL-PON BAY 1-1	5/29/08									380				1.5		
LAKEWATCH	COL-PON BAY 1-1	8/26/08									400				1.4		
LAKEWATCH	COL-PON BAY 1-1	11/25/08									340				2.2		
LAKEWATCH	COL-PON BAY 1-1	2/20/09									420				1.1		
LAKEWATCH	COL-PON BAY 1-1	6/11/09									430				1.0		
LAKEWATCH	COL-PON BAY 1-1	9/14/09									530				4.1		
LAKEWATCH	COL-PON BAY 1-1	12/9/09									440				1.7		
LAKEWATCH	COL-PON BAY 1-1	3/23/10									350				1.4		
LAKEWATCH	COL-PON BAY 1-1	6/15/10									380				1.2		
LAKEWATCH	COL-PON BAY 1-1	9/23/10									460				8.0		
LAKEWATCH	COL-PON BAY 1-1	12/16/10									340				1.1		
LAKEWATCH	COL-PON BAY 1-1	3/31/11									480				6.0		
LAKEWATCH	COL-PON BAY 1-1	6/24/11									410				1.1		
IAKEWATCH	COL PON BAY 1-1	9/14/11									200				00		

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Sample Date	pH (s.u.)	ر°C)	Diss. O ₂ (mg/L)	Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOX (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (mg/L)
IAKEWATCH	COL BON BAY 1.3	1/25/01									120		т	-	10		
LANEWALCE	COL-PON BAT 1-2	10/57/4									450				7:1		
LAKEWATCH	COL-PON BAY 1-2	6/25/01									420						
LAKEWATCH	COL-PON BAY 1-2	8/24/01									300				1.3		
LAKEWATCH	COL-PON BAY 1-2	3/20/02									430				2.3		
LAKEWATCH	COL-PON BAY 1-2	7/29/02									530						
LAKEWATCH	COL-PON BAY 1-2	4/2/03									400						
LAKEWATCH	COL-PON BAY 1-2	7/29/03									380						
LAKEWATCH	COL-PON BAY 1-2	10/9/03									450						
LAKEWATCH	COL-PON BAY 1-2	12/12/03									250						
LAKEWATCH	COL-PON BAY 1-2	12/22/03									210						
LAKEWATCH	COL-PON BAY 1-2	2/12/04									370						
LAKEWATCH	COL-PON BAY 1-2	4/7/04									290						
LAKEWATCH	COL-PON BAY 1-2	6/9/04									230						
LAKEWATCH	COL-PON BAY 1-2	8/31/04									520						
LAKEWATCH	COL-PON BAY 1-2	11/19/04									290						
LAKEWATCH	COL-PON BAY 1-2	2/23/05									330						
LAKEWATCH	COL-PON BAY 1-2	5/18/05									330						
LAKEWATCH	COL-PON BAY 1-2	8/16/05									420						
LAKEWATCH	COL-PON BAY 1-2	11/30/05									450						
LAKEWATCH	COL-PON BAY 1-2	2/24/06									929						
LAKEWATCH	COL-PON BAY 1-2	5/26/06									420						
LAKEWATCH	COL-PON BAY 1-2	90/2/6									400						
LAKEWATCH	COL-PON BAY 1-2	11/20/06									340						
LAKEWATCH	COL-PON BAY 1-2	2/21/07									330						
LAKEWATCH	COL-PON BAY 1-2	5/29/07									430						
LAKEWATCH	COL-PON BAY 1-2	8/21/07									220						
LAKEWATCH	COL-PON BAY 1-2	11/30/07									480						
LAKEWATCH	COL-PON BAY 1-2	2/29/08									360						
LAKEWATCH	COL-PON BAY 1-2	5/29/08									380						
LAKEWATCH	COL-PON BAY 1-2	8/26/08									390						
LAKEWATCH	COL-PON BAY 1-2	11/25/08									410						
LAKEWATCH	COL-PON BAY 1-2	2/20/09									490						
LAKEWATCH	COL-PON BAY 1-2	6/11/09									410						
LAKEWATCH	COL-PON BAY 1-2	9/14/09									260						
LAKEWATCH	COL-PON BAY 1-2	12/9/09									450						
LAKEWATCH	COL-PON BAY 1-2	3/23/10									380						
LAKEWATCH	COL-PON BAY 1-2	6/15/10									480						
LAKEWATCH	COL-PON BAY 1-2	9/23/10									490						
LAKEWATCH	COL-PON BAY 1-2	12/16/10									340						
LAKEWATCH	COL-PON BAY 1-2	3/31/11									460						
LAKEWATCH	COL-PON BAY 1-2	6/24/11									340						
- AVENATOR	0.1740.100	0/11/11									900						

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Sample Date	рн (s.u.)	(C)	DISS. U ₂ (mg/L)	Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOX (µg/L)	(µg/L)	Total N (µg/L)	Total P (µg/L)	Cnyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (mg/L)
LAKEWATCH	COL-PON BAY 1-3	4/25/01									420				1.2		
LAKEWATCH	COL-PON BAY 1-3	6/25/01									390						
LAKEWATCH	COL-PON BAY 1-3	8/24/01									400				1.3		
LAKEWATCH	COL-PON BAY 1-3	3/20/02									440				2.3		
LAKEWATCH	COL-PON BAY 1-3	7/29/02									550						
LAKEWATCH	COL-PON BAY 1-3	4/2/03									420						
LAKEWATCH	COL-PON BAY 1-3	7/29/03									430						
LAKEWATCH	COL-PON BAY 1-3	10/9/03									520						
LAKEWATCH	COL-PON BAY 1-3	12/12/03									300						
LAKEWATCH	COL-PON BAY 1-3	12/22/03									240						
LAKEWATCH	COL-PON BAY 1-3	2/12/04									370						
LAKEWATCH	COL-PON BAY 1-3	4/7/04									180						
LAKEWATCH	COL-PON BAY 1-3	6/9/04									230						
LAKEWATCH	COL-PON BAY 1-3	8/31/04									520						
LAKEWATCH	COL-PON BAY 1-3	11/19/04									300						
LAKEWATCH	COL-PON BAY 1-3	2/23/05									330						
LAKEWATCH	COL-PON BAY 1-3	5/18/05									340						
LAKEWATCH	COL-PON BAY 1-3	8/16/05									410						
LAKEWATCH	COL-PON BAY 1-3	11/30/05									470						
LAKEWATCH	COL-PON BAY 1-3	2/24/06									200						
LAKEWATCH	COL-PON BAY 1-3	9/56/06									440						
LAKEWATCH	COL-PON BAY 1-3	90/2/6									410						
LAKEWATCH	COL-PON BAY 1-3	11/20/06									340						
LAKEWATCH	COL-PON BAY 1-3	2/21/07									320						
LAKEWATCH	COL-PON BAY 1-3	5/29/07									420						
LAKEWATCH	COL-PON BAY 1-3	8/21/07									520						
LAKEWATCH	COL-PON BAY 1-3	11/30/07									470						
LAKEWATCH	COL-PON BAY 1-3	2/29/08									360						
LAKEWATCH	COL-PON BAY 1-3	5/29/08									360						
LAKEWATCH	COL-PON BAY 1-3	8/26/08									320						
LAKEWATCH	COL-PON BAY 1-3	11/25/08									300						
LAKEWATCH	COL-PON BAY 1-3	2/20/09									280						
LAKEWATCH	COL-PON BAY 1-3	6/11/09									380						
LAKEWATCH	COL-PON BAY 1-3	9/14/09									530						
LAKEWATCH	COL-PON BAY 1-3	12/9/09									470						
LAKEWATCH	COL-PON BAY 1-3	3/23/10									380						
LAKEWATCH	COL-PON BAY 1-3	6/15/10									410						
LAKEWATCH	COL-PON BAY 1-3	9/23/10									530						
LAKEWATCH	COL-PON BAY 1-3	12/16/10									350						
LAKEWATCH	COL-PON BAY 1-3	3/31/11									520						
LAKEWATCH	COL-PON BAY 1-3	6/24/11									320						

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Sample Date	PH (s.u.)	Temp.	Diss. O ₂ (ma/L)	Cond. (umho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOX (ug/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (mg/L)
LAKEWATCH	COL-PON BAY 2-1	2/12/04	(11)	6	1 .6	,	644		1.64	î b	190) in	6	Т	_		6
LAKEWATCH	COL-PON BAY 2-1	4/7/04									220				1.2		
LAKEWATCH	COL-PON BAY 2-1	6/9/04									200				1.6		
LAKEWATCH	COL-PON BAY 2-1	8/31/04									410				1.6		
LAKEWATCH	COL-PON BAY 2-1	11/19/04									250				2.6		
LAKEWATCH	COL-PON BAY 2-1	2/23/05									290				1.1		
LAKEWATCH	COL-PON BAY 2-1	5/18/05									320				2.0		
LAKEWATCH	COL-PON BAY 2-1	8/16/05									310				1.4		
LAKEWATCH	COL-PON BAY 2-1	11/30/05									430				6.0		
LAKEWATCH	COL-PON BAY 2-1	2/24/06									340				1.4		
LAKEWATCH	COL-PON BAY 2-1	5/26/06									230				2.2		
LAKEWATCH	COL-PON BAY 2-1	90/2/6									390				1.4		
LAKEWATCH	COL-PON BAY 2-1	11/20/06									310				1.4		
LAKEWATCH	COL-PON BAY 2-1	2/21/07									260				1.1		
LAKEWATCH	COL-PON BAY 2-1	5/29/07									230				2.2		
LAKEWATCH	COL-PON BAY 2-1	8/21/07									460				1.7		
LAKEWATCH	COL-PON BAY 2-1	11/30/07									430				1.3		
LAKEWATCH	COL-PON BAY 2-1	2/29/08									250				1.2		
LAKEWATCH	COL-PON BAY 2-1	5/29/08									290				2.3		
LAKEWATCH	COL-PON BAY 2-1	8/26/08									400				1.2		
LAKEWATCH	COL-PON BAY 2-1	11/25/08									250				1.6		
LAKEWATCH	COL-PON BAY 2-1	2/20/09									380				8.0		
LAKEWATCH	COL-PON BAY 2-1	6/11/09									340				4.1		
LAKEWATCH	COL-PON BAY 2-1	9/14/09									450				1.2		
LAKEWATCH	COL-PON BAY 2-1	12/9/09									430				1.6		
LAKEWATCH	COL-PON BAY 2-1	3/23/10									320				6.0		
LAKEWATCH	COL-PON BAY 2-1	6/15/10									260				1.9		
LAKEWATCH	COL-PON BAY 2-1	9/23/10									430				6.0		
LAKEWATCH	COL-PON BAY 2-1	12/16/10									350				9.0		
LAKEWATCH	COL-PON BAY 2-1	3/31/11									380				9.0		
LAKEWATCH	COL-PON BAY 2-1	6/24/11									370				1.2		
LAKEWATCH	COL-PON BAY 2-1	9/14/11									510				6.0		
AKEWATCH	CVA BON BAY 2-4	12/20/11									000				, ,		

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Sample Date	pH (s.u.)	Temp. (°C)	Diss. O ₂ (mg/L)	Cond. (µmho/cm)	Salinity (ppt)	Ammonia N (µg/L)	NOx (µg/L)	TKN (µg/L)	Total N (µg/L)	Total P (µg/L)	Chyl-a (mg/m³)	Turbidity (NTU)	Secchi Depth (m)	Entero (cfu/100 mL)	TOC (mg/L)
LAKEWATCH	COL-PON BAY 2-2	2/12/04									140						
LAKEWATCH	COL-PON BAY 2-2	4/7/04									190						
LAKEWATCH	COL-PON BAY 2-2	6/9/04									270						
LAKEWATCH	COL-PON BAY 2-2	8/31/04									440						
LAKEWATCH	COL-PON BAY 2-2	11/19/04									210						
LAKEWATCH	COL-PON BAY 2-2	2/23/05									300						
LAKEWATCH	COL-PON BAY 2-2	5/18/05									290						
LAKEWATCH	COL-PON BAY 2-2	8/16/05									330						
LAKEWATCH	COL-PON BAY 2-2	11/30/05									390						
LAKEWATCH	COL-PON BAY 2-2	2/24/06									340						
LAKEWATCH	COL-PON BAY 2-2	5/26/06									220						
LAKEWATCH	COL-PON BAY 2-2	90/2/6									420						
LAKEWATCH	COL-PON BAY 2-2	11/20/06									280						
LAKEWATCH	COL-PON BAY 2-2	2/21/07									270						
LAKEWATCH	COL-PON BAY 2-2	5/29/07									280						
LAKEWATCH	COL-PON BAY 2-2	8/21/07									460						
LAKEWATCH	COL-PON BAY 2-2	11/30/07									440						
LAKEWATCH	COL-PON BAY 2-2	2/29/08									250						
LAKEWATCH	COL-PON BAY 2-2	5/29/08									290						
LAKEWATCH	COL-PON BAY 2-2	8/26/08									300						
LAKEWATCH	COL-PON BAY 2-2	11/25/08									260						
LAKEWATCH	COL-PON BAY 2-2	2/20/09									370						
LAKEWATCH	COL-PON BAY 2-2	6/11/09									360						
LAKEWATCH	COL-PON BAY 2-2	9/14/09									450						
LAKEWATCH	COL-PON BAY 2-2	12/9/09									430						
LAKEWATCH	COL-PON BAY 2-2	3/23/10									320						
LAKEWATCH	COL-PON BAY 2-2	6/15/10									270						
LAKEWATCH	COL-PON BAY 2-2	9/23/10									400						
LAKEWATCH	COL-PON BAY 2-2	12/16/10									420						
LAKEWATCH	COL-PON BAY 2-2	3/31/11									350						
LAKEWATCH	COL-PON BAY 2-2	6/24/11									330						
LAKEWATCH	COL-PON BAY 2-2	9/14/11									470						
LAKEWATCH	COL-PON BAY 2-2	12/20/11									240						

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Date	(s.u.)	(°C)	(mg/L)	(µmho/cm)	(ppt)	(µg/L)	(µg/L)	(hg/L)	(µg/L)	(µg/L)	(mg/m³)	(NTU)	Depth (m)	cfu/100 mL)	(mg/L)
LAKEWATCH	COL-PON BAY 2-3	2/12/04									190						
LAKEWATCH	COL-PON BAY 2-3	4/7/04									100						
LAKEWATCH	COL-PON BAY 2-3	6/9/04									270						
LAKEWATCH	COL-PON BAY 2-3	8/31/04									440						
LAKEWATCH	COL-PON BAY 2-3	11/19/04									230	1					
LAKEWAICH	COL-PON BAY 2-3	2/23/05									900						
LAKEWATCH	COL-PON BAY 2-3	8/16/05									330						
LAKEWATCH	COL-PON BAY 2-3	11/30/05									440						
LAKEWATCH	COL-PON BAY 2-3	2/24/06									340						
LAKEWATCH	COL-PON BAY 2-3	5/26/06									200						
LAKEWATCH	COL-PON BAY 2-3	90/2/6									350						
LAKEWATCH	COL-PON BAY 2-3	11/20/06									290						
LAKEWATCH	COL-PON BAY 2-3	2/21/07									250						
LAKEWATCH	COL-PON BAY 2-3	5/29/07									230						
LAKEWATCH	COL-PON BAY 2-3	8/21/07									380						
LAKEWATCH	COL-PON BAY 2-3	11/30/07									440						
LAKEWATCH	COL-PON BAY 2-3	2/29/08									260						
LAKEWATCH	COL-PON BAY 2-3	2/29/08									340						
LAKEWATCH	COL-PON BAY 2-3	8/26/08									350						
LAKEWAICH	COL-PON BAY 2-3	80/92/11									790						
LAKEWAICH	COL-PON BAY 2-3	60/02/2									370						
LAKEWAICH	COL-PON BAY 2-3	6/11/09									370						
LAKEWATCH	COL-PON BAY 2-3	9/14/09									430						
LAKEWATCH	COL-PON BAY 2-3	3/23/10									320						
LAKEWATCH	COL-PON BAY 2-3	6/15/10									250						
AKEWATCH	COL-PON BAY 2-3	9/23/10									420						
LAKEWATCH	COL-PON BAY 2-3	12/16/10									380						
LAKEWATCH	COL-PON BAY 2-3	3/31/11									390						
LAKEWATCH	COL-PON BAY 2-3	6/24/11									330						
LAKEWATCH	COL-PON BAY 2-3	9/14/11									420						
LAKEWATCH	COL-PON BAY 2-3	12/20/11									270						
FDEP. South Dist.	EVRGWC0031FTM	1/17/06	7.75	18.70	10.2	50.582		45	12	840	852			29.0	0.5		
FDEP. South Dist.	EVRGWC0031FTM	6/14/06	7.85	27.68	2 2	55 306		110	1 4	1200	1214			24.0	10		
FDEP, South Dist.	EVRGWC0031FTM	8/9/06	7.73	28.61	7.4	48.246		2	:	800	800			11.9	8.0		
FDEP, South Dist.	EVRGWC0031FTM	2/22/10	7.86	17.35	8.5	52,782											
FDEP, South Dist.	EVRGWC0031FTM	4/5/10	7.92	22.70	8.0	49,746											
FDEP, South Dist.	EVRGWC0031FTM	7/7/10	7.94	28.19	4.9	50,496									1.3		
FDEP, South Dist.	EVRGWC0031FTM	10/6/10	7.87	25.53	1.1	50,910									6.0		
					1				:					9 1			
FDEP, South Dist.	EVRGWC0032FTM	1/17/06	7.76	18.42	10.5	50,570		47	11	089	691			5.6	1.3		
FDEP, South Dist.	EVRGWC0032FTM	6/12/06	7.77	28.31	5.0	54,961		140	12	820	862			5.0	1.1		
FDEP, South Dist.	EVRGWC003ZFTM	10/4/06	7.98	28.38	6.9	44,998								3.5	3.5		
FDEP. South Dist.	EVRGWC0033FTM	1/17/06	7.80	18.30	10.1	50.616		29	10	740	750			17.7	0.8		
FDEP, South Dist.	EVRGWC0033FTM	6/12/06	7.83	28.00	5.0	55,080		110		790	790				1.0		
FDEP, South Dist.	EVRGWC0033FTM	10/4/06	76.7	28.19	6.2	45,847								3.2	3.5		
FDEP, South Dist.	EVRGWC0034FTM	1/17/06	92'2	18.24	10.1	20,085		54	16	720	736			2.0	1.4		
FDEP, South Dist.	EVRGWC0034FTM	10/4/06	7.92	28.38	5.7	42,744				260	260			0.2	4.5		
FDEP, South Dist.	EVRGWC0035FTM	1/17/06	69'2	19.08	9.4	49.593		06	41	770	811			1.9			
FDEP South Dist	EVEGWC0035FTM	6/12/06	7.72	28.90	000	54 804		180	14	1000	1014			2.5	4		
FDEP, South Dist.	EVRGWC0035FTM	10/4/06	7.84	28.51	5.5	40,283		2	1	640	640	23		3.0	2.5		
FDEP, South Dist.	EVRGWC0036FTM	1/17/06	7.78	19.05	7.9	50,227				089	089			1.1			
FDEP, South Dist.	EVRGWC0036FTM	6/12/06	7.77	29.42	4.2	54,425		110	31			6			2.5		
								•									

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

Collecting Agency	Station ID	Date	(s.u.)	(၁)	(mg/L)	(hmho/cm)	(bbt)	(µg/L)	(hg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/m³)	(NTU)	Seconi Depth (m)	cfu/100 mL)	(mg/L)
FDEP, South Dist.	EVRGWC0037FTM	1/17/06	7.86	18.49	8.6	50,338											
FDEP, South Dist.	EVRGWC0037FTM	6/12/06	7.91	28.46	5.6	54,388		120	14	1100	1114			5.2	1.0		
FDEP, South Dist.	EVRGWC0037FTM	10/4/06	7.94	28.54	6.1	46.032								3.1	3.5		
FDEP, South Dist.	EVRGWC0090FTM	2/22/10	7.89	17.50	8.5	52,840											
FDEP, South Dist.	EVRGWC0090FTM	4/5/10	7.80	23.96	7.3	48,097											
FDEP, South Dist.	EVRGWC0090FTM	7/7/10	8.00	29.03	0.9	49,663											
FDEP, South Dist.	EVRGWC0090FTM	10/6/10	7.90	25.84	1.9	51,091									8.0		
4	7000000	0/0/14		90.00	6 1	00203				900							
7 1	G1SD0001	9/8/14		30.20	n 0	50,790			ç	004							
705	G1SD0001	2/10/15		10.02	9.0	51,160			707								
בי נו	9190001	21/3/13		20.02	7 2	52,030			2								
7 1	G1SD0001	0/3/13	7 05	20.70	0.7	32,690			77	700	707						
בים הים	G18D0001	11/17/15	08.7	25.71	y. 4.	51,234			4 2	460	494						
בים בים	G13D0001	2/16/16	50.0	19.62	- 4	01,010			ò	8	180						
TOFF	G1SD0001	01/01/7	8.03	18.02	0.7	49,980			;								
FDEP	G1SD0001	4/26/16	7.89	26.30	8.0	51,958			Ξ								
FDEP	G1SD0001	8/30/16	7.99	29.43	6.4	50,717											
FDEP	G1SD0001	11/16/16	7.85	22.53		53,498			16								
FDEP	G1SD0001	2/23/17	7.96	22.71		52,183			12	410	422						
FDEP	G1SD0001	5/31/17	8.01	30.71		56,089			13	410	423						
FDEP	G1SD0001	9/26/17	7.86	30.00		47,100			19	420	439	38	6.5				
FDEP	G1SD0001	11/29/17	7.60	23.30		51,300			12	300	312	59	1.5				
FDEP	G1SD0001	2/21/18	7.94	24.60		52,700			14	310	324	38	1.9				
FDEP	G1SD0001	5/1/18	8.01	25.80		54,500			11	440	451	38	1.3				
FDEP	G1SD0001	8/28/18	7.85	29.25		49,241			18	450	468	47	2.6				
FDEP	G1SD0001	12/13/18	7.84	19.10		52,640			18	510	528	62	2.9				
FDEP	G1SD0001	2/28/19	7.82	24.86		51,740			18	290	308	38	2.1				
FDEP	G1SD0001	5/1/19	7.91	25.83		52,146			တ္	290	296	56	1.5				
FDEP	G1SD0001	9/24/19	8.06	27.42		52,546			4 (290	294	22	8. r	0.0			
מים ני	GISDOOG	61/07/13	7.90	22.10		52, 120			- 5	440	157	600	0.0	4.0			
ים הים הים הים	G13D0001	2/16/20	7.93	24.00		31,470			0 7	5 6	420	32	7. 0	7.4.0			
רטבר	GISDOWI	9/10/20	98:1	20.12		01+,0+			Ŧ	000	174	67	25	ŝ			
ENEP	G1SD0003	9/8/14		30.46	5.9	51 440											
	6480003	12/11/14		18.57	0 00	51,410											
ENED	6480003	3/19/15		25.64	6.6	50.210											
	6480003	6/3/15		28.45	5.7	52.690				1900	1900						
10.E	G1SD0003	9/2/15	8.01	30.06	. 22	50.252											
9.6	G1SD0003	11/17/15	7.88	25.90	20.00	51.692			67								
FDEP	G1SD0003	2/16/16	8.04	18.09	7.5	49,610			2								
FDEP	G1SD0003	4/26/16	7.94	26.49	6.5	51,916											
FDEP	G1SD0003	8/30/16	8.06	29.25	5.3	49,834				440	440						
FDEP	G1SD0003	11/16/16	7.99	22.86		53,453				430	430						
FDEP	G1SD0003	2/23/17	8.01	22.50		52,248											
FDEP	G1SD0003	5/31/17	8.01	30.73		56,389											
FDEP	G1SD0003	11/29/17	7.88	23.40		51,400			4	300	304	33	2.7				
FDEP	G1SD0003	2/21/18	7.94	24.50		52,600			4	390	394	45	5.3				
FDEP	G1SD0003	5/1/18	7.37	28.60		54,400			4	350	354	35	2.0				
FDEP	G1SD0003	8/28/18	7.90	29.41		50,576			4	400	404	39	1.8				
FDEP	G1SD0003	12/13/18	7.86	19.38		52,670			10	320	330	36	2.8				
FDEP	G1SD0003	2/28/19	7.86	24.97		51,660			4	490	494	47	0.9				
FDEP	G1SD0003	5/1/19	7.92	26.46		52,660			4	290	294	32	2.3				
FDEP	G1SD0003	9/24/19	8.08	27.41		52,253			4	340	344	23	1.7	1.2			
FDEP	G1SD0003	11/20/19	7.99	22.30		51,860			4	430	434	35	7.1	4.2			
FDEP	G1SD0003	2/18/20	7.98	23.79		51,468			4	410	414	31	1.7	7.2			
FDEP	G1SD0003	9/16/20	7.87	29.01		47.707			19	470	489	25	7.3	14.0			
			1	70,70		777								1			

Historical Water Quality Data for Waterbodies Adjacent to Marco Island

gency	Sample	e PH	Temp.	Diss. O ₂	Cond.	Salinity	Ammonia N	Š	Ϋ́	Total N	Total P	Chyl-a	Turbidity	Secchi	Entero	100
		_	(°C)		(mp/ohml)	(ppt)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(mg/m³)	(NTN)	Depth (m)	Depth (m) (cfu/100 mL)	(mg/L)
	71/179 9/27/17	17 7.39	30.70		35,100			4	170	774	100	17.0				
FDEP G1SD0006	11/28/17	17 7.79	23.60		50,600			4	510	514	09	7.4				
FDEP G1SD0006	11/28/17	.17						4	530	534	59	7.2				
FDEP G1SD0006	2/22/18	18 7.81	25.40		51,900			7	470	477	99	9.9				
FDEP G1SD0006	9000 5/2/18	8 7.83	25.40		56,100			4	480	484	29	5.1				
FDEP G1SD0006	9000 5/2/18	8 7.83	25.40		56,100			4	460	464	28	4.6				
FDEP G1SD0006	8/29/18	18 7.72	28.90		44,671			12	620	632	73	5.3				
FDEP G1SD0006	8/29/18	18						12	009	612	73	5.0				
FDEP G1SD0006	12/13/18	7.78	18.86		53,240			41	390	404	54	2.4				
FDEP G1SD0006	12/13/18	7.78	18.86		53,240			41	370	384	20	2.1				
FDEP G1SD0006	2/27/19	19 7.83	25.90		50,914			20	470	490	44	2.4				
FDEP G1SD0006	2/27/19	19 7.83	25.90		50,914			22	490	512	39	6.0				
FDEP G1SD0006	90006 4/30/19	19 7.53	27.44		53,580			6	510	519	90	2.7				
FDEP G1SD0006	90006 4/30/19	19 7.53	27.44		53,580			6	510	519	52	2.6				
FDEP G1SD0006	90000	19 8.05	27.88		50,052			4	420	424	39	5.3	6.3			
FDEP G1SD0006	90000 9/24/19	19 8.05	27.88		50,052			4	410	414	40	6.9	6.7			
FDEP G1SD0006	11/20/19	7.83	22.20		52,000			4	460	464	42	5.1	5.0			
FDEP G1SD0006	11/20/19	.19						4	510	514	42	4.5	5.4			
FDEP G1SD0006	2/18/20	20 7.99	23.91		51,172			12	520	532	46	2.0	7.1			
FDEP G1SD0006	2/18/20	50						10	490	200	47	1.8	7.2			
FDEP G1SD0006	90000	20 7.67	28.76		34,249			31	630	199	24	5.3	10.0			
FDEP G1SD0006	90000 9/16/20	50						30	630	099	22	5.5	11.0			
FDEP G1SD0006	11/18/20	7.81	23.73		47,672			6	400	409	43	5.7	12.0			

A-6: Characteristics of Reuse Irrigation Produced by Marco Island

D-4-			Re	use		
Date	Flow - MG	PO4 mg/L	NO3 mg/L	TKN mg/L	Total N	TSS mg/L
1/4/12	1.69	4.74	6.44	0.97	7.41	0.6
1/11/12	1.54	5.00	9.04	1.25	10.29	0.6
1/18/12	1.81	4.49	14.10	1.36	15.46	0.6
1/25/12	1.98	4.97	8.20	1.13	9.33	0.6
2/1/12	1.66	4.55	5.84	1.06	6.90	0.6
2/8/12	2.04	4.95	7.78	1.14	8.92	0.6
2/15/12	2.16	4.25	7.25	1.17	8.42	0.6
2/22/12	2.14	4.21	5.43	1.35	6.78	0.6
2/29/12	1.39	4.22	5.04	1.29	6.33	0.6
3/7/12	2.40	5.08	6.93	1.37	8.30	0.6
3/14/12	2.31	4.53	6.51	1.12	7.63	0.6
3/21/12	2.24	4.04	5.42	1.03	6.45	0.6
3/28/12	2.37	4.53	5.83	1.01	6.84	0.6
4/4/12	2.56	4.16	6.40	1.32	7.72	0.6
4/11/12	2.30	5.05	5.65	1.06	6.71	0.6
4/18/12	2.10	3.94	6.39	1.12	7.51	0.6
4/25/12	1.64	5.31	10.70	1.30	12.00	0.6
5/2/12	1.40	4.20	7.04	1.11	8.15	0.6
5/9/12	1.93	3.12	7.25	0.99	8.24	0.7
5/16/12	2.05	3.87	10.50	0.66	11.16	0.6
5/23/12	1.90	2.60	7.71	0.96	8.67	0.9
5/30/12	1.88	2.41	4.68	1.02	5.70	0.6
6/6/12	1.86	2.31	8.92	1.47	10.39	0.6
6/13/12	1.83	2.73	8.79	1.05	9.84	0.6
6/20/12	1.77	2.63	8.08	1.22	9.30	0.6
6/27/12	1.41	3.02	13.50	0.77	14.27	0.6
7/4/12	2.23	2.66	10.70	0.93	11.63	0.6
7/11/12	1.94	3.04	10.50	0.93	11.43	0.6
7/18/12	1.90	3.87	17.80	0.93	18.73	0.8
7/25/12	1.54	3.11	13.40	1.15	14.55	0.6
8/1/12	2.42	2.46	9.22	1.04	10.26	0.6
8/8/12	2.02	2.82	12.60	1.30	13.90	0.6
8/15/12	1.50	3.64	19.20	1.54	20.74	0.6
8/22/12	0.91	3.34	16.80	1.28	18.08	0.6
8/29/12	1.32	2.21	14.10	1.18	15.28	0.6
9/5/12	1.10	2.69	11.50	0.78	12.28	0.6
9/12/12	1.06	2.30	15.60	0.44	16.04	0.6
9/19/12	1.08	2.40	15.80	0.57	16.37	0.6
9/26/12	1.23	2.80	13.70	0.45	14.15	0.6
10/3/12	0.84	2.40	12.80	0.70	13.50	0.6
10/10/12	1.14	2.30	10.60	0.97	11.57	0.6
10/17/12	1.38	2.80	11.60	0.88	12.48	0.6
10/1//12	1.60	2.91	12.00	0.80	12.80	0.6
10/31/12	1.78	3.39	11.00	0.76	11.76	0.6
11/7/12	2.58	3.02	10.30	1.00	11.30	1.2
11/14/12	2.30	3.12	7.39	0.99	8.38	0.6
11/21/12	2.14	1.23	7.27	1.23	8.50	0.6
11/21/12	2.51	2.59	4.11	0.98	5.09	0.6
12/5/12	2.28	3.27	5.14	0.92	6.06	0.6
12/3/12	1.20	3.60	5.61	1.14	6.75	0.6

			Re	use		
Date	Flow - MG	PO4 mg/L	NO3 mg/L	TKN mg/L	Total N	TSS mg/L
12/19/12	1.67	3.77	4.76	1.05	5.81	0.6
12/26/12	1.76	3.69	4.07	0.95	5.02	0.6
1/2/13	2.32	4.32	6.82	0.98	7.80	0.6
1/9/13	1.81	5.18	9.54	1.11	10.65	0.6
1/16/13	1.76	4.65	11.30	1.11	12.41	0.6
1/23/13	1.84	4.23	8.65	1.02	9.67	0.6
1/30/13	2.31	4.15	6.15	1.06	7.21	0.6
2/6/13	2.21	3.95	5.15	1.43	6.58	0.6
2/13/13	2.28	4.22	5.74	1.03	6.77	0.6
2/20/13	1.61	3.75	8.14	1.16	9.30	0.6
2/27/13	2.24	4.83	6.85	1.05	7.90	0.6
3/6/13	2.42	4.25	7.23	1.29	8.52	0.6
3/13/13	2.71	4.32	6.15	1.08	7.23	0.6
3/20/13	1.61	4.66	7.22	1.24	8.46	0.6
3/27/13	2.66	4.32	7.47	0.98	8.45	0.6
4/3/13	2.54	3.53	5.20	0.84	6.04	0.6
4/10/13	1.87	4.12	5.33	0.94	6.27	0.6
4/17/13	2.22	4.76	5.99	0.98	6.97	0.6
4/24/13	1.51	4.31	5.77	1.06	6.83	0.6
5/1/13	1.93	2.73	4.06	0.87	4.93	0.6
5/8/13	2.46	3.19	5.27	0.94	6.21	0.6
5/15/13	2.17	2.30	4.22	0.89	5.11	0.6
5/22/13	2.29	2.32	4.79	0.87	5.66	0.6
5/29/13	1.76	3.18	4.79	0.78	5.57	0.6
6/5/13	0.57	2.60	11.10	0.80	11.90	0.6
6/12/13	0.96	2.76	8.91	0.93	9.84	0.6
6/19/13	1.22	3.64	16.00	1.22	17.22	0.6
6/26/13	0.58	2.45	5.69	0.98	6.67	0.6
7/3/13	1.02	1.35	2.28	0.99	3.27	0.6
7/10/13	0.81	2.74	5.42	1.18	6.60	0.6
7/17/13	1.07	2.64	8.03	1.13	9.16	0.6
7/24/13	1.64	3.84	9.69	0.95	10.64	0.6
7/31/13	1.16	3.62	8.17	0.95	9.12	0.6
8/7/13	1.40	3.34	7.40	0.97	8.37	0.6
8/14/13	1.54	3.53	5.90	0.79	6.69	0.6
8/21/13	0.81	3.28	9.13	0.84	9.97	0.6
8/28/13	0.70	2.63	6.45	0.98	7.43	0.6
9/4/13	1.28	3.22	5.71	0.89	6.60	0.6
9/11/13	0.61	2.36	8.45	1.00	9.45	0.6
9/18/13	1.11	3.08	9.22	1.07	10.29	0.6
9/25/13	0.58	3.40	9.28	1.00	10.28	0.6
10/2/13	0.54	3.03	9.98	1.11	11.09	0.6
10/9/13	1.26	3.16	8.60	1.05	9.65	0.6
10/16/13	2.53	3.04	6.23	0.94	7.17	0.6
10/23/13	2.01	4.16	8.92	1.15	10.07	0.6
10/20/13	2.35	2.24	3.24	1.33	4.57	0.6
11/6/13	2.44	2.45	5.06	1.03	6.09	0.6
11/13/13	2.41	2.58	4.01	0.85	4.86	0.6
11/20/13	2.27	3.61	7.87	0.96	8.83	0.6
11/27/13	1.92	4.41	8.84	1.16	10.00	0.6

			Re	use		
Date	Flow - MG	PO4 mg/L	NO3 mg/L	TKN mg/L	Total N	TSS mg/L
12/4/13	1.84	4.57	6.10	1.13	7.23	0.6
12/11/13	2.27	3.15	6.18	0.92	7.10	0.6
12/18/13	2.01	4.15	10.40	0.88	11.28	0.6
12/23/13	2.30	3.76	8.92	0.81	9.73	0.6
12/30/13	1.69	4.03	5.66	0.92	6.58	0.6
1/8/14	1.50	6.16	18.80	1.03	19.83	0.6
1/15/14	2.30	4.53	6.25	1.20	7.45	0.6
1/22/14	2.31	4.53	6.86	1.11	7.97	0.6
1/29/14	1.68	4.76	9.72	1.16	10.88	0.6
2/5/14	1.61	4.00	8.56	1.29	9.85	0.6
2/12/14	1.37	4.31	7.45	1.15	8.60	0.6
2/19/14	2.73	5.93	11.30	1.19	12.49	0.6
2/26/14	2.26	4.02	6.62	1.09	7.71	0.6
3/5/14	2.43	4.00	6.23	1.04	7.27	0.6
3/12/14	1.29	4.00	6.23	1.27	7.50	0.6
3/19/14	1.17	6.06	8.95	1.04	9.99	0.6
3/26/14	1.73	3.71	6.86	1.00	7.86	0.6
4/2/14	2.24	3.76	7.10	1.00	8.10	0.6
4/9/14	2.06	4.34	7.10	0.87	7.97	0.6
4/16/14	2.42	6.66	11.80	1.24	13.04	0.6
4/23/14	2.21	4.16	5.65	1.03	6.68	0.6
4/30/14	1.95	4.20	5.65	0.74	6.39	0.6
5/7/14	1.77	3.31	3.45	0.98	4.43	0.6
5/14/14	1.89	4.80	5.53	0.58	6.11	0.6
5/21/14	2.24	2.40	2.75	0.53	3.28	0.6
5/28/14	1.93	3.20	3.66	5.70	9.36	0.6
6/4/14	1.44	3.61	13.60	0.86	14.46	0.6
6/11/14	2.32	2.47	11.90	0.80	12.70	0.6
6/18/14	1.47	3.72	12.80	0.80	13.60	0.6
6/25/14	1.78	3.41	8.75	0.71	9.46	0.6
7/2/14	1.84	2.57	7.06	0.74	7.80	0.6
7/9/14	1.39	3.07	7.11	0.51	7.62	0.6
7/16/14	1.44	3.13	8.16	0.43	8.59	0.6
7/23/14	2.00	3.53	8.54	0.68	9.22	0.6
7/30/14	1.91	3.18	9.70	0.50	10.20	0.6
8/6/14	1.03	1.89	7.64	0.52	8.16	0.6
8/13/14	1.25	2.74	8.85	0.65	9.50	0.6
8/20/14	1.35	3.98	9.79	1.22	11.01	0.6
8/27/14	1.62	5.03	18.80	0.87	19.67	0.6
9/3/14	0.82	2.26	6.92	0.75	7.67	0.6
9/10/14	1.48	2.65	9.54	0.78	10.32	0.6
9/17/14	1.39	2.61	11.60	0.74	12.34	0.6
9/24/14	0.92	2.56	13.20	0.59	13.79	0.6
10/1/14	0.75	2.98	13.60	1.02	14.62	0.7
10/8/14	1.67	2.88	12.70	0.81	13.51	0.6
10/15/14	1.52	3.28	9.87	0.83	10.70	0.7
10/22/14	1.82	3.28	10.30	0.87	11.17	0.6
10/29/14	1.80	3.57	11.20	0.78	11.98	0.6
11/5/14	2.16	3.52	11.40	0.80	12.20	0.6
11/12/14	2.21	4.96	17.30	0.78	18.08	0.6

			Re	use		
Date	Flow - MG	PO4 mg/L	NO3 mg/L	TKN mg/L	Total N	TSS mg/L
11/19/14	1.95	3.12	11.00	0.92	11.92	0.6
11/26/14	1.65	3.67	13.50	0.93	14.43	0.6
12/3/14	1.90	3.75	12.10	0.64	12.74	0.6
12/10/14	1.84	3.84	12.20	0.86	13.06	0.6
12/17/14	1.99	3.41	7.93	0.68	8.61	0.6
12/24/14	2.20	3.63	9.33	1.03	10.36	0.6
12/31/14	2.68	3.68	7.05	1.20	8.25	0.6
1/7/15	2.59	4.55	7.23	0.85	8.08	0.6
1/14/15	2.29	2.53	9.23	0.91	10.14	0.6
1/21/15	2.51	2.38	9.83	0.97	10.80	0.6
1/28/15	2.38	3.50	6.37	1.32	7.69	0.6
2/4/15	2.49	4.34	7.19	0.99	8.18	0.6
2/11/15	2.31	4.61	6.64	0.70	7.34	0.6
2/18/15	2.61	4.13	7.96	1.10	9.06	0.6
2/25/15	2.32	3.96	6.91	1.41	8.32	0.6
3/4/15	1.38	3.87	7.73	0.83	8.56	0.6
3/11/15	2.91	4.09	7.78	1.06	8.84	0.6
3/18/15	2.80	3.04	6.86	1.08	7.94	0.6
3/25/15	3.04	5.92	7.94	0.99	8.93	0.6
4/1/15	2.77	4.65	8.42	1.15	9.57	0.6
4/8/15	2.85	3.95	3.33	0.84	4.17	0.6
4/15/15	2.35	7.16	6.95	0.95	7.90	0.6
4/22/15	2.32	5.25	6.97	1.01	7.98	0.6
4/29/15	2.38	5.60	8.33	0.86	9.19	0.6
5/6/15	1.97	3.59	8.76	0.69	9.45	0.6
5/13/15	1.66	4.08	11.60	1.13	12.73	0.6
5/20/15	1.92	2.80	10.20	1.22	11.42	0.6
5/27/15	1.60	3.43	8.30	0.94	9.24	0.6
6/3/15	1.90	5.03	10.30	1.08	11.38	0.6
6/10/15	2.27	2.48	7.13	0.69	7.82	0.6
6/17/15	2.15	2.09	7.62	1.16	8.78	0.6
6/24/15	2.24	2.53	0.01	0.70	0.71	0.6
7/1/15	2.49	2.57	6.67	1.04	7.71	0.6
7/8/15	1.77	3.10	4.73	0.80	5.53	0.6
7/15/15	1.78	3.22	9.46	1.22	10.68	0.6
7/22/15	1.77	3.14	10.10	0.96	11.06	0.6
7/29/15	1.25	4.04	11.60	0.87	12.47	0.6
8/5/15	1.93	2.96	7.87	0.92	8.79	0.6
8/12/15	2.03	3.08	5.08	6.76	11.84	0.6
8/19/15	2.16	3.01	9.16	0.71	9.87	0.6
8/26/15	1.48	2.86	0.01	0.55	0.56	0.6
9/2/15	1.19	1.99	5.51	0.86	6.37	0.6
9/9/15	0.92	2.32	4.36	0.92	5.28	1.4
9/16/15	1.98	2.93	6.78	0.80	7.58	0.6
9/23/15	0.84	2.57	5.71	0.99	6.70	0.6
9/30/15	0.88	2.20	8.28	0.47	8.75	0.6
10/7/15	1.25	2.79	7.43	0.85	8.28	0.6
10/14/15	1.89	2.41	10.10	1.15	11.25	0.6
10/21/15	1.76	2.91	2.75	1.35	4.10	0.6
10/28/15	1.62	2.87	7.40	0.56	7.96	0.6

Doto			Re	use		
Date	Flow - MG	PO4 mg/L	NO3 mg/L	TKN mg/L	Total N	TSS mg/L
11/4/15	1.79	3.03	9.22	0.54	9.76	0.6
11/11/15	1.27	3.02	5.05	0.79	5.84	0.6
11/18/15	1.88	3.66	8.45	1.39	9.84	0.6
11/25/15	1.39	3.00	10.20	1.33	11.53	0.6
12/2/15	1.72	3.99	8.98	1.13	10.11	0.6
12/9/15	0.95	3.61	12.40	1.52	13.92	0.6
12/16/15	1.34	4.26	9.69	1.06	10.75	0.6
12/23/15	1.65	3.53	6.90	1.40	8.30	0.6
12/30/15	2.06	4.14	6.82	1.05	7.87	0.6
1/6/16	2.21	4.84	7.20	1.17	8.37	0.6
1/13/16	1.06	4.62	6.92	0.99	7.91	0.6
1/20/16	1.02	4.21	7.89	1.13	9.02	0.6
1/27/16	0.80	3.54	7.68	1.27	8.95	0.6
2/3/16	1.03	5.26	11.00	1.20	12.20	0.6
2/10/16	1.16	3.57	6.57	1.24	7.81	0.6
2/17/16	1.25	4.38	6.51	1.06	7.57	0.6
2/24/16	1.39	3.96	6.51	1.13	7.64	0.6
3/2/16	2.31	6.42	6.18	1.07	7.25	0.6
3/9/16	2.61	3.86	6.24	1.62	7.86	0.6
3/16/16	2.68	5.32	5.24	1.86	7.10	0.6
3/23/16	2.59	4.00	7.17	0.92	8.09	0.6
3/30/16	1.91	3.85	4.97	1.35	6.32	0.6
4/6/16	2.58	3.80	5.80	1.10	6.90	0.6
4/13/16	2.27	4.39	4.96	1.05	6.01	0.6
4/20/16	2.19	4.72	9.36	1.45	10.81	0.6
4/27/16	1.95	4.68	8.85	1.20	10.05	0.6
5/4/16	1.96	3.33	8.89	1.05	9.94	0.6
5/11/16	1.96	3.00	5.87	0.97	6.84	0.6
5/18/16	2.08	2.51	4.75	1.23	5.98	0.6
5/25/16	2.28	2.88	8.19	1.06	9.25	0.6
6/1/16	1.73	3.38	8.00	1.26	9.26	0.6
6/8/16	1.02	5.00	9.34	1.03	10.37	0.6
6/15/16	1.96	3.37	8.25	0.91	9.16	0.6
6/22/16	2.30	2.84	7.09	0.97	8.06	0.6
6/29/16	1.87	3.55	10.10	1.09	11.19	0.6
7/6/16	1.91	4.34	6.04	0.53	6.57	0.6
7/13/16	1.70	4.24	7.22	0.99	8.21	0.6
7/20/16	1.23	3.32	11.10	1.14	12.24	0.6
7/27/16	1.51	3.15	12.20	0.94	13.14	0.6
8/3/16	1.34	3.39	16.40	1.18	17.58	0.6
8/10/16	1.08	4.32	19.50	1.28	20.78	0.6
8/17/16	1.20	3.13	11.00	0.88	11.88	0.6
8/24/16	1.44	3.48	10.20	1.00	11.20	0.6
8/31/16	1.01	2.41	11.40	0.79	12.19	0.6
9/7/16	0.94	2.16	10.10	0.96	11.06	0.6
9/14/16	0.79	2.10	12.10	0.89	12.99	0.6
9/21/16	1.65	2.17	9.93	0.84	10.77	0.6
9/21/10	1.58	2.91	10.40	1.07	11.47	0.6
10/5/16	1.42	2.31	9.45	0.94	10.39	0.6
	I.4∠	ا د.ک	9.40	0.54	10.59	0.0

Dete			Re	use		
Date	Flow - MG	PO4 mg/L	NO3 mg/L	TKN mg/L	Total N	TSS mg/L
10/19/16	1.96	3.22	8.94	1.07	10.01	0.6
10/26/16	2.08	3.52	11.50	0.99	12.49	0.6
11/2/16	2.38	2.84	11.70	0.99	12.69	0.6
11/9/16	2.38	3.63	2.41	1.13	3.54	0.6
11/16/16	2.10	3.50	6.89	1.02	7.91	0.6
11/23/16	2.62	2.99	8.18	1.04	9.22	0.6
11/30/16	2.07	2.99	7.60	1.03	8.63	0.6
12/7/16	2.23	3.42	4.99	0.87	5.86	0.6
12/14/16	2.44	3.09	4.18	0.71	4.89	0.6
12/21/16	2.20	3.85	7.43	1.19	8.62	0.6
12/28/16	2.89	4.29	12.20	1.06	13.26	0.6
1/4/17	2.26	5.34	10.40	1.10	11.50	0.6
1/11/17	2.36	4.53	11.90	1.08	12.98	0.6
1/18/17	2.31	4.64	10.20	2.00	12.20	0.6
1/25/17	2.34	4.37	10.00	0.88	10.88	0.6
2/1/17	2.29	4.93	11.70	1.01	12.71	0.6
2/8/17	2.54	4.11	7.20	0.96	8.16	0.6
2/15/17	2.60	4.37	6.37	0.85	7.22	0.6
2/22/17	1.32	4.48	6.19	0.87	7.06	0.6
3/1/17	2.56	4.28	6.57	0.93	7.50	0.6
3/8/17	2.98	5.50	10.20	0.96	11.16	0.6
3/15/17	2.69	4.45	5.97	0.82	6.79	0.6
3/22/17	2.92	4.38	6.95	0.87	7.82	0.6
3/29/17	2.48	4.41	7.23	0.59	7.82	0.6
4/5/17	2.74	4.71	7.21	0.94	8.15	0.6
4/12/17	2.73	5.31	6.41	0.84	7.25	0.6
4/19/17	2.31	4.96	7.27	0.74	8.01	0.6
4/26/17	2.34	4.19	6.50	0.68	7.18	0.6
5/3/17	2.53	3.91	5.22	0.64	5.86	0.6
5/10/17	2.69	3.58	6.21	0.49	6.70	0.6
5/17/17	2.22	5.18	13.30	0.67	13.97	0.6
5/24/17	2.30	3.97	6.95	0.63	7.58	0.6
5/31/17	2.36	2.81	7.35	0.74	8.09	0.6
6/7/17	0.82	2.02	6.98	0.57	7.55	0.6
6/14/17	0.93	2.96	17.70	0.67	18.37	0.6
6/21/17	1.07	5.11	25.60	0.88	26.48	0.6
6/28/17	1.68	3.38	17.80	0.80	18.60	0.6
7/5/17	1.17	3.44	18.40	0.90	19.30	0.6
7/12/17	1.31	3.41	17.90	0.75	18.65	0.6
7/12/17	1.05	3.01	16.50	0.70	17.20	0.6
7/19/17	1.34	3.01	15.50	1.12	16.62	0.6
8/2/17	0.90	3.25	13.60	0.63	14.23	0.3
8/9/17	1.42	2.78	16.00	0.79	16.79	0.3
8/16/17	2.04	3.03	13.60	1.21	14.81	0.3
8/23/17	1.48	3.83	18.40	0.63	19.03	0.3
8/30/17	1.45	2.42	16.00	0.83	16.83	0.3
9/6/17	1.43	2.42	14.50	0.83	15.21	0.3
9/0/17	0.84	1.24	9.35	0.71	10.14	1.0
9/20/17 9/27/17	1.58 1.84	2.61 3.17	18.40 19.70	0.78 0.67	19.18 20.37	0.3 0.3

Date				use		
Date	Flow - MG	PO4 mg/L	NO3 mg/L	TKN mg/L	Total N	TSS mg/L
10/4/17	1.02	2.64	18.80	0.46	19.26	0.3
10/11/17	1.71	2.85	16.10	0.78	16.88	0.3
10/18/17	1.69	3.02	16.00	0.54	16.54	0.3
10/25/17	2.78	3.04	15.70	0.94	16.64	0.3
11/1/17	2.14	3.00	19.50	0.64	20.14	0.3
11/8/17	2.22	3.59	14.70	1.01	15.71	0.3
11/15/17	1.98	3.08	13.70	0.70	14.40	0.3
11/22/17	2.31	5.45	31.00	0.77	31.77	0.3
11/29/17	2.40	3.52	8.60	0.69	9.29	0.3
12/6/17	2.25	3.49	13.30	0.89	14.19	0.3
12/13/17	2.05	3.18	15.90	0.91	16.81	0.3
12/20/17	2.47	3.18	12.00	0.99	12.99	0.3
12/27/17	2.63	4.58	12.10	0.96	13.06	0.3
1/3/18	2.03	4.15	12.20	1.21	13.41	0.3
1/10/18	2.17	4.13	12.80	1.27	14.07	0.3
1/10/18	2.17	4.23	15.20	1.13	16.33	0.3
1/24/18	2.24	5.62	16.70	1.00	17.70	0.3
1/31/18	2.26	5.05	15.10	0.89	15.99	0.3
2/7/18	2.54	4.82	9.56	0.89		0.3
					10.53	
2/14/18	2.82	3.96	10.20	1.19	11.39	0.3
2/21/18	2.54	1.32	9.84	0.09	9.93	0.3
2/28/18	2.64	5.09	8.71	1.38	10.09	0.3
3/7/18	2.82	7.61	18.40	1.26	19.66	0.3
3/14/18	2.46	4.17	6.89	0.82	7.71	0.3
3/21/18	2.06	4.71	5.97	0.57	6.54	0.3
3/28/18	2.77	4.41	6.30	0.95	7.25	0.3
4/4/18	2.89	4.34	5.66	1.48	7.14	0.3
4/11/18	2.48	7.42	8.94	1.31	10.25	0.3
4/18/18	2.34	3.94	6.37	0.91	7.28	0.3
4/25/18	2.32	4.34	8.52	0.86	9.38	0.3
5/2/18	2.73	3.17	6.57	0.86	7.43	0.3
5/9/18	2.57	3.73	9.64	1.08	10.72	0.3
5/16/18	1.07	3.98	16.20	0.78	16.98	0.3
5/23/18	1.19	3.49	18.30	0.51	18.81	0.3
5/30/18	0.90	3.41	14.90	0.94	15.84	0.3
6/6/18	1.98	3.21	10.90	0.70	11.60	0.3
6/13/18	1.95	3.06	15.50	0.70	16.20	0.3
6/20/18	2.41	2.84	12.20	0.86	13.06	0.3
6/27/18	1.91	3.23	17.80	0.90	18.70	0.3
7/3/18	2.45	2.94	14.60	0.65	15.25	0.3
7/11/18	2.56	2.93	11.90	0.78	12.68	0.3
7/18/18	2.56	5.05	27.50	0.90	28.40	0.3
7/25/18	2.92	2.38	9.70	0.98	10.68	0.3
8/1/18	2.66	2.88	15.40	0.83	16.23	0.3
8/8/18	2.16	3.70	20.30	0.79	21.09	0.3
8/15/18	1.87	3.22	17.50	0.87	18.37	0.3
8/22/18	1.96	3.01	16.90	1.05	17.95	0.3
8/29/18	1.45	2.68	14.70	0.91	15.61	0.3
9/5/18	1.52	1.94	9.61	0.93	10.54	0.3
9/0/10					10:14	

Dete			Rei	use		
Date	Flow - MG	PO4 mg/L	NO3 mg/L	TKN mg/L	Total N	TSS mg/L
9/19/18	2.25	3.18	12.90	0.58	13.48	0.3
9/26/18	2.21	2.53	9.47	0.73	10.20	0.3
10/3/18	1.85	3.39	10.90	0.60	11.50	0.3
10/10/18	2.02	2.91	9.77	0.39	10.16	0.3
10/17/18	1.89	2.98	9.55	0.79	10.34	0.7
10/24/18	2.53	3.12	6.74	1.05	7.79	0.3
10/31/18	2.47	3.82	11.30	0.57	11.87	0.3
11/7/18	2.84	3.25	8.00	0.59	8.59	0.3
11/14/18	2.12	4.21	7.66	0.93	8.59	0.3
11/21/18	2.11	2.99	8.99	0.77	9.76	0.3
11/28/18	1.82	3.32	7.40	0.50	7.90	0.3
12/6/18	1.80	5.12	22.60	0.67	23.27	0.3
12/12/18	2.33	3.54	8.22	0.48	8.70	0.3
12/19/18	2.35	2.06	4.45	1.14	5.59	0.3
12/26/18	2.52	4.01	7.43	0.63	8.06	0.3
1/2/19	2.13	4.20	4.57	1.06	5.63	0.3
1/9/19	2.35	3.25	5.49	1.24	6.73	0.3
1/16/19	2.46	4.55	5.78	0.77	6.55	0.3
1/23/19	2.67	4.45	4.91	1.01	5.92	0.3
1/30/19	1.31	3.33	5.41	0.39	5.80	0.3
2/6/19	3.01	3.49	4.88	0.79	5.67	0.3
2/0/19	1.15	3.49	4.47	0.79	5.00	0.8
2/13/19	2.63	4.57	4.65	0.89	5.54	0.8
2/20/19	2.83	3.99	3.62	0.87	4.49	1.1
3/6/19	2.86	3.99	6.41	1.47	7.88	0.3
3/13/19	2.99	3.66	5.43	0.64	6.07	0.3
3/13/19	1.47	3.58	5.43	1.07	6.57	0.3
	2.92			0.71	5.89	
3/27/19		3.98	5.18	0.74		0.7
4/3/19	2.70	4.35	1.07		1.81	0.3
4/10/19	1.93	4.52	5.17	0.79	5.96	0.3
4/17/19	2.52	4.56	5.09 5.28	0.66	5.75	0.3
4/24/19	2.55	2.92		0.89	6.17	0.3
5/1/19	1.81	3.43	5.58	0.61	6.19	0.6
5/8/19	2.02	4.96	7.80	0.64	8.44	0.3
5/15/19	2.03	4.31	9.24	1.13	10.37	0.3
5/22/19	1.90	5.69	7.75	0.81	8.56	0.3
5/29/19	2.87	2.73	5.52	0.77	6.29	0.3
6/5/19	2.68	2.84	8.74	0.68	9.42	0.3
6/12/19	1.89	3.05	11.00	0.96	11.96	0.3
6/19/19	1.12	1.74	8.40	0.75	9.15	0.3
6/26/19	1.99	3.09	6.43	0.78	7.21	0.3
7/3/19	3.01	7.50	15.60	0.97	16.57	0.3
7/10/19	2.32	4.73	13.80	0.90	14.70	0.3
7/17/19	1.31	2.94	6.20	0.83	7.03	0.3
7/24/19	1.18	2.61	4.21	1.21	5.42	0.3
7/31/19	2.03	3.16	7.00	0.90	7.90	0.3
8/7/19	1.13	2.46	3.79	0.88	4.67	0.3
8/14/19	0.84	2.65	4.34	0.78	5.12	0.3
8/21/19	1.03	2.85	4.43	0.74	5.17	0.3
8/28/19	1.08	2.83	5.99	0.62	6.61	0.3

Dete			Re	use		
Date	Flow - MG	PO4 mg/L	NO3 mg/L	TKN mg/L	Total N	TSS mg/L
9/4/19	1.31	2.34	5.12	0.54	5.66	0.3
9/11/19	2.17	7.93	23.10	0.39	23.49	0.3
9/18/19	2.01	2.50	6.69	0.50	7.19	0.3
9/25/19	1.84	2.15	4.53	0.70	5.23	0.6
10/2/19	2.49	0.95	3.42	0.87	4.29	3.7
10/9/19	2.00	2.13	4.61	0.97	5.58	0.7
10/16/19	1.89	2.13	8.11	0.64	8.75	0.6
10/23/19	2.35	1.98	4.96	1.13	6.09	0.3
10/30/19	2.26	2.08	4.31	0.67	4.98	0.3
11/6/19	2.54	6.07	15.90	0.88	16.78	0.3
11/13/19	2.26	2.86	6.19	1.14	7.33	0.3
11/20/19	2.24	2.70	4.21	0.94	5.15	0.3
11/27/19	2.21	2.49	4.36	0.93	5.29	0.3
12/4/19	1.93	2.03	4.01	0.80	4.81	0.3
12/11/19	2.01	1.33	3.11	1.00	4.11	0.3
12/18/19	2.28	3.61	3.49	0.71	4.20	0.3
12/25/19	1.45	2.02	4.00	0.62	4.62	0.3
1/2/20	2.23	1.18	4.89	1.00	5.89	0.3
1/8/20	2.14	0.29	3.38	0.85	4.23	0.3
1/15/20	2.65	1.34	3.12	0.94	4.23	0.3
1/13/20	3.05	2.86	5.35	0.93	6.28	0.3
1/29/20	2.66	0.33	3.07	0.94	4.01	0.3
2/5/20	1.87	0.33	4.15	0.94	5.09	0.3
2/12/20	2.41	0.78		1.17	5.09	0.3
			3.85			
2/19/20	2.60	0.21	3.85	0.79	4.64	0.3
2/26/20	2.87	5.25	2.33	0.97	3.30	0.3
3/4/20	3.04	2.54	4.44	0.73	5.17	0.3
3/11/20	3.19	4.27	5.10	1.16	6.26	0.3
3/18/20	3.05	11.50	6.21	0.83	7.04	0.3
3/25/20	2.34	3.74	6.01	0.88	6.89	0.3
4/1/20	2.08	2.39	6.16	0.62	6.78	0.3
4/8/20	2.54	3.80	7.77	0.88	8.65	0.3
4/15/20	2.50	2.05	7.19	0.80	7.99	0.3
4/22/20	2.13	5.68	8.55	0.71	9.26	0.3
4/29/20	2.08	8.16	8.87	0.82	9.69	0.3
5/6/20	2.33	4.38	6.70	0.73	7.43	0.3
5/13/20	2.28	2.66	7.22	0.58	7.80	0.3
5/20/20	1.92	2.49	5.52	0.48	6.00	0.3
5/27/20	1.89	2.40	2.86	0.53	3.39	0.3
6/3/20	1.67	1.55	3.84	0.94	4.78	0.3
6/10/20	1.38	5.48	16.30	0.78	17.08	0.3
6/17/20	1.11	2.43	3.91	0.68	4.59	0.3
6/24/20	2.39	2.75	4.10	0.86	4.96	0.3
7/1/20	2.48	3.32	4.68	0.44	5.12	0.3
7/8/20	2.55	2.53	3.73	0.78	4.51	0.3
7/15/20	2.21	3.10	4.05	0.55	4.60	0.3
7/22/20	1.17	1.93	3.34	0.66	4.00	0.3
7/29/20	1.30	2.84	3.88	0.68	4.56	0.3
8/5/20	1.98	5.09	9.20	0.72	9.92	0.3
8/12/20	1.31	2.69	5.81	0.61	6.42	0.3

Date	Reuse										
Date	Flow - MG	PO4 mg/L	NO3 mg/L	TKN mg/L	Total N	TSS mg/L					
8/19/20	1.42	2.35	3.65	0.68	4.33	0.3					
8/26/20	1.98	2.76	4.08	0.59	4.67	0.3					
9/2/20	2.00	3.04	4.80	0.69	5.49	0.3					
9/9/20	0.96	2.65	4.73	0.88	5.61	0.3					
9/16/20	1.41	1.35	8.00	0.95	8.95	0.3					
9/23/20	2.34	2.26	10.20	0.57	10.77	0.3					
9/30/20	2.36	2.38	5.46	0.68	6.14	0.3					
10/7/20	2.25	6.19	24.90	1.32	26.22	0.3					
10/14/20	2.41	2.88	5.07	0.75	5.82	0.3					
10/21/20	1.98	3.22	2.89	0.53	3.42	0.3					
10/28/20	1.53	2.69	2.89	0.57	3.46	0.3					
11/4/20	2.59	2.85	4.02	0.80	4.82	0.3					
11/11/20	0.97	2.38	6.58	0.74	7.32	0.3					
11/18/20	2.14	2.82	7.08	0.97	8.05	0.3					
11/25/20	2.63	3.05	5.98	0.82	6.80	0.3					
12/2/20	2.30	3.80	5.06	0.94	6.00	0.3					
12/9/20	2.19	2.44	7.40	0.48	7.88	0.3					
12/16/20	2.34	3.61	4.88	1.22	6.10	0.3					
12/23/20	2.09	2.43	4.48	1.53	6.01	0.3					
12/30/20	2.36	3.37	7.35	0.81	8.16	0.3					
1/6/21	2.66	2.79	5.95	0.89	6.84	0.3					
1/13/21	1.46	5.29	6.93	0.81	7.74	0.3					
1/20/21	2.31	4.68	6.74	1.59	8.33	0.3					
1/27/21	2.27	3.85	4.13	0.63	4.76	0.3					
2/3/21	2.49	4.27	5.15	0.76	5.91	0.3					
2/10/21	2.56	4.47	4.04	0.86	4.90	0.3					
2/17/21	1.54	3.20	4.06	0.94	5.00	0.3					
2/24/21	2.59	2.54	2.60	0.82	3.42	0.3					
3/3/21	2.93	3.22	4.53	0.84	5.37	0.3					
3/10/21	2.53	4.65	5.14	1.44	6.58	0.3					
3/17/21	3.08	3.77	5.03	0.74	5.77	0.3					
3/24/21	2.82	3.94	5.28	0.89	6.17	0.3					
3/31/21	3.15	3.31	5.47	0.77	6.24	2.0					
4/7/21	2.82	3.55	5.66	0.91	6.57	0.3					
4/14/21	1.99	5.22	5.18	0.71	5.89	0.3					
4/21/21	2.35	3.37	5.30	0.65	5.95	0.3					
4/28/21	2.44	3.41	5.67	0.63	6.30	0.3					
5/5/21	2.88	4.01	5.43	0.62	6.05	0.3					
5/12/21	2.58	2.88	2.90	0.73	3.63	0.3					
5/19/21	2.84	2.41	4.26	0.75	5.01	0.3					
5/26/21	2.76	5.00	3.02	1.07	4.09	0.3					
6/2/21	2.45	3.50	4.31	1.10	5.41	0.3					
Min. Value	0.54	0.08	0.01	0.09	0.56	0.30					
						3.70					
						0.47					
Max. Value Geomean:	3.19 1.87	11.50 3.33	31.00 7.49	6.76 0.89	31.77 8.63						

APPENDIX B

RESULTS OF SURFACE WATER QUALITY MONITORING CONDUCTED IN MARCO ISLAND WATERWAYS FROM APRIL – SEPTEMBER 2020

- **B-1 Vertical Field Profiles**
- **B-2** Characteristics of Surface Water Samples

B-1 Vertical Field Profiles

Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secch (m)
		8:14	0.5	26.93	7.90	55,765	37.1	6.3	98	433	
M-1	5/5/20	8:14	1.0	26.93	7.90	55,762	37.1	6.3	97	434	2.37
		8:15	1.8	26.93	7.90	55,771	37.1	6.3	98	434	1
	•										•
		17:32	0.5	28.83	7.83	56,040	37.3	6.8	108	439	
	5/00/00	17:34	1.0	28.82	7.83	56,030	37.3	6.8	108	441	1
M-1	5/26/20	17:34	2.0	28.81	7.83	56,037	37.3	6.8	108	442	1.32
		17:35	2.6	28.81	7.83	56,046	37.3	6.8	108	442	
											•
		16:07	0.5	33.09	7.81	53,841	35.7	6.1	102	419	
M-1	6/29/20	16:08	1.0	32.93	7.80	53,778	35.6	6.0	101	420	1.07
		16:08	2.0	32.85	7.80	53,812	35.6	5.9	100	421	
		10:01	0.5	29.82	8.12	49,963	32.8	5.6	88	448	
M-1	7/27/20	10:01	1.0	29.74	8.12	50,581	33.3	5.5	87	449	1.71
IVI- I	1121120	10:03	2.0	29.70	8.12	50,866	33.5	5.5	87	449	1.7
	<u> </u>	10:02	2.6	29.70	8.12	50,928	33.5	5.5	87	449	<u> </u>
		16:25	0.5	32.33	8.07	51,552	34.0	5.5	90	417	
M-1	8/31/20	16:26	1.0	32.34	8.06	51,643	34.0	5.5	90	416	0.97
IVI- I	0/31/20	16:26	2.0	32.35	8.07	51,780	34.1	5.4	90	417	0.97
		16:27	2.5	32.35	8.06	51,763	34.1	5.5	90	415	
		14:05	0.5	28.37	8.13	45,087	29.2	6.0	91	447	
M-1	9/23/20	14:05	1.0	28.32	8.14	45,387	29.5	5.8	88	446	1.42
IVI- I	9/23/20	14:06	2.0	28.34	8.14	45,648	29.6	5.7	87	445	1.44
		14:06	2.3	28.34	8.14	45,735	29.7	5.8	88	444	
		11:46	0.5	28.01	7.80	55,783	37.1	6.5	102	390	
M-2	5/5/20	11:47	1.0	28.01	7.80	55,853	37.2	6.5	102	391	1.13
		11:48	1.9	28.00	7.84	55,805	37.1	6.5	102	395	
		10:11	0.5	28.86	7.54	56,834	37.9	5.1	81	454	
		10:11	1.0	28.71	7.53	56,871	37.9	4.9	78	454	
M-2	5/27/20	10:12	1.5	28.49	7.53	56,952	38.0	4.9	77	454	1.18
		10:12	2.0	28.49	7.53	56,968	38.0	4.7	75	453	
		10:13	2.0	28.52	7.54	56,964	38.0	4.7	75	453	
		18:44	0.5	32.78	7.86	53,794	35.6	6.1	103	374	
M-2	6/29/20	18:44	1.0	32.79	7.86	53,766	35.6	6.1	103	376	1.22
		18:45	1.3	32.80	7.86	53,787	35.6	6.1	102	377	
		12:26	0.5	30.83	8.02	47,656	31.1	6.0	95	408	
M-2	7/27/20	12:27	1.0	30.79	8.04	47,895	31.3	6.0	95	408	0.6
		12:27	1.3	30.86	8.05	47,957	31.3	6.0	95	408	
		19:03	0.5	32.01	8.00	51,195	33.7	5.2	85	373	
M-2	8/31/20	19:04	1.0	32.02	8.02	51,311	33.9	5.2	85	373	0.48
		19:05	1.4	32.11	8.03	51,406	33.9	5.1	85	373	
										4.7.1	
		16:21	0.5	28.58	8.26	46,308	30.1	6.2	96	358	
M-2	9/23/20	16:22	1.0	28.58	8.26	46,408	30.2	6.2	95	361	1.22
	1	16:22	1.5	28.59	8.26	46,490	30.3	6.2	96	361	I

Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secchi (m)
	1	14:56	0.5	27.51	7.90	57,202	38.2	7.2	112	368	
		14:56	1.0	27.50	7.90	57,209	38.2	7.2	112	368	
M-3	4/29/20	14:57	2.0	27.48	7.89	57,207	38.2	7.1	112	369	2.19
		14:58	3.0	27.44	7.89	57,221	38.2	7.1	112	369	
		14:59	3.2	27.41	7.89	57,228	38.2	7.0	110	370	
		17:58	0.5	29.28	7.91	56,916	37.9	6.9	111	387	
		17:59	1.0	29.32	7.91	56,886	37.9	6.9	111	388	
M-3	5/27/20	18:00	2.0	29.37	7.91	56,856	37.9	6.9	111	389	1.44
IVI-3	5/2//20	18:00	3.0	29.35	7.91	56,882	37.9	6.9	111	389	1.44
		18:01	4.0	29.34	7.91	56,862	37.9	6.9	111	390	1
		18:01	4.9	29.32	7.91	56,879	37.9	6.9	111	390	
	M-3 6/30/20	10:48	0.5	32.31	8.01	55,012	36.5	6.5	109	412	
		10:49	1.0	32.31	8.01	55,015	36.5	6.5	109	413	
МО		10:49	2.0	32.32	8.01	55,020	36.5	6.5	109	413	2.07
IVI-3		10:50	3.0	32.32	8.01	55,028	36.5	6.5	109	413	2.07
		10:51	4.0	32.31	8.01	55,031	36.5	6.5	109	413	
		10:52	4.2	32.00	8.01	55,056	36.5	6.5	109	413	
		11:08	0.5	29.86	8.20	51,298	33.8	5.3	84	412	
		11:09	1.0	29.86	8.20	51,435	33.9	5.3	85	412	1
M-3	7/28/20	11:10	2.0	29.84	8.19	51,590	34.0	5.3	84	411	0.93
IVI-3	1120/20	11:10	3.0	29.85	8.19	51,573	34.0	5.3	84	410	0.93
		11:11	4.0	29.85	8.19	51,626	34.0	5.3	84	409	
		11:11	4.9	29.85	8.19	51,743	34.0	5.3	84	409	
		11:28	0.5	31.26	8.11	53,899	35.7	5.4	88	424	
		11:28	1.0	31.20	8.11	54,374	36.1	5.1	84	423	1
МО	0/4/20	11:29	2.0	31.18	8.11	54,872	36.4	4.9	81	421	000
M-3	9/1/20	11:29	3.0	31.18	8.12	55,012	36.5	4.9	80	421	SOB
		11:29	4.0	31.19	8.12	55,025	36.5	4.9	81	420	1
		11:30	4.6	31.19	8.12	55,062	36.5	4.8	81	265	
		11:18	0.5	28.21	8.12	49,430	32.4	5.6	87	462	
		11:18	1.0	28.17	8.13	49,625	32.6	5.7	87	461	1
	0/04/05	11:18	2.0	28.15	8.14	49,984	32.8	5.8	89	458	1
M-3	9/24/20	11:19	3.0	28.17	8.15	50,455	33.2	5.9	92	453	1.73
		11:20	4.0	28.19	8.17	50,605	33.3	6.0	92	449	1
		11:21	4.7	28.19	8.18	50,678	33.3	5.9	92	430	_

Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secchi (m)
	i i	17:49	0.5	27.55	7.89	57,246	38.2	7.1	112	331	
		17:50	1.0	27.41	7.88	57,251	38.2	7.1	112	331	
M-4	4/29/20	17:50	2.0	27.35	7.88	57,296	38.2	7.0	110	332	1.63
		17:51	3.0	27.35	7.88	57,276	38.2	7.0	110	333	
		17:51	3.6	27.35	7.88	57,240	38.2	7.0	110	334	
	_			1							
		14:19	0.5	29.27	7.92	56,869	37.9	6.9	111	368	
	F/07/00	14:20	1.0	29.25	7.92	56,851	37.9	6.9	111	370	4.40
M-4	5/27/20	14:20	2.0	29.24	7.92	56,855	37.9	6.9	111	373	1.42
		14:21 14:21	3.0 3.7	29.24 29.24	7.92 7.91	56,871 56,880	37.9 37.9	6.9 6.9	110 111	375 376	
		14.21	3.1	23.24	7.31	30,000	37.8	0.9	111	370	
	Τ	10:39	0.5	32.20	8.00	54,966	36.5	6.0	100	403	I
		10:40	1.0	32.21	7.99	54,982	36.5	6.0	100	401	
M-4	6/30/20	10:41	2.0	32.19	7.99	55,003	36.5	6.0	100	401	2.19
		10:41	3.0	32.17	7.99	54,986	36.5	6.0	100	400	
		10:42	3.8	32.18	7.99	54,996	36.5	6.0	100	399	
		10:56	0.5	29.88	8.23	51,325	33.8	5.4	86	420	
	7/00/00	10:56	1.0	29.87	8.22	51,410	33.9	5.4	86	419	
M-4	7/28/20	10:57	2.0	29.85	8.22	51,568	34.0	5.4	86	417	0.97
		10:57	3.0	29.83	8.21	51,812	34.2	5.3	85	414	-
		10:57	3.6	29.82	8.21	51,897	34.2	5.3	85	414	
	T	13:54	0.5	32.04	8.24	53,805	35.6	6.2	102	286	Ι
		13:54	1.0	31.86	8.23	53,836	35.7	5.9	97	294	-
		13:55	2.0	31.78	8.21	54,146	35.9	5.6	92	295	
M-4	9/1/20	13:55	3.0	31.61	8.19	54,357	36.0	5.2	86	297	3.34
		13:56	4.0	31.61	8.19	54,470	36.1	5.1	85	299	-
		13:56	4.2	31.61	8.19	54,492	36.1	5.1	85	300	
		13:33	0.5	28.63	8.29	47,775	31.2	6.3	97	332	
	0/04/00	13:34	1.0	28.53	8.28	47,993	31.4	6.1	94	336	
M-4	9/24/20	13:35	2.0	28.52	8.27	48,114	31.4	6.0	93	339	0.94
		13:35	3.0	28.50	8.27 8.27	48,162	31.5	5.9	92	340	
		13:36	3.4	28.51	0.21	48,180	31.5	5.9	91	340	
	I	15:32	0.5	28.45	7.91	57,164	38.1	7.7	123	367	
M-5	4/29/20	15:33	1.0	28.44	7.91	57,169	38.1	7.7	123	367	0.76
		15:34	1.3	28.44	7.91	57,151	38.1	7.8	124	366	
		17:00	0.5	29.86	7.88	55,617	37.0	7.7	124	440	
M-5	5/26/20	17:00	1.0	29.74	7.89	55,693	37.0	7.7	125	442	1.43
0	0/20/20	17:01	2.0	29.11	7.88	56,047	37.3	7.1	114	441	1.10
		17:01	2.2	29.09	7.88	56,074	37.3	7.1	114	441	
		15.24	0.5	22.40	7 00	E2 400	25.4	60	111	405	ı
M-5	6/29/20	15:34 15:35	0.5 1.0	33.18 33.15	7.88 7.89	53,128 53,113	35.1 35.1	6.8 6.8	114 114	425 425	0.88
IVI-3	0/29/20	15:35	1.5	33.14	7.89	53,113	35.1	6.7	113	425	0.00
		10.00	1.0	33.14	7.09	33,111	33.1	0.7	113	420	
	1	9:36	0.5	29.78	8.14	49,537	32.5	5.9	93	441	1
M-5	7/27/20	9:37	1.0	29.63	8.13	49,954	32.8	5.9	92	442	0.93
		9:37	1.9	29.74	8.13	51,643	34.0	5.4	86	443	
		16:01	0.5	32.40	8.13	51,138	33.7	6.2	103	420	
M-5	8/31/20	16:01	1.0	32.32	8.12	51,338	33.8	6.1	100	419	0.96
		16:02	1.6	32.26	8.12	51,478	33.9	6.0	99	417	L
		13.43	0.5	20.61	8.30	43,832	28.3	7.8	120	440	ı
M-5	9/23/20	13:43 13:43	0.5 1.0	29.61	8.30	43,832	30.3	6.7	104	440	0.84
IVIT-U	3123120			29.21	0.25	40,525					0.04
		13:44	1.5	29.16	8.31	49,051	32.1	7.1	111	437	

Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secchi (m)
		7:01	0.5	27.56	7.66	54,646	36.3	5.2	81	495	
		7:02	1.0	27.57	7.68	54,649	36.3	5.2	82	494	
M-6	5/5/20	7:02	2.0	27.55	7.68	54,659	36.3	5.2	81	492	1.81
		7:03	3.0	27.55	7.69	54,650	36.3	5.2	81	492	
		7:04	3.6	27.55	7.67	54,658	36.3	5.1	79	489	
		16:29	1.0	29.20	7.78	54,480	36.1	6.5	104	421	
M-6	5/26/20	16:30	2.0	28.52	7.76	54,908	36.5	6.0	94	422	1.78
IVI-O	5/26/20	16:31	3.0	28.39	7.73	55,056	36.6	5.6	88	422	1.70
		16:32	3.9	28.40	7.73	55,033	36.5	5.2	82	423	
		15:12	0.5	33.30	7.87	51,692	34.1	6.7	112	409	
M-6	6 6/29/20	15:12	1.0	33.09	7.88	51,660	34.1	6.8	113	412	1.23
IVI-O		15:13	2.0	32.73	7.86	52,038	34.3	6.4	107	415	1.23
		15:14	2.9	32.54	7.82	52,580	34.7	5.7	95	415	
		7:59	0.5	29.87	7.98	47,826	31.2	6.0	93	547	
		8:00	1.0	30.12	7.97	48,506	31.7	5.7	90	540	
M-6	7/27/20	8:00	2.0	30.37	7.96	49,693	32.6	5.3	84	536	1.71
IVI-O	1121120	8:01	3.0	30.41	7.97	49,781	32.7	5.4	85	532	1.71
		8:01	4.0	30.36	7.97	49,998	32.8	5.3	84	529	
		8:02	4.4	30.28	7.92	50,005	32.8	5.1	81	519	
		13:45	0.5	32.88	7.98	50,597	33.3	5.3	88	436	
		13:45	1.0	32.43	7.98	50,706	33.3	5.3	88	433	
M-6	8/31/20	13:46	2.0	32.02	7.95	51,000	33.6	4.4	73	430	1.08
		13:46	3.0	31.97	7.96	51,225	33.7	4.5	74	430	
		13:47	4.0	31.92	7.94	51,088	33.6	4.2	69	426	
											•
		13:19	0.5	30.05	8.28	41,260	26.5	7.4	113	386	
		13:19	1.0	29.73	8.28	41,482	26.6	7.4	114	397	
M-6	9/23/20	13:20	2.0	29.61	8.17	42,743	27.5	5.8	90	400	1.69
		13:21	3.0	29.60	8.13	45,473	29.5	4.8	75	401	
		13:21	3.4	29.62	8.13	45,611	29.6	4.8	74	399	

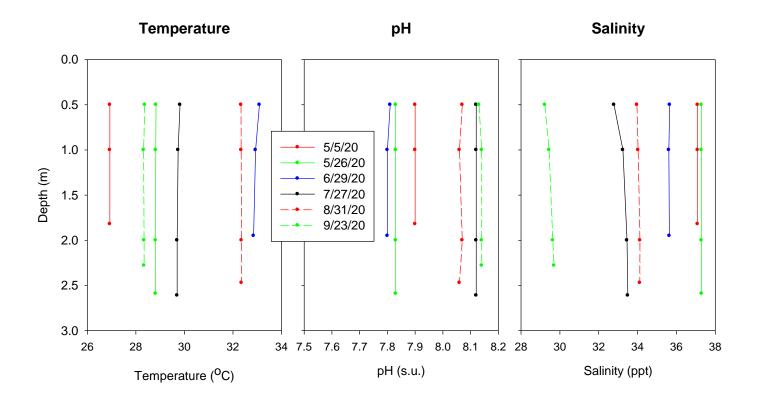
Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secchi (m)
	 	16:01	0.5	28.13	7.85	56,835	37.9	8.0	127	372	
		16:01	1.0	28.10	7.85	56,841	37.9	8.0	127	372	
M-7	4/29/20	16:02	2.0	27.67	7.83	56,879	37.9	7.6	120	372	1.13
		16:02	2.1	27.63	7.83	56,809	37.9	7.5	118	372	
		10.02	2.1	27.00	7.00	30,009	37.3	7.5	110	372	
	Т	15:18	0.5	29.55	7.75	54,858	36.4	7.5	121	428	Ι
		15:19	1.0	29.49	7.76	54,806	36.4	7.5	120	429	
M-7	5/26/20	15:19	2.0	28.73	7.73	54,907	36.5	7.0	112	428	1.44
		15:20	2.3	28.75	7.73	55,110	36.6	7.0	111	428	
		10.20	2.5	20.73	1.10	33,110	30.0	7.0	111	420	
	Т	13:37	0.5	32.83	7.66	52,297	34.5	5.7	95	456	Π
		13:37	1.0	32.65	7.67	52,490	34.7	5.6	92	455	
M-7	6/29/20	13:38	1.5	32.55	7.68	52,610	34.8	5.5	92	454	1.16
		13:38	1.9	32.52	7.69	52,665	34.8	5.6	93	454	
		10.00	1.5	32.32	7.03	32,003	34.0	3.0	93	404	
	Т	8:22	0.5	30.24	8.12	49,142	32.2	6.3	100	480	Г
		8:22	1.0	30.32	8.11	49,195	32.2	6.3	99	479	
M-7	7/27/20	8:23	2.0	30.32	8.09	49,763	32.7	6.1	99	478	1.39
		8:23	2.0	30.21	8.08	49,763	32.7	5.5	87	475	1
		0.20	۷.۷	30.13	0.00	→0,000	JZ.1	5.5	O1	710	
		12:20	0.5	33 85	Ω 10	50 665	33.3	6.5	100	264	I
		12:39	0.5	32.86	8.10	50,665	33.3	6.5	108	264	1
M-7	8/31/20	12:39	1.0	32.53	8.09	50,935	33.5	6.4	107	263	0.98
		12:40	2.0	32.12	8.04	51,171	33.7	5.5	90	260	
		12:40	2.8	32.10	8.04	51,293	33.8	5.5	91	260	
	1	40.50	0.5	00.00	0.04	40.000	07.4	0.0	405	400	1
		12:58	0.5	29.62	8.21	42,606	27.4	6.8	105	400	
		12:58	1.0	29.47	8.22	42,908	27.7	7.0	107	402	
M-7	9/23/20	12:58	2.0	29.29	8.20	43,926	28.4	6.8	104	403	1.34
		12:59	3.0	29.30	8.16	44,737	29.0	5.9	92	402	-
		12:59	4.0	29.22	8.09	47,345	30.9	4.1	64	399	
		13:00	4.3	29.23	8.05	47,306	30.9	3.9	61	397	
	_										
		10:44	0.5	28.13	7.78	55,405	36.8	5.9	94	437	
M-8	5/5/20	10:44	1.0	27.85	7.80	55,365	36.8	6.3	99	439	1.87
		10:45	2.0	27.79	7.80	55,651	37.0	5.7	90	440	
		10:46	2.8	27.64	7.81	55,820	37.1	5.7	89	440	
	•										
		8:36	0.5	30.44	7.89	55,704	37.0	7.8	127	443	
M-8	5/26/20	8:36	1.0	29.30	7.89	55,652	37.0	8.1	130	444	1.47
		8:37	2.0	28.52	7.83	55,782	37.1	7.0	110	442	
		8:38	2.8	28.30	7.63	54,429	36.1	6.3	99	379	
		16:21	0.5	33.43	7.94	53,697	35.6	7.1	119	431	1
M-8	6/29/20	16:22	1.0	33.31	7.94	53,591	35.5	7.2	122	432	1.36
-		16:22	2.0	32.44	7.94	53,884	35.7	7.0	118	433	
		16:23	2.4	32.46	7.96	53,774	35.6	7.5	125	434	
	_										
		10:12	0.5	30.30	8.16	49,466	32.4	6.7	107	450	
	7/27/20	10:13	1.0	30.22	8.14	49,460	32.4	6.7	106	450	1.52
M-8		10:14	2.0	30.31	8.08	50,103	32.9	5.4	85	447	
M-8	.,,_0	40.45	2.8	30.39	8.04	50,523	33.2	4.4	70	436	
M-8	.,,_0	10:15									
M-8	.,,,,,,,							6.1	101	424	
M-8		16:39	0.5	32.97	8.10	51,224	33.7	0.1			
				32.97 32.94	8.10 8.08	51,224 51,318	33.7 33.8	5.6	94	422	1 22
M-8	8/31/20	16:39	0.5							422 420	1.33
		16:39 16:40	0.5 1.0	32.94	8.08	51,318	33.8	5.6	94		1.33
		16:39 16:40 16:41	0.5 1.0 2.0	32.94 32.14	8.08 8.04	51,318 51,546	33.8 34.0	5.6 4.9	94 81	420	1.33
		16:39 16:40 16:41	0.5 1.0 2.0	32.94 32.14	8.08 8.04	51,318 51,546	33.8 34.0	5.6 4.9	94 81	420	1.33
M-8	8/31/20	16:39 16:40 16:41 16:41	0.5 1.0 2.0 2.6	32.94 32.14 32.10	8.08 8.04 8.03	51,318 51,546 51,696	33.8 34.0 34.1	5.6 4.9 4.9	94 81 81	420 378	-
		16:39 16:40 16:41 16:41 14:17	0.5 1.0 2.0 2.6	32.94 32.14 32.10 30.62	8.08 8.04 8.03	51,318 51,546 51,696 45,757	33.8 34.0 34.1 29.6	5.6 4.9 4.9	94 81 81	420 378 450	1.33

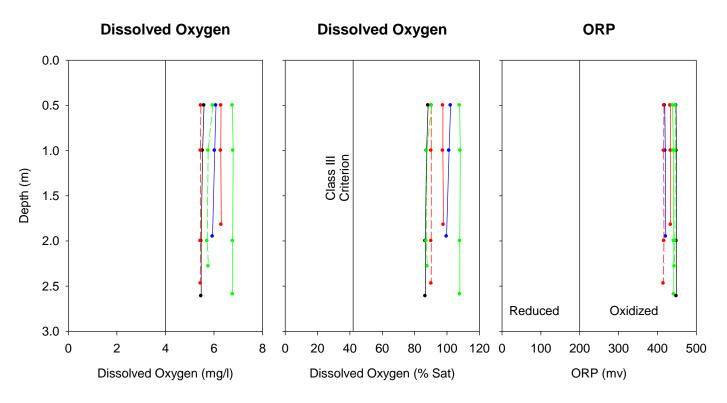
Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secchi (m)
		9:20	0.5	28.08	7.77	55,400	36.8	5.7	90	440	
		9:20	1.0	27.92	7.79	55,624	37.0	5.7	90	441	
		9:21	2.0	27.92	7.79	55,607	37.0	5.7	90	441	
M-9	5/5/20	9:22	3.0	27.88	7.79	55,631	37.0	5.7	89	442	1.46
141 0	0/0/20	9:22	4.0	27.87	7.79	55,612	37.0	5.6	89	442	1.10
		9:23	5.0	27.88	7.79	55,779	37.1	5.7	90	442	
		9:23	6.0	27.85	7.80	55,797	37.1	5.7	90	443	
		9:24	6.9	27.83	7.80	55,781	37.1	5.7	89	443	
		18:42	0.5	30.45	7.96	54,622	36.2	10.1	165	439	
		18:42	1.0	30.05	7.95	54,609	36.2	10.1	163	439	
M-9	5/26/20	18:43	2.0	28.86	7.82	55,239	36.7	7.3	117	436	0.88
IVI-3	3/20/20	18:44	3.0	28.49	7.79	55,516	36.9	6.8	107	436	0.00
		18:46	4.0	28.18	7.73	55,720	37.1	5.6	88	435	
		18:47	4.6	28.15	7.72	55,742	37.1	5.5	87	436	
		16:53	0.5	33.68	7.96	52,328	34.5	7.1	121	416	
		16:54	1.0	33.50	7.94	52,555	34.7	7.1	120	417	
M-9	6/29/20	16:54	2.0	33.01	7.90	52,985	35.0	6.6	110	416	1.32
	1VI-9 0/23/20	16:55	3.0	32.75	7.87	53,095	35.1	6.1	101	417	
		16:56	3.8	32.74	7.86	53,124	35.1	5.9	99	418	
		10:42	0.5	30.54	8.14	46,490	30.3	6.5	103	450	
		10:42	1.0	30.41	8.12	46,741	30.4	6.5	103	449	
		10:43	2.0	30.50	8.08	47,676	31.1	5.5	87	449	
M-9	7/27/20	10:43	3.0	30.43	8.06	48,339	31.6	5.3	85	448	1.47
		10:44	4.0	30.34	8.06	48,800	31.9	5.3	83	448	
		10:44	5.0	30.21	8.06	49,130	32.2	5.2	82	448	
		10:45	5.7	30.19	8.05	49,338	32.3	4.9	78	443	
											•
		17:20	0.5	32.82	8.09	50,061	32.9	6.5	108	416	
		17:21	1.0	32.73	8.08	50,150	32.9	6.2	102	416	
М 0	0/04/00	17:22	2.0	32.39	8.03	50,452	33.1	5.3	87	414	4.47
M-9	8/31/20	17:22	3.0	32.17	7.99	50,775	33.4	4.6	76	412	1.17
		17:23	4.0	32.06	7.97	50,966	33.5	4.4	72	412	
		17:23	4.8	32.03	7.97	51,036	33.6	4.2	70	411	
											•
		14:51	0.5	30.38	8.27	39,519	25.2	7.7	118	469	
		14:52	1.0	29.98	8.25	40,429	25.9	7.4	114	465	
		14:52	2.0	29.39	8.18	43,745	28.3	6.4	99	460	
M 2	0/00/00	14:53	3.0	29.17	8.16	44,545	28.8	5.8	90	457	1 ,
M-9	9/23/20	14:53	4.0	28.99	8.14	45,480	29.5	5.3	82	455	1.62
		14:54	5.0	28.97	8.13	45,619	29.6	5.1	78	454	
		14:54	6.0	28.97	8.14	45,619	29.6	5.0	77	451	

Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secchi (m)
		16:30	0.5	29.03	7.84	56,307	37.5	8.6	139	386	
		16:31	1.0	29.03	7.83	56,312	37.5	8.6	139	385	
14.40	4/00/00	16:32	2.0	28.69	7.79	56,350	37.5	8.1	129	384	0.00
M-10	4/29/20	16:32	3.0	27.68	7.73	56,555	37.7	6.3	100	382	0.86
		16:33	4.0	27.64	7.72	56,581	37.7	6.1	97	382	
		16:34	4.1	27.67	7.71	56,559	37.7	1.5	24	381	1
		8:12	0.5	29.17	7.68	54,113	35.9	6.8	108	481	
		8:12	1.0	29.16	7.68	54,293	36.0	6.6	105	480	
M-10	5/27/20	8:13	2.0	29.05	7.65	54,533	36.2	5.9	94	478	1.54
IVI- I U	5/2//20	8:13	3.0	29.02	7.67	54,772	36.4	5.7	91	477	1.54
		8:14	4.0	29.00	7.65	44,802	29.0	5.8	89	475	1
		8:15	4.1	28.98	7.63	43,137	27.8	5.3	81	473	
		14:03	0.5	33.51	7.77	51,178	33.7	6.0	100	432	
	л-10 6/29/20	14:03	1.0	33.52	7.78	51,070	33.6	6.1	103	433	
M-10		14:04	2.0	32.90	7.76	51,737	34.1	5.6	93	434	2.08
		14:05	3.0	32.68	7.70	52,214	34.5	4.3	71	433	
		14:05	4.0	32.63	7.72	52,371	34.6	4.8	79	434	
		9:00	0.5	30.51	8.13	46,640	30.4	6.4	100	446	
		9:00	1.0	30.55	8.14	46,995	30.6	6.4	101	447	
M-10	7/27/20	9:01	2.0	30.64	8.08	48,398	31.7	5.5	87	448	1.92
IVI- I U	1121120	9:01	3.0	30.59	8.06	48,651	31.8	5.2	83	447	1.92
		9:02	4.0	30.62	8.03	49,061	32.1	4.7	74	448	
		9:03	4.2	30.69	7.99	49,198	32.2	4.1	66	443	
		14:33	0.5	33.03	8.25	49,620	32.5	9.2	153	426	
		14:33	1.0	32.83	8.26	49,895	32.7	9.0	148	426	
M-10	8/31/20	14:34	2.0	32.48	8.12	50,408	33.1	6.8	112	421	1.27
		14:35	3.0	32.22	8.04	50,729	33.4	5.2	86	419	
		14:36	4.0	32.14	8.02	50,919	33.5	4.8	78	415	
		12:40	0.5	30.24	8.12	41,558	26.7	7.2	111	506	
		12:41	1.0	30.14	8.14	41,265	26.5	7.2	111	499	
M-10	9/23/20	12:42	2.0	29.99	8.02	42,341	27.3	6.4	99	492	1.22
		12:42	3.0	29.78	8.02	43,609	28.2	5.4	83	492	
		12:44	3.6	29.86	8.05	41,356	26.5	0.0	0	181	l

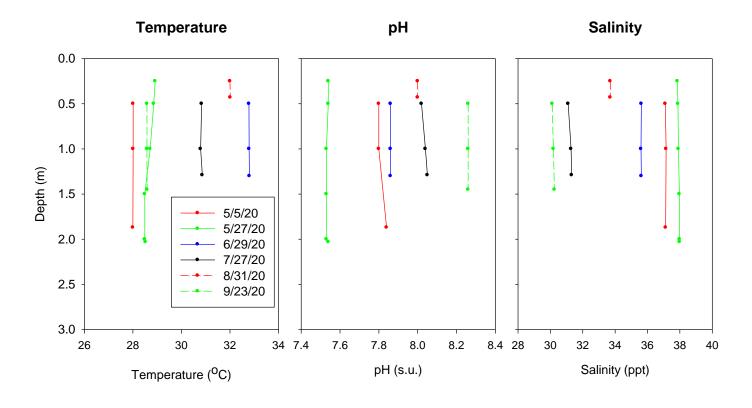
Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secci (m)
		11:50	0.5	28.47	7.82	56,497	37.6	7.4	117	431	
		11:50	1.0	28.43	7.82	56,509	37.6	7.4	118	431	
		11:51	2.0	28.34	7.81	56,491	37.6	7.1	113	431	
		11:52	3.0	27.92	7.76	56,517	37.7	6.2	97	430	
M-11	4/29/20	11:53	4.0	27.91	7.73	56,542	37.7	5.8	91	429	1.59
		11:53	5.0	27.84	7.71	56,532	37.7	5.3	84	428	
		11:54	6.0	27.78	7.70	56,575	37.7	5.1	81	428	
		11:55	7.0	27.73	7.67	56,612	37.7	4.4	70	426	
		11:56	7.6	27.69	7.59	47,815	31.2	2.8	43	135	
											•
		17:14	0.5	30.26	7.96	54,766	36.4	7.6	123	387	
		17:15	1.0	29.94	7.93	54,697	36.3	7.2	117	388	
		17:16	2.0	29.53	7.91	55,400	36.8	7.5	121	391	
		17:16	3.0	29.01	7.88	55,896	37.2	7.0	112	392	
M-11	5/27/20	17:17	4.0	28.79	7.81	56,120	37.4	5.9	95	390	2.31
		17:17	5.0	28.44	7.72	56,274	37.5	4.4	70	387	
		17:18	6.0	27.91	7.53	56,610	37.7	0.7	10	317	
		17:20	7.0	27.38	7.56	56,787	37.9	0.0	0	59	1
		17:20	7.8	27.31	7.55	45,382	29.5	0.0	0	23	
		0.05	0.5	00.45		F0.0=:	07.5	2.2	105	105	1
		9:00	0.5	32.46 32.45	7.94	53,271	35.2 35.2	6.3	105 105	438	-
		9:00	1.0		7.94	53,250		6.3		439	-
		9:01	2.0	32.69	7.93	53,502	35.4	6.2	104	439	-
		9:02	3.0	32.93	7.91	54,065	35.8	5.9	100	439	
	0/00/00	9:02	4.0	32.68	7.86	54,091	35.8	5.1	85	437	
M-11	6/30/20	9:04	4.0	32.66	7.85	54,074	35.8	5.0	84	438	2.8
		9:05	5.0	32.24	7.72	53,976	35.8	2.9	47	433	
		9:05	6.0	31.97	7.65	54,030	35.8	1.6	27	430	
		9:07	7.0	29.80	7.50	54,305	36.0	0.0	0	-21	1
		9:08	8.0	28.39	7.35	54,560	36.2	0.0	0	-99	
					7.55	34,300	30.2	0.0	U	-99	
		9:08	8.6	28.15	7.33	45,436	29.5	0.0	0	-124	
		9:08	8.6	28.15	7.33	45,436	29.5	0.0	0	-124	
		9:08	0.5	28.15	7.33 8.40	45,436 47,258	29.5	8.4	134	-124 429	-
		9:08 10:22 10:23	0.5 1.0	28.15 31.14 32.14	7.33 8.40 8.33	45,436 47,258 49,400	29.5 30.8 32.4	8.4 8.7	134 143	-124 429 428	-
		9:08 10:22 10:23 10:24	0.5 1.0 2.0	28.15 31.14 32.14 31.50	7.33 8.40 8.33 8.29	45,436 47,258 49,400 49,983	30.8 32.4 32.8	8.4 8.7 8.1	134 143 131	-124 429 428 427	-
		9:08 10:22 10:23 10:24 10:24	0.5 1.0 2.0 3.0	28.15 31.14 32.14 31.50 30.97	7.33 8.40 8.33 8.29 8.23	45,436 47,258 49,400 49,983 50,398	29.5 30.8 32.4 32.8 33.1	8.4 8.7 8.1 6.8	134 143 131 110	-124 429 428 427 425	-
M-11	7/28/20	9:08 10:22 10:23 10:24 10:24 10:25	0.5 1.0 2.0 3.0 4.0	31.14 32.14 31.50 30.97 30.87	7.33 8.40 8.33 8.29 8.23 8.13	45,436 47,258 49,400 49,983 50,398 50,772	30.8 32.4 32.8 33.1 33.4	8.4 8.7 8.1 6.8 4.7	134 143 131 110 76	-124 429 428 427 425 423	- 1.8
M-11	7/28/20	9:08 10:22 10:23 10:24 10:24 10:25 10:26	0.5 1.0 2.0 3.0 4.0 5.0	31.14 32.14 31.50 30.97 30.87 30.85	7.33 8.40 8.33 8.29 8.23 8.13 7.95	45,436 47,258 49,400 49,983 50,398 50,772 50,945	30.8 32.4 32.8 33.1 33.4 33.5	8.4 8.7 8.1 6.8 4.7	134 143 131 110 76 25	-124 429 428 427 425 423 416	1.84
M-11	7/28/20	9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0	31.14 32.14 31.50 30.97 30.87 30.85 30.85	8.40 8.33 8.29 8.23 8.13 7.95 7.86	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963	30.8 32.4 32.8 33.1 33.4 33.5 34.3	8.4 8.7 8.1 6.8 4.7 1.5	134 143 131 110 76 25 0	429 428 427 425 423 416 397	1.84
M-11	7/28/20	9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.85 30.40	8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9	8.4 8.7 8.1 6.8 4.7 1.5 0.0	134 143 131 110 76 25 0	-124 429 428 427 425 423 416 397 -22	- 1.84
M-11	7/28/20	9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.85 30.40 29.84	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2	8.4 8.7 8.1 6.8 4.7 1.5 0.0 0.0	134 143 131 110 76 25 0	-124 429 428 427 425 423 416 397 -22 -64	1.8
M-11	7/28/20	9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.85 30.40	8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9	8.4 8.7 8.1 6.8 4.7 1.5 0.0	134 143 131 110 76 25 0	-124 429 428 427 425 423 416 397 -22	1.8
M-11	7/28/20	9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.85 30.40 29.84	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2	8.4 8.7 8.1 6.8 4.7 1.5 0.0 0.0	134 143 131 110 76 25 0	-124 429 428 427 425 423 416 397 -22 -64	1.8
M-11	7/28/20	9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28 10:28	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4	0.0 8.4 8.7 8.1 6.8 4.7 1.5 0.0 0.0 0.0	134 143 131 110 76 25 0 0	-124 429 428 427 425 423 416 397 -22 -64 -84	1.84
M-11	7/28/20	9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28 10:28	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7	0.0 8.4 8.7 8.1 6.8 4.7 1.5 0.0 0.0 0.0 7.8 8.7	0 134 143 131 110 76 25 0 0 0	-124 429 428 427 425 423 416 397 -22 -64 -84	1.8-
M-11	7/28/20	9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28 10:28	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2	28.15 31.14 32.14 31.50 30.97 30.85 30.85 30.40 29.84 29.63 32.97 32.69 32.23	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044	29.5 30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4	0.0 8.4 8.7 8.1 6.8 4.7 1.5 0.0 0.0 0.0 7.8	0 134 143 131 110 76 25 0 0 0 0 130 144	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394	1.84
		9:08 10:22 10:23 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:22 13:23 13:23	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147	29.5 30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7	0.0 8.4 8.7 8.1 6.8 4.7 1.5 0.0 0.0 0.0 7.8 8.7 8.4 7.8	0 134 143 131 110 76 25 0 0 0 0 0 130 144 139 128	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397	-
M-11 M-11	7/28/20	9:08 10:22 10:23 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:22 13:23 13:23 13:24	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407	29.5 30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9	0.0 8.4 8.7 8.1 6.8 4.7 1.5 0.0 0.0 0.0 7.8 8.7 8.4 7.8 5.8	0 134 143 131 110 76 25 0 0 0 0 0 130 144 139 128 96	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397 397 397	-
		9:08 10:22 10:23 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:22 13:23 13:23 13:24 13:24	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29 32.45	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20 8.07	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407 52,145	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9 34.4	0.0 8.4 8.7 8.1 6.8 4.7 1.5 0.0 0.0 0.0 7.8 8.7 8.4 7.8 5.8 2.7	134 143 131 110 76 25 0 0 0 0 0 130 144 139 128 96 44	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397 397 397 392 384	-
		9:08 10:22 10:23 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:22 13:23 13:24 13:24 13:25	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29 32.45 32.13	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20 8.07 7.64	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407 52,145 53,406	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9 34.4 35.3	0.0 8.4 8.7 8.1 6.8 4.7 1.5 0.0 0.0 0.0 7.8 8.7 8.4 7.8 5.8 2.7 0.0	134 143 131 110 76 25 0 0 0 0 0 0 130 144 139 128 96 44	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397 397 392 384 359	-
		9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:22 13:23 13:24 13:24 13:25 13:26	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29 32.45 32.13 30.97	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20 8.07 7.64 7.22	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407 52,145 53,406 54,844	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9 34.4 35.3 36.4	7.8 8.4 7.8 8.1 6.8 4.7 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	134 143 131 110 76 25 0 0 0 0 0 0 130 144 139 128 96 44 0	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397 392 384 359 -58	-
		9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:22 13:23 13:24 13:24 13:25 13:26 13:26	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29 32.45 32.13 30.97 29.73	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20 8.07 7.64 7.22 7.24	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407 52,145 53,406 54,844 55,384	29.5 30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9 34.4 35.3 36.4 36.8	7.8 8.4 7.8 8.7 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	134 143 131 110 76 25 0 0 0 0 0 0 130 144 139 128 96 44 0	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397 397 397 392 384 359 -58 -98	-
		9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:22 13:23 13:24 13:24 13:25 13:26	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29 32.45 32.13 30.97	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20 8.07 7.64 7.22	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407 52,145 53,406 54,844	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9 34.4 35.3 36.4	7.8 8.4 7.8 8.1 6.8 4.7 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	134 143 131 110 76 25 0 0 0 0 0 0 130 144 139 128 96 44 0	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397 392 384 359 -58	-
		9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:22 13:23 13:24 13:24 13:25 13:26 13:27	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29 32.45 32.13 30.97 29.73 29.61	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20 8.07 7.64 7.22 7.24 7.29	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407 52,145 53,406 54,844 55,384 44,879	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9 34.4 35.3 36.4 36.8 29.1	7.8 8.4 7.8 8.7 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	134 143 131 110 76 25 0 0 0 0 0 130 144 139 128 96 44 0 0	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397 392 384 359 -58 -98 -110	-
		9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:23 13:23 13:24 13:24 13:25 13:26 13:26 13:27	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29 32.45 32.13 30.97 29.73 29.61	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20 8.07 7.64 7.22 7.24 7.29	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407 52,145 53,406 54,844 55,384 44,879	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9 34.4 35.3 36.4 36.8 29.1	7.8 8.4 7.8 8.7 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	134 143 131 110 76 25 0 0 0 0 0 130 144 139 128 96 44 0 0	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397 392 384 359 -58 -98 -110	-
		9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:22 13:23 13:24 13:24 13:25 13:26 13:27	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29 32.45 32.13 30.97 29.73 29.61	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20 8.07 7.64 7.22 7.24 7.29	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407 52,145 53,406 54,844 55,384 44,879	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9 34.4 35.3 36.4 36.8 29.1	7.8 8.4 7.8 8.7 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	134 143 131 110 76 25 0 0 0 0 0 130 144 139 128 96 44 0 0	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397 392 384 359 -58 -98 -110	-
		9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:22 13:23 13:24 13:24 13:25 13:26 13:27 12:56 12:57	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.3	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29 32.45 32.13 30.97 29.73 29.61	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20 8.07 7.64 7.22 7.24 7.29	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407 52,145 53,406 54,844 55,384 44,879	30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9 34.4 35.3 36.4 36.8 29.1	7.8 8.4 7.8 8.7 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	134 143 131 110 76 25 0 0 0 0 0 0 130 144 139 128 96 44 0 0 0	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397 392 384 359 -58 -98 -110	-
		9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:22 13:23 13:24 13:24 13:25 13:26 13:26 13:27	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.3	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29 32.45 32.13 30.97 29.73 29.61 29.41 29.42 30.50	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20 8.07 7.64 7.22 7.24 7.29 8.36 8.35 8.18	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407 52,145 53,406 54,844 55,384 44,879 45,445 45,501 47,240	29.5 30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9 34.4 35.3 36.4 36.8 29.1 29.5 29.5 30.8	7.8 8.4 7.8 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	134 143 131 110 76 25 0 0 0 0 0 0 130 144 139 128 96 44 0 0 0	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397 392 384 359 -58 -98 -110 376 379 372	2.6
M-11	9/1/20	9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:22 13:23 13:24 13:24 13:25 13:26 13:26 13:27 12:56 12:57 12:58	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.3	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29 32.45 32.13 30.97 29.73 29.61 29.41 29.42 30.50 30.82	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20 8.07 7.64 7.22 7.24 7.29 8.36 8.35 8.18 7.75	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407 52,145 53,406 54,844 55,384 44,879 45,445 45,501 47,240 48,484	29.5 30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9 34.4 35.3 36.4 36.8 29.1 29.5 29.5 30.8 31.7	7.8 8.4 7.8 8.7 8.7 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	134 143 131 110 76 25 0 0 0 0 0 0 130 144 139 128 96 44 0 0 0 0	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397 392 384 359 -58 -98 -110 376 379 372 346	2.6
M-11	9/1/20	9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:27 10:28 10:28 13:22 13:22 13:23 13:24 13:24 13:25 13:26 13:26 13:27 12:56 12:57 12:58 12:59	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.3	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29 32.45 32.13 30.97 29.73 29.61 29.41 29.42 30.50 30.82 30.68	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20 8.07 7.64 7.22 7.24 7.29 8.36 8.35 8.18 7.75 7.75	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407 52,145 53,406 54,844 55,384 44,879 45,445 45,501 47,240 48,484 49,382	29.5 30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9 34.4 35.3 36.4 36.8 29.1 29.5 29.5 30.8 31.7 32.4	7.8 8.4 7.8 8.7 8.7 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	134 143 131 110 76 25 0 0 0 0 0 0 130 144 139 128 96 44 0 0 0 0	-124 429 428 427 425 423 416 397 -22 -64 -84 391 394 397 397 392 384 359 -58 -98 -110 376 379 372 346 164	2.6
M-11	9/1/20	9:08 10:22 10:23 10:24 10:24 10:25 10:26 10:27 10:28 10:28 13:22 13:23 13:24 13:24 13:25 13:26 13:26 13:27 12:56 12:57 12:58 12:59 13:00	8.6 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.3	28.15 31.14 32.14 31.50 30.97 30.87 30.85 30.40 29.84 29.63 32.97 32.69 32.23 32.11 32.29 32.45 32.13 30.97 29.73 29.61 29.41 29.42 30.50 30.82 30.68 29.79	7.33 8.40 8.33 8.29 8.23 8.13 7.95 7.86 7.74 7.57 7.53 8.34 8.37 8.36 8.33 8.20 8.07 7.64 7.22 7.24 7.29 8.36 8.35 8.18 7.75 7.75 7.99	45,436 47,258 49,400 49,983 50,398 50,772 50,945 51,963 52,801 53,216 45,247 51,061 51,131 51,044 51,147 51,407 52,145 53,406 54,844 55,384 44,879 45,445 45,501 47,240 48,484 49,382 49,264	29.5 30.8 32.4 32.8 33.1 33.4 33.5 34.3 34.9 35.2 29.4 33.6 33.7 33.6 33.7 33.9 34.4 35.3 36.4 36.8 29.1 29.5 29.5 30.8 31.7 32.4 32.3	7.8 8.4 7.8 8.7 8.7 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	134 143 131 110 76 25 0 0 0 0 0 0 130 144 139 128 96 44 0 0 0 0	-124 429 428 427 425 423 416 397 -22 -64 -84 -84 391 394 397 397 392 384 359 -58 -98 -110 376 379 372 346 164 235	2.6

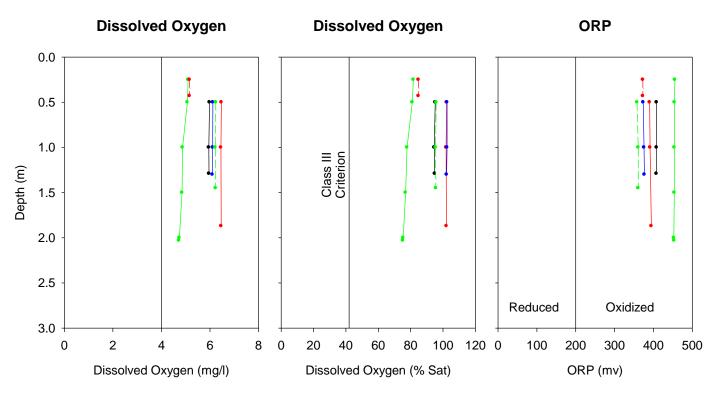
Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secchi (m)
		9:53	0.5	28.62	7.75	54,301	36.0	6.6	105	433	
		9:53	1.0	28.11	7.73	54,552	36.2	6.2	98	432	-
M-12	5/5/20	9:54	2.0	28.01	7.75	54,924	36.5	5.6	88	435	1.89
		9:55	3.0	27.85	7.71	55,049	36.6	5.0	79	433	
		9:55	3.6	27.80	7.69	54,988	36.5	4.6	73	432	
		19:19	0.5	30.32	7.93	54,734	36.3	9.9	161	449	
M 40	F/00/00	19:19	1.0	29.34	7.87	54,864	36.4	8.7	139	447	0.00
M-12	5/26/20	19:20	2.0	28.52	7.76	55,333	36.8	6.4	101	444	0.89
		19:21	2.8	28.36	7.42	55,101	36.6	4.3	68	187	
											•
		17:17	0.5	34.29	8.15	51,710	34.1	10.7	181	431	
	M-12 6/29/20	17:17	1.0	33.71	8.05	51,896	34.2	8.9	150	429	1
M-12		17:18	2.0	32.79	7.87	52,897	35.0	5.8	97	422	2.08
		17:19	2.2	32.74	7.91	52,875	34.9	5.5	91	353	
		11:02	0.5	31.00	8.18	46,235	30.1	7.3	117	453	
		11:02	1.0	31.26	8.17	46,843	30.5	7.1	113	454	
M-12	7/27/20	11:03	2.0	30.60	8.05	47,812	31.2	5.1	80	450	1.67
		11:04	3.0	30.39	7.90	48,011	31.4	2.3	37	444	
		11:04	3.2	30.41	7.89	48,065	31.4	2.0	31	390	
											•
		17:39	0.5	32.70	8.10	49,915	32.8	6.7	111	419	
M 40	0/04/00	17:39	1.0	32.64	8.10	50,116	32.9	6.7	111	419	1 440
M-12	8/31/20	17:40	2.0	32.39	8.02	50,508	33.2	5.3	88	415	1.48
		17:41	3.0	32.19	7.72	50,753	33.4	4.3	70	142	
		15:08	0.5	30.31	8.27	38,954	24.8	8.0	122	466	
M-12	9/23/20	15:09	1.0	30.29	8.34	39,764	25.4	9.1	139	468	0.92
IVI-12	9/23/20	15:09	2.0	29.68	8.04	43,909	28.4	4.4	68	455	0.92
		15:11	3.0	29.53	8.17	28,339	17.4	4.9	70	221	

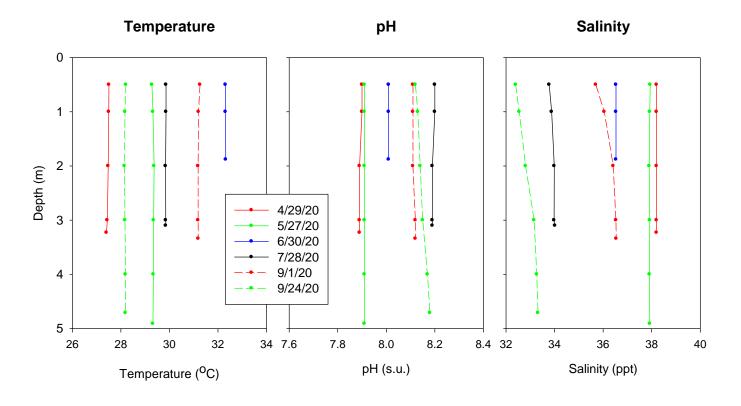

Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secchi (m)
		11:13	0.5	29.43	7.64	55,484	36.9	5.8	94	422	
		11:13	1.0	28.48	7.63	55,418	36.8	6.0	95	423	
M-13	5/5/20	11:14	2.0	27.95	7.64	55,638	37.0	5.4	86	423	1.36
		11:15	3.0	27.49	7.58	55,541	36.9	5.3	84	421	
		11:16	3.8	27.30	7.39	55,916	37.2	1.6	24	370	
		9:41	0.5	28.64	7.59	55,864	37.2	5.8	91	467	
		9:41	1.0	28.71	7.59	55,822	37.1	5.4	86	467	
M-13	5/27/20	9:42	2.0	28.56	7.57	55,925	37.2	5.0	80	465	0.84
		9:42	3.0	28.49	7.51	55,952	37.2	4.1	65	463	
		9:43	3.2	28.54	7.49	50,155	32.9	3.9	60	461	
		18:20	0.5	34.00	8.11	52,665	34.8	10.0	170	405	
		18:20	1.0	33.93	8.10	52,728	34.8	10.1	171	409	
M-13	6/29/20	18:21	2.0	32.61	7.92	53,498	35.4	6.9	115	403	1.72
		18:22	3.0	32.35	7.84	53,487	35.4	5.5	91	397	
		18:22	3.3	32.25	7.66	42,592	27.4	2.6	41	336	
		12:02	0.5	31.17	8.18	45,951	29.9	7.5	120	431	
M-13	7/27/20	12:03	1.0	31.18	8.17	46,375	30.2	7.6	120	432	1.36
IVI- 13	1121120	12:04	2.0	30.59	8.06	48,248	31.5	5.4	86	429	1.30
		12:06	2.9	30.53	7.92	50,093	32.9	0.0	0	34	
		18:32	0.5	32.28	8.11	50,476	33.2	6.4	105	376	
		18:33	1.0	32.17	8.06	50,544	33.2	5.6	92	377	
M-13	8/31/20	18:34	2.0	31.96	7.98	50,699	33.3	4.5	74	376	1.33
		18:34	3.0	31.85	7.88	50,940	33.5	3.1	50	359	
		18:35	3.2	31.85	7.97	51,016	33.6	3.0	49	156	
		15:57	0.5	30.57	8.33	40,791	26.1	8.9	138	444	
		15:57	1.0	29.98	8.30	41,613	26.7	8.1	125	443	
M-13	9/23/20	15:58	2.0	29.47	8.17	43,754	28.3	6.1	94	438	1.63
		15:59	3.0	30.30	7.73	46,891	30.5	0.0	0	17	
		16:00	3.3	30.57	7.38	47,103	30.7	0.0	0	-50	

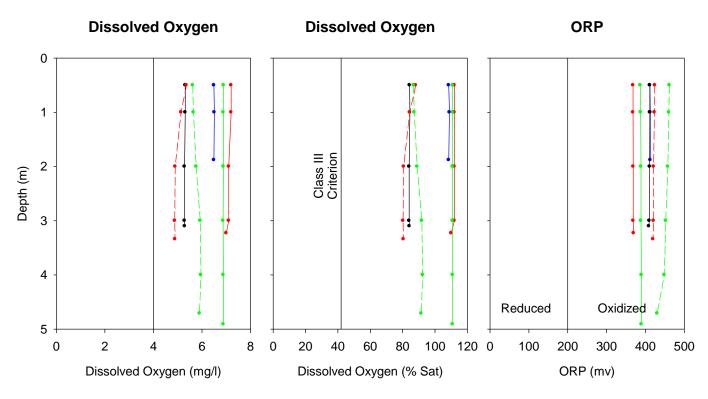

Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secchi (m)
	i i	13:39	0.5	29.03	7.85	43,663	28.2	8.8	135	322	
		13:40	1.0	28.51	7.83	44,097	28.5	8.6	131	324	
	4/00/00	13:41	2.0	28.31	7.82	44,135	28.5	8.3	126	325	
M-14	4/29/20	13:41	3.0	27.41	7.70	44,591	28.9	5.5	82	320	0.83
		13:42	4.0	27.41	7.68	44,374	28.7	4.7	70	318	
		13:43	4.0	27.37	7.64	44,445	28.8	3.1	47	167	
											•
		15:50	0.5	30.40	7.81	54,865	36.4	7.7	126	447	
		15:50	1.0	30.13	7.80	55,013	36.5	7.6	123	447	
M-14	5/27/20	15:51	2.0	29.44	7.76	55,589	37.0	6.4	103	446	1.54
		15:51	3.0	28.82	7.69	55,876	37.2	4.9	78	444	
		15:52	3.9	28.79	7.49	55,728	37.1	1.9	30	431	
		10:09	0.5	32.86	7.99	53,030	35.1	6.2	104	379	
		10:09	1.0	32.84	7.99	53,046	35.1	6.4	106	381	
	0/00/00	10:10	2.0	33.18	7.95	54,020	35.8	5.2	88	379	4.04
M-14	6/30/20	10:11	3.0	32.80	7.90	54,168	35.9	3.8	64	274	1.61
		10:11	4.0	32.71	7.90	54,227	35.9	3.8	64	272	
		10:12	4.2	32.70	7.80	43,126	27.8	3.8	60	112	
		8:57	0.5	30.45	8.05	48,483	31.7	6.3	100	464	
		8:57	1.0	31.55	8.09	50,162	32.9	5.9	96	463	
	7/00/00	8:58	2.0	30.99	8.06	50,782	33.4	5.0	80	460	4.04
M-14	7/28/20	8:59	3.0	30.63	8.02	51,346	33.8	3.9	62	457	1.84
		9:00	4.0	30.56	8.04	51,524	33.9	4.2	68	456	
		9:01	4.2	30.57	8.05	51,516	33.9	4.2	68	444	
											•
		12:15	0.5	32.77	8.12	51,335	33.8	5.4	89	410	
		12:15 12:16	0.5 1.0	32.77 32.26	8.12 8.18	51,335 51,298	33.8 33.8	5.4 6.3	89 103	410 412	
M 44	0/4/00										2.24
M-14	9/1/20	12:16	1.0	32.26	8.18	51,298	33.8	6.3	103	412	2.31
M-14	9/1/20	12:16 12:17	1.0 2.0	32.26 32.29	8.18 8.12	51,298 51,401	33.8 33.9	6.3 5.2	103 86	412 410	2.31
M-14	9/1/20	12:16 12:17 12:17	1.0 2.0 3.0	32.26 32.29 32.09	8.18 8.12 8.14	51,298 51,401 51,569	33.8 33.9 34.0	6.3 5.2 5.4	103 86 88	412 410 411	2.31
M-14	9/1/20	12:16 12:17 12:17 12:18	1.0 2.0 3.0 4.0	32.26 32.29 32.09 32.56	8.18 8.12 8.14 8.14	51,298 51,401 51,569 52,513	33.8 33.9 34.0 34.7	6.3 5.2 5.4 0.0	103 86 88 0	412 410 411 240	2.31
M-14	9/1/20	12:16 12:17 12:17 12:18	1.0 2.0 3.0 4.0	32.26 32.29 32.09 32.56	8.18 8.12 8.14 8.14	51,298 51,401 51,569 52,513	33.8 33.9 34.0 34.7	6.3 5.2 5.4 0.0	103 86 88 0	412 410 411 240	2.31
M-14	9/1/20	12:16 12:17 12:17 12:18 12:19	1.0 2.0 3.0 4.0 4.2	32.26 32.29 32.09 32.56 32.57	8.18 8.12 8.14 8.14 7.85	51,298 51,401 51,569 52,513 39,132	33.8 33.9 34.0 34.7 25.0	6.3 5.2 5.4 0.0 0.0	103 86 88 0	412 410 411 240 37	2.31
M-14 M-14	9/1/20	12:16 12:17 12:17 12:18 12:19	1.0 2.0 3.0 4.0 4.2	32.26 32.29 32.09 32.56 32.57	8.18 8.12 8.14 8.14 7.85	51,298 51,401 51,569 52,513 39,132	33.8 33.9 34.0 34.7 25.0	6.3 5.2 5.4 0.0 0.0	103 86 88 0 0	412 410 411 240 37	2.31
		12:16 12:17 12:17 12:18 12:19 12:00 12:00	1.0 2.0 3.0 4.0 4.2	32.26 32.29 32.09 32.56 32.57 29.67 30.14	8.18 8.12 8.14 8.14 7.85 8.24 8.18	51,298 51,401 51,569 52,513 39,132 46,762 48,021	33.8 33.9 34.0 34.7 25.0 30.5 31.4	6.3 5.2 5.4 0.0 0.0 7.2 6.2	103 86 88 0 0	412 410 411 240 37 440 437	

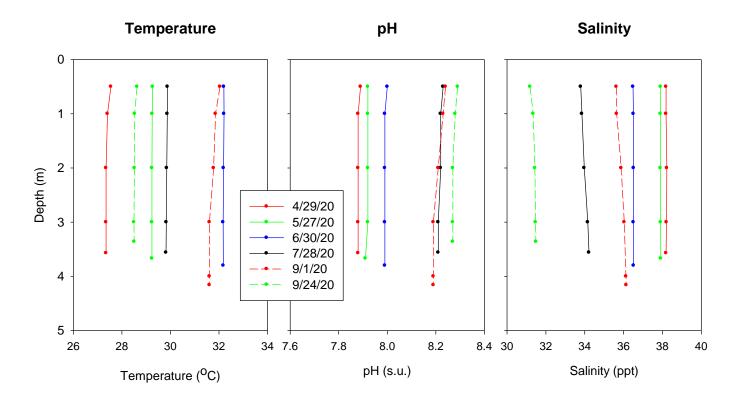
Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secchi (m)
		13:03	0.5	27.97	7.78	42,575	27.4	6.9	103	289	
		13:04	1.0	27.93	7.78	42,736	27.5	6.9	103	294	
		13:05	2.0	27.73	7.78	43,011	27.7	6.8	102	298	
M-15	4/29/20	13:06	3.0	27.60	7.77	43,106	27.8	6.6	99	300	0.98
		13:06	4.0	27.52	7.76	43,170	27.8	6.5	97	301	
		13:07	5.0	27.46	7.75	43,187	27.9	6.3	94	303	
		13:07	5.2	27.47	7.74	43,161	27.8	6.2	91	303	
		16:15	0.5	30.27	7.79	55,619	37.0	6.3	102	437	
		16:16	1.0	29.80	7.79	55,835	37.1	6.2	100	438	
		16:16	2.0	29.66	7.76	55,643	37.0	5.8	94	438	
14.45	5/07/00	16:17	3.0	29.42	7.76	55,795	37.1	5.7	92	439	4.00
M-15	5/27/20	16:18	4.0	29.30	7.75	55,784	37.1	5.6	91	440	1.39
		16:19	5.0	29.23	7.74	55,802	37.1	5.5	87	440	
		16:19	6.0	29.18	7.73	55,871	37.2	5.4	86	440	
		16:20	6.6	29.12	7.73	55,914	37.2	5.3	85	440	
		10.20	0.0	20.12		33,311	0.12	0.0	30		
	т п	9:54	0.5	32.85	7.97	53,480	35.4	5.5	93	401	Τ
		9:55	1.0	32.78	7.97	53,673	35.5	5.5	91	400	
		9:56	2.0	32.65	7.97	54,069	35.8	5.2	87	398	
		9:57	3.0	32.57	7.97	54,225	35.9	5.1	85	397	
M-15	6/30/20										2.11
IVI- 13	0/30/20	9:57	4.0	32.55 32.54	7.96 7.95	54,303	36.0	5.0	84	396	2.11
		9:58	5.0			54,315	36.0	4.8	80	396	
		9:58	6.0	32.52	7.94	54,375	36.1	4.4	74	395	
		9:59	7.0	32.51	7.93	54,414	36.1	4.3	72	394	
		9:59	7.7	32.50	7.91	54,405	36.1	4.0	67	252	
					- 1-						1
		9:10	0.5	30.76	8.13	49,008	32.1	6.0	95	412	_
		9:11	1.0	30.78	8.13	49,622	32.5	5.8	93	412	
		9:11	2.0	30.46	8.16	50,600	33.3	5.6	90	412	
M-15	7/28/20	9:12	3.0	30.33	8.13	51,473	33.9	5.0	81	411	1.86
		9:13	4.0	30.31	8.12	51,797	34.2	4.7	76	409	
		9:13	5.0	30.30	8.12	51,893	34.2	4.6	74	409	
		9:14	5.6	30.30	8.11	51,911	34.2	4.6	74	408	
		12:30	0.5	32.31	8.14	51,619	34.0	4.7	78	352	
		12:30	1.0	32.17	8.14	51,634	34.0	4.7	77	355	
		12:30	2.0	31.99	8.13	51,686	34.1	4.6	76	358	1
M-15	9/1/20	12:31	3.0	31.83	8.12	51,844	34.2	4.4	73	359	1.11
		12:31	4.0	31.77	8.12	51,844	34.2	4.3	70	361	1
		12:32	5.0	31.76	8.12	51,922	34.2	4.3	71	363	1
		12:33	5.8	31.70	8.12	51,990	34.3	4.3	70	364	
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
		12:14	0.5	30.05	8.24	46,930	30.6	6.7	106	331	I
		12:14	1.0	30.09	8.22	47,487	31.0	6.2	98	333	1
		12:15	2.0	29.73	8.19	49,023	32.1	5.0	80	334	1
M-15	9/24/20	12:16	3.0	29.73	8.18	49,023	32.1	4.6	73	334	1.32
IVI- I J	3124120	12:16	4.0			49,465		4.6		335	1.32
		12:16		29.48 29.39	8.18 8.17	49,524	32.5		74 68	335	-
			5.0			· · · · · · · · · · · · · · · · · · ·	32.7	4.3			-
	1 1	12:17	5.2	29.40	8.17	49,846	32.7	4.3	67	336	1

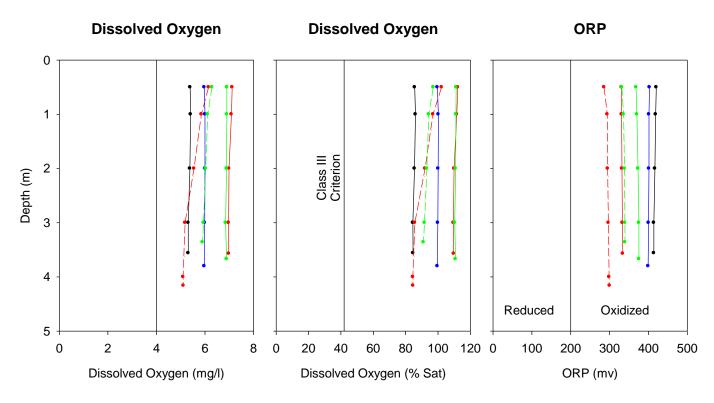

Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secchi (m)
		11:17	0.5	27.19	7.69	56,840	37.9	6.2	97	478	
		11:18	1.0	27.18	7.69	56,854	37.9	6.2	97	477	
		11:19	2.0	27.17	7.69	56,838	37.9	6.1	96	475	
M-16	4/29/20	11:20	3.0	27.20	7.70	56,809	37.9	6.2	97	475	1.14
		11:20	4.0	27.15	7.72	56,868	37.9	6.1	96	475	
		11:22	5.0	27.15	7.72	56,864	37.9	6.2	97	473	
		11:23	6.0	27.15	7.71	56,850	37.9	6.2	96	471	
		16:56	0.5	29.73	7.91	56,167	37.4	6.7	109	363	
		16:57	1.0	29.43	7.90	56,246	37.5	6.6	107	367	
M-16	5/27/20	16:57	2.0	29.20	7.89	56,281	37.5	6.5	105	370	1.82
IVI- 10	0/21/20	16:58	3.0	29.01	7.88	56,334	37.5	6.4	103	372	1.02
		16:58	4.0	28.99	7.88	56,356	37.5	6.3	101	373	
		16:59	4.7	28.84	7.87	56,442	37.6	6.2	99	374	
		8:42	0.5	32.42	7.88	54,395	36.1	5.7	95	458	
		8:42	1.0	32.43	7.88	54,424	36.1	5.7	95	457	
M-16	6/30/20	8:43	2.0	32.20	7.86	54,644	36.3	5.4	91	455	1.59
		8:44	3.0	32.16	7.86	54,690	36.3	5.3	87	454	
		8:44	3.3	32.15	7.86	54,701	36.3	5.3	88	454	
		10:00	0.5	30.88	8.28	48,127	31.5	7.1	113	419	
		10:00	1.0	30.84	8.26	48,714	31.9	6.9	110	418	
		10:01	2.0	30.85	8.25	48,968	32.1	6.7	108	419	
		10:01	3.0	30.70	8.22	49,399	32.4	6.3	101	418	
M-16	7/28/20	10:02	4.0	30.65	8.22	49,855	32.7	6.1	98	418	1.39
IVI-10	1/20/20	10:03	5.0	30.61	8.21	50,137	32.9	5.9	95	418	1.55
		10:03	6.0	30.49	8.19	50,649	33.3	5.7	92	418	
		10:04	7.0	30.46	8.18	50,725	33.4	5.7	91	417	
		10:05	8.0	30.42	8.17	50,900	33.5	5.5	89	417	
		10:06	8.4	30.42	8.18	50,872	33.5	5.5	88	416	
		13:04	0.5	32.13	8.16	51,670	34.1	5.4	89	362	
		13:04	1.0	32.06	8.15	51,898	34.2	5.3	87	368	
M-16	9/1/20	13:05	2.0	31.56	8.11	52,655	34.8	4.5	75	368	1.54
		13:06	3.0	31.44	8.09	53,309	35.3	4.2	69	369	
		13:06	3.9	31.43	8.09	53,426	35.4	4.1	68	370	
		13:16	0.5	29.71	8.27	46,467	30.2	6.6	103	296	
		13:17	1.0	29.80	8.25	47,006	30.6	5.8	91	301	
		13:18	2.0	29.76	8.23	47,414	30.9	5.4	86	300	
M-16	9/24/20	13:18	3.0	29.63	8.21	48,106	31.4	5.0	79	300	1.52
		13:19	4.0	29.55	8.19	48,711	31.9	4.5	71	300	
		13:20	5.0	29.53	8.19	48,821	32.0	4.5	71	301	
	1	13:20	5.3	29.52	8.18	48,862	32.0	4.5	70	301	1

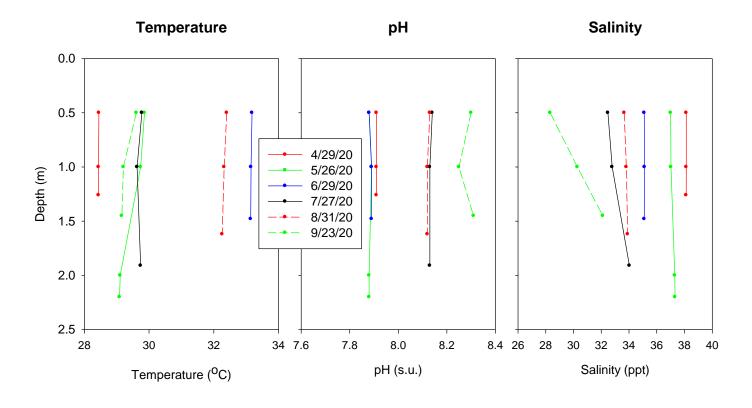

Site	Date	Time	Depth (m)	Temp. (°C)	pH (s.u.)	Cond. (µmho/cm)	Salinity (ppt)	Diss. O ₂ (mg/L)	Diss. O ₂ (% Sat.)	ORP (mV)	Secch (m)
		12:29	0.5	27.93	7.81	56,885	37.9	6.6	105	310	
		12:30	1.0	27.91	7.81	56,911	37.9	6.6	105	315	
		12:31	2.0	27.80	7.80	56,940	38.0	6.7	105	317	
		12:32	3.0	27.69	7.80	56,923	38.0	6.6	105	319	
M-17	4/29/20	12:33	4.0	26.96	7.77	56,930	38.0	6.0	93	320	1.07
		12:33	5.0	26.70	7.76	56,935	38.0	5.7	88	321	
		12:34	6.0	26.62	7.75	56,943	38.0	5.5	86	322	
		12:35	7.0	26.53	7.74	56,989	38.0	5.2	81	322	
		12:35	7.2	26.56	7.74	42,977	27.7	4.8	70	322	
		16:27	0.5	29.94	7.80	56,035	37.3	6.7	109	449	
		16:27	1.0	29.71	7.80	56,033	37.3	6.7	108	450	
		16:28	2.0	29.31	7.78	56,014	37.3	6.4	102	449	
		16:29	3.0	28.96	7.78	56,105	37.3	6.3	100	450	
M-17	5/27/20		4.0	28.69	7.74	56,159	37.4	5.6	90	449	1.36
		16:30	5.0	28.42	7.74	56,181	37.4	4.8	76	447	
		16:30	6.0	27.81	7.70	56,270	37.4	3.5	55	447	
		16:31	7.0	27.83	7.02	49,217	32.3	0.0	0	104	
		16:33	7.0	21.03	7.44	49,217	32.3	0.0	U	104	
	T	9:43	0.5	0.00	8.04	54,258	35.9	6.2	103	394	I
		9:44	1.0	32.62	8.04	54,227	35.9	6.1	102	394	
		9:44	2.0	32.47	8.02	54,264	36.0	5.7	95	393	
M-17	6/30/20	9:45	3.0	32.56	7.98	54,486	36.1	5.0	84	390	1.42
	1	9:46	4.0	32.43	7.95	54,491	36.1	4.3	71	386	
		9:46	5.0	32.23	7.89	54,521	36.2	3.1	52	380	
		9:47	6.0	32.12	7.86	54,464	36.1	2.4	40	211	-
		9:20	0.5	30.34	8.20	50,991	33.6	6.0	95	423	
		9:21	1.0	30.29	8.20	51,126	33.7	6.0	97	423	
		9:21	2.0	30.13	8.20	51,324	33.8	5.9	94	422	
M-17	7/28/20	9:22	3.0	30.22	8.09	51,873	34.2	4.4	71	415	2.47
		9:22	4.0	30.04	8.04	51,726	34.1	3.5	55	411	
		9:23	5.0	29.90	7.99	52,143	34.4	2.6	41	408	
		9:24	5.7	29.78	7.94	51,761	34.1	1.9	30	406	
		12:39	0.5	32.32	8.15	51,592	34.0	5.0	83	371	l
		12:40	1.0	32.03	8.15	51,651	34.0	5.1	85	374	
		12:40	2.0	31.91	8.15	51,811	34.2	5.1	83	376	
		12:41	3.0	31.77	8.12	51,875	34.2	4.5	75	375	
M-17	9/1/20	12:42	4.0	31.62	8.13	51,895	34.2	4.6	76	377	1.11
	5, 1,20	12:42	5.0	31.39	8.06	52,156	34.4	3.0	48	361	l '''
		12:42	6.0	31.39	8.07	52,130	34.4	2.4	39	271	-
		12:43	7.0	31.32	8.04	52,478	34.7	1.1	18	202	
		12:44	7.3	31.29	8.06	43,121	27.8	0.0	0	71	
			1								
					8.26	48,813	32.0	6.3	100	358	
		12:24	0.5	29.57						000	
		12:25	1.0	29.54	8.26	48,854	32.0	6.4	100	360	
		12:25 12:25	1.0 2.0	29.54 29.53	8.26 8.26	48,866	32.0	6.4	100	362	
M-17	9/24/20	12:25 12:25 12:26	1.0 2.0 3.0	29.54 29.53 29.45	8.26 8.26 8.27	48,866 48,909	32.0 32.0	6.4 6.5	100 102	362 363	1 37
M-17	9/24/20	12:25 12:25 12:26 12:26	1.0 2.0	29.54 29.53 29.45 29.31	8.26 8.26 8.27 8.24	48,866 48,909 49,112	32.0 32.0 32.1	6.4	100 102 56	362	1.37
M-17	9/24/20	12:25 12:25 12:26	1.0 2.0 3.0 4.0 5.0	29.54 29.53 29.45 29.31 29.12	8.26 8.26 8.27 8.24 8.21	48,866 48,909 49,112 49,428	32.0 32.0 32.1 32.2	6.4 6.5 3.9 1.8	100 102 56 25	362 363	1.37
M-17	9/24/20	12:25 12:25 12:26 12:26	1.0 2.0 3.0 4.0	29.54 29.53 29.45 29.31	8.26 8.26 8.27 8.24	48,866 48,909 49,112	32.0 32.0 32.1	6.4 6.5 3.9	100 102 56	362 363 361	1.37

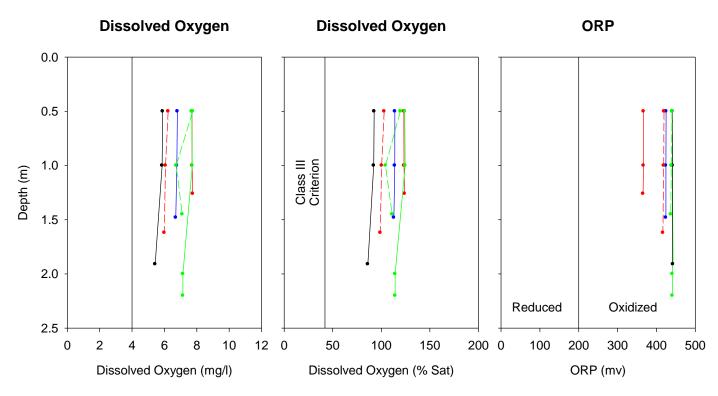


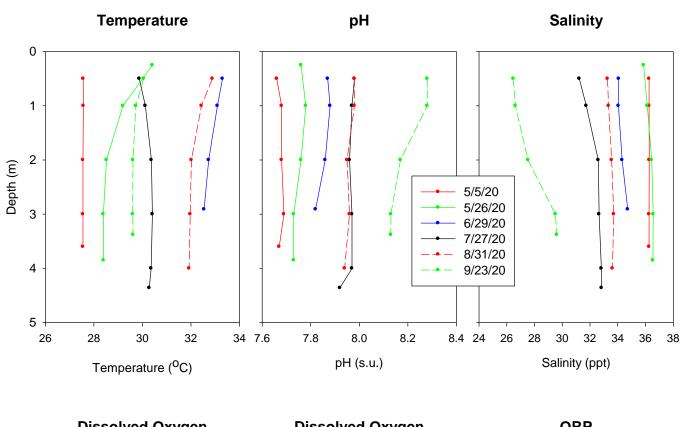

Vertical Field Profiles Collected in Marco Island at Site M-1.

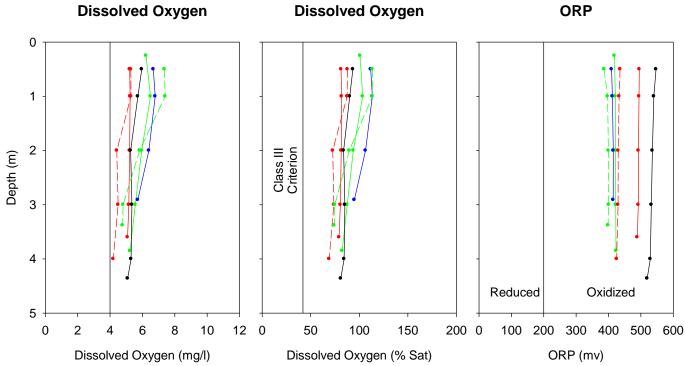


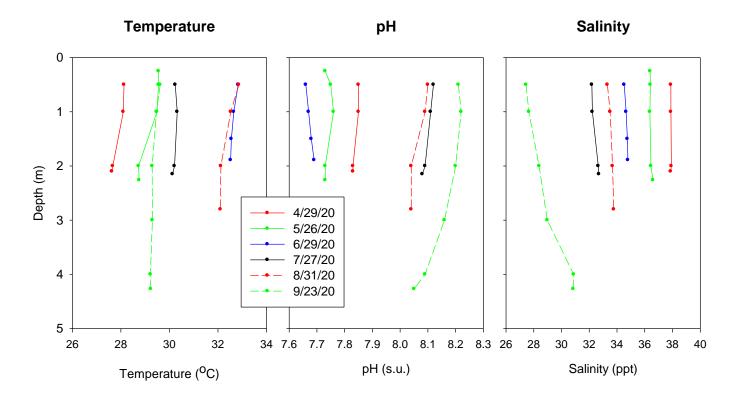

Vertical Field Profiles Collected in Marco Island at Site M-2.

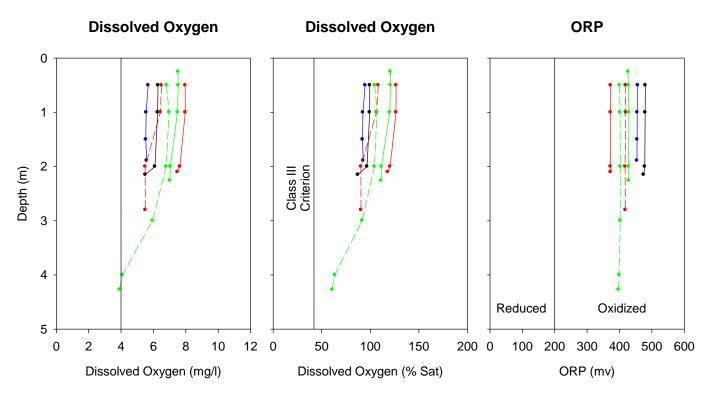


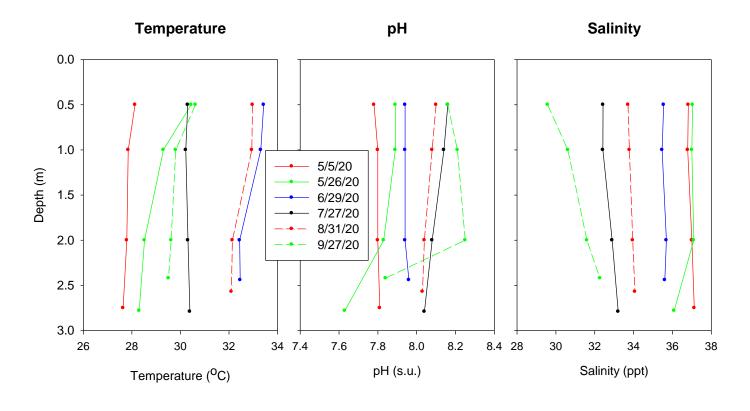

Vertical Field Profiles Collected in Marco Island at Site M-3.

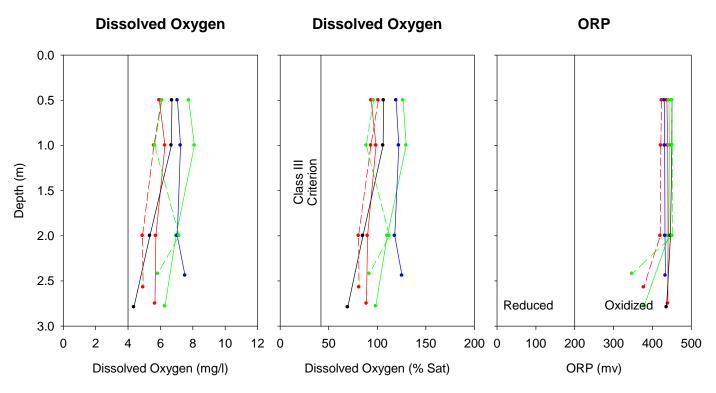


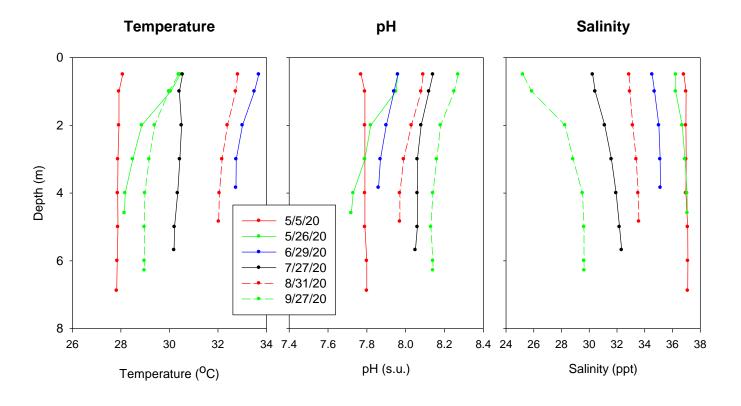

Vertical Field Profiles Collected in Marco Island at Site M-4.



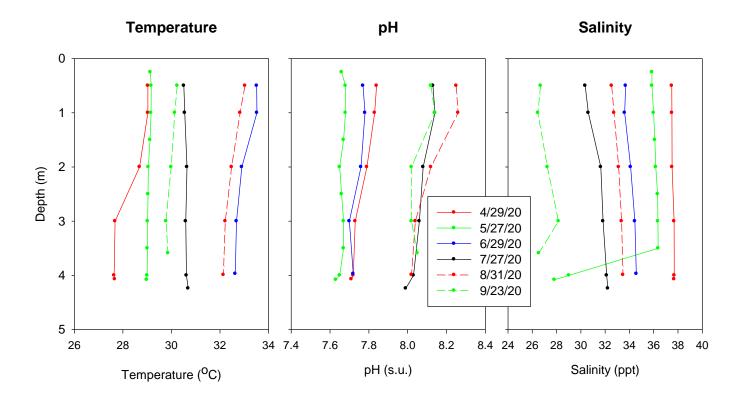

Vertical Field Profiles Collected in Marco Island at Site M-5.

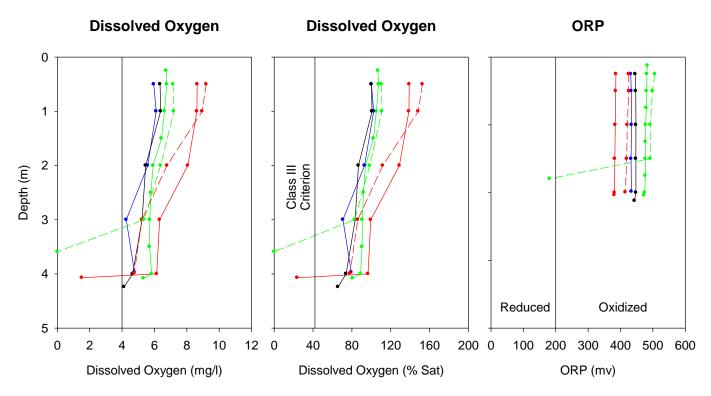


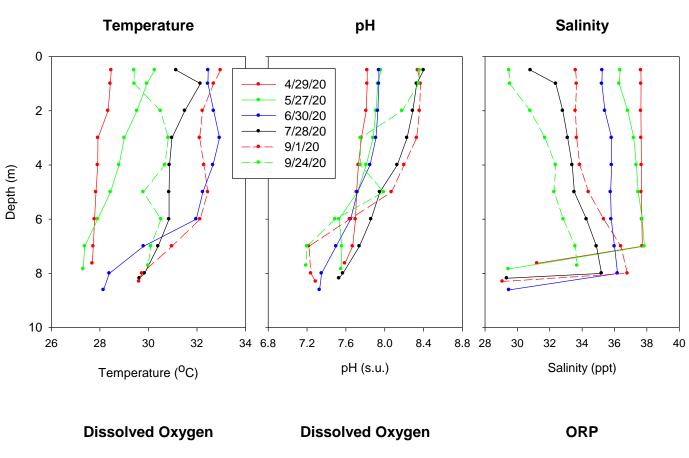

Vertical Field Profiles Collected in Marco Island at Site M-6.

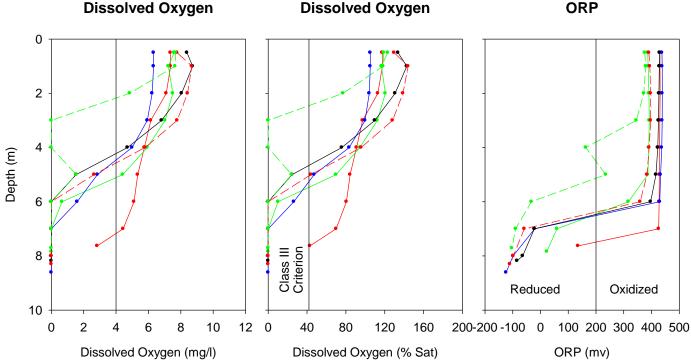


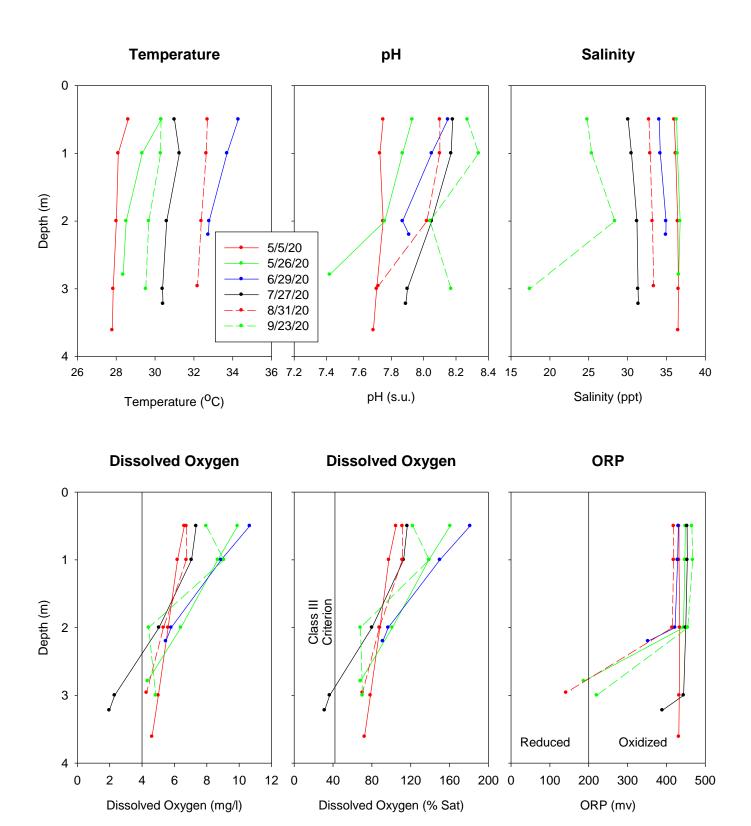

Vertical Field Profiles Collected in Marco Island at Site M-7.



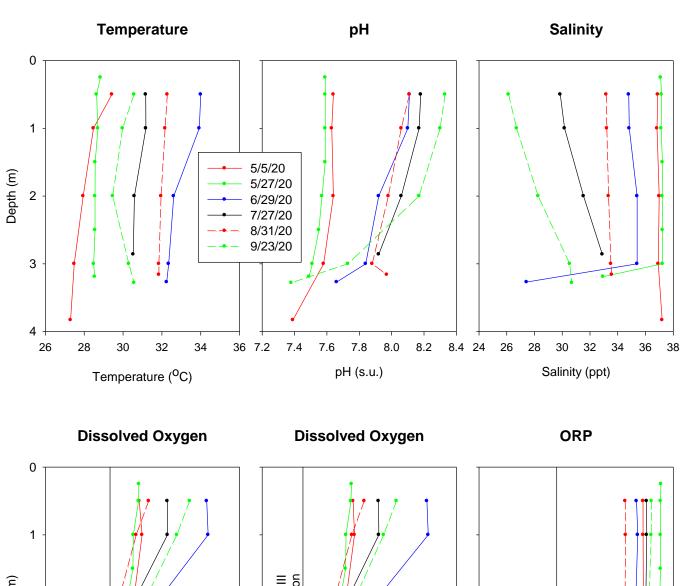

Vertical Field Profiles Collected in Marco Island at Site M-8.

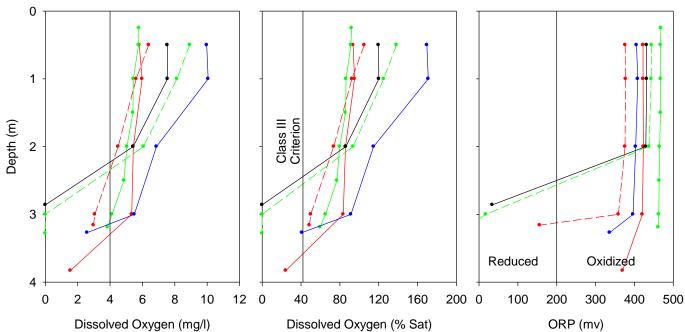



Vertical Field Profiles Collected in Marco Island at Site M-9.

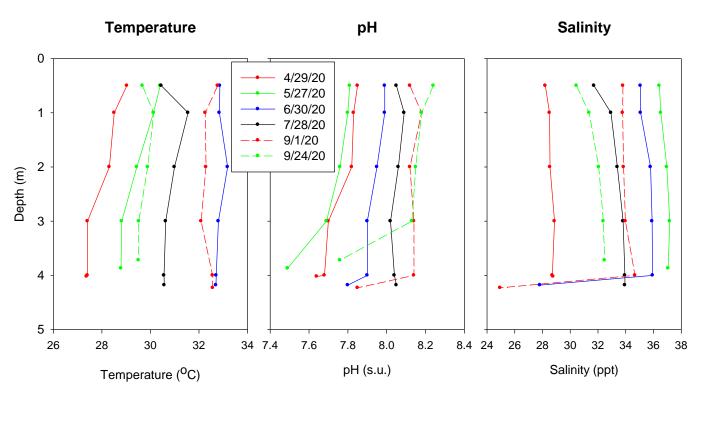


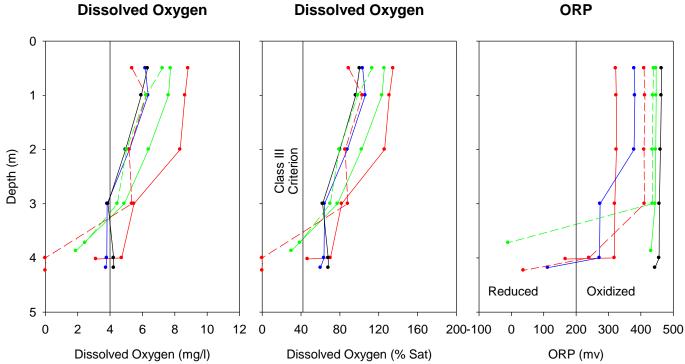
Vertical Field Profiles Collected in Marco Island at Site M-10.

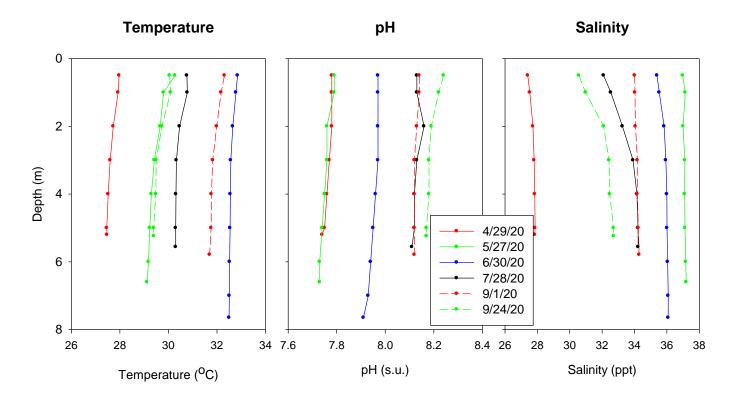


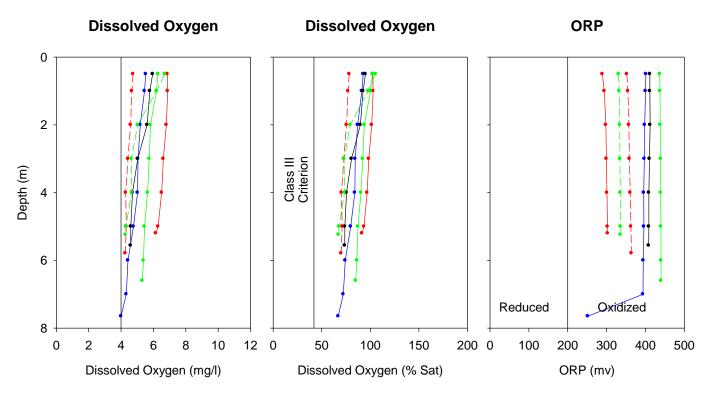


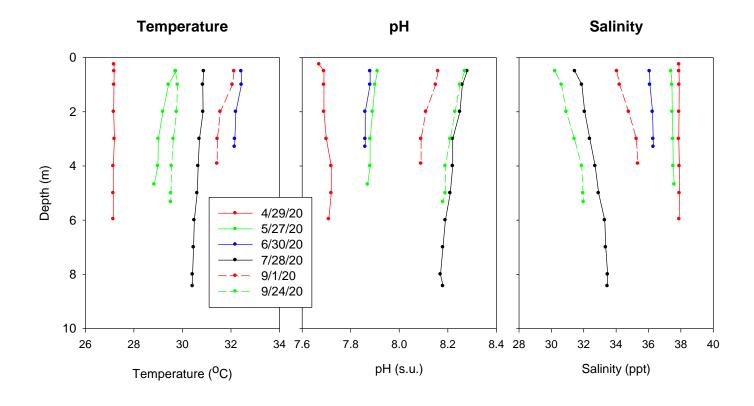
Vertical Field Profiles Collected in Marco Island at Site M-11.

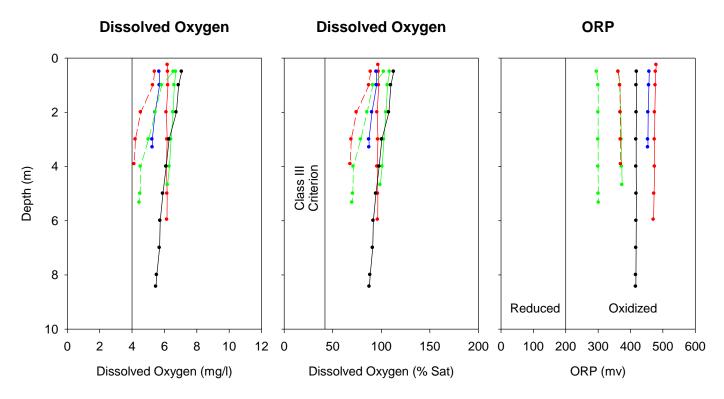


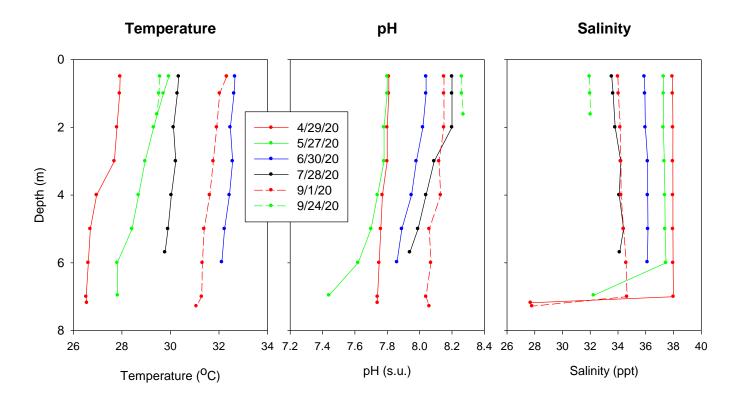

Vertical Field Profiles Collected in Marco Island at Site M-12.

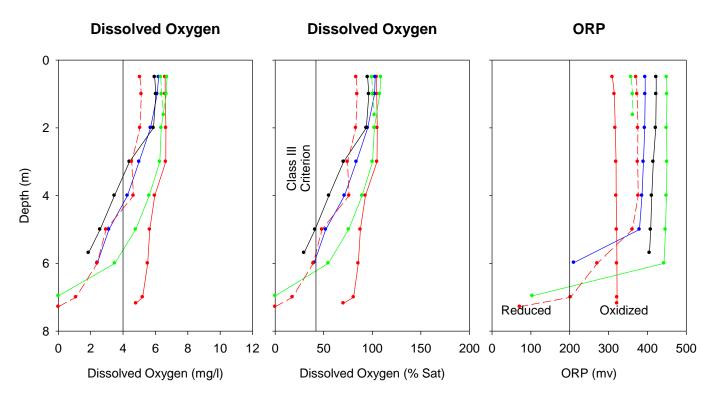



Vertical Field Profiles Collected in Marco Island at Site M-13.




Vertical Field Profiles Collected in Marco Island at Site M-14.




Vertical Field Profiles Collected in Marco Island at Site M-15.

Vertical Field Profiles Collected in Marco Island at Site M-16.

Vertical Field Profiles Collected in Marco Island at Site M-17.

Water Quality Characteristics of Surface Water Samples Collected at Marco Island from April - September 2020

Chyl-a (ug/L)	(F3' L)	6.2	10.1	18.1	11.7	16.6	14.4	2.5	18.1	10.4	9.6	10.4	16.6	16.4	32.3	12.4	9.6	32.3	14.9	6.1	5.2	8.6	12.9	16.1	8.5	C	5.7 16.1	- - - - -	25	6.4	5.5	8.6	7.1	8.4	12.8	5.5	12.8	7.8
Color (Pt-Co)	(20)		4	0	9	တ	4	_	41	2	12	13	7	16	15	10	7	16	12	-	23	_	4	4	9	-	- %	2	۲	_	23	-	4	က	6	1	23	4
Turbidity (NTU)	(0)	7.0	6.4	3.1	6.2	4.8	2.5	က	9	4	7.5	7.9	2.6	9.6	26.8	2.7	က	27	7	2.2	2.8	1.9	9.1	0.5	2.8	,	- σ	0 0	1	3.9	3.0	3.0	2.8	0.5	5.3	1	9	3
Diss. TP (ua/L)	T	c ;	131	80	48	72	69	45	131	69	88	102	144	123	75	78	75	144	66	25	71	107	105	80	107	Ę.	107	2 2	5	46	8	93	108	92	84	46	108	79
Total P (ug/L)	(F3/ L)	/6	149	96	99	77	77	22	149	83	141	153	161	145	178	132	132	178	151	75	66	184	118	180	173	32	187	13.1	2	75	109	153	135	06	173	75	173	117
Part. P (ug/L)	(F3/L)	2 9	18	16	18	2	80	2	18	12	23	21	17	22	103	75	17	103	42	23	28	11	13	100	99	7	100	8 6	2	59	25	09	27	4	88	14	88	8
Diss.Org. P (µa/L)	(F.g. 1.)	= }	75	6	17	28	38	6	75	23	27	41	22	50	27	36	27	22	38	17	16	43	25	27	40	4	73 -0	96	0.7	12	29	28	17	13	25	12	29	19
SRP (ua/L)	(F.9.1)	\$ 1	26	71	31	4	31	31	71	42	61	61	87	73	48	42	42	87	09	32	22	24	80	23	29	20	လ ဇ	3 6	5	8	22	65	91	63	29	34	91	59
Diss. TN (uq/L)	7007	909	679	494	303	320	377	303	629	426	889	720	329	347	367	311	311	720	431	479	725	412	374	465	611	47.0	374 725	408	25	533	623	431	371	438	504	371	623	477
Total N (µq/L)	(F3/ F)	01.0	802	619	579	438	511	438	802	584	814	903	451	999	542	466	451	903	618	544	813	208	479	260	628	470	φ γ γ	579	200	574	742	475	405	450	517	405	742	517
Part. N (ug/L)	427	171	123	125	276	118	134	118	276	143	126	183	122	319	175	155	122	319	170	65	88	96	105	92	17	17	104	67	5	41	119	44	34	12	13	12	119	32
Diss.Org. N (uq/L)	470 470	9/4	662	489	285	315	372	285	662	416	671	669	263	337	362	306	263	669	408	465	695	407	359	460	280	CHC	329 695	482	201	525	909	425	344	433	482	344	605	462
N-xON (na/L)	(F3/E)	, ;	14	2	2	2	2	2	14	3	14	18	2	7	2	2	2	18	2	11	10	2	12	2	6	c	12	<u>ا</u> ر		2	15	က	10	2	2	2	15	5
Ammonia N (µa/L)	(1.67)	n (33	က	16	က	က	က	16	4	3	က	64	က	က	က	က	64	2	ဇ	20	က	က	က	22	c	32	1 4	o l	က	က	က	17	က	20	3	20	5
Alkalinity (mg/L)	130	130	135	138	125	131	137	125	138	133	145	142	134	139	136	132	132	145	138	138	129	140	124	130	138	707	140	133	3	139	130	117	127	134	141	117	141	131
Date Collected	5/5/50	02/6/6	5/26/20	6/29/20	7/27/20	8/31/20	9/23/20	· Value:	า Value:	c Mean:	5/5/20	5/26/20	6/29/20	7/27/20	8/31/20	9/23/20	· Value:	า Value:	c Mean:	4/29/20	5/27/20	6/30/20	7/28/20	8/31/20	9/24/20	1/0110:	Value.	Mean.		4/29/20	5/27/20	6/30/20	7/28/20	8/31/20	9/24/20	Value:	י Value:	c Mean:
Location	1			Z-7				Minimum Value:	Maximum Value:	Geometric Mean:			2	7-1/1			Minimum Value:	Maximum Value:	Geometric Mean:			~	2			Minimi	Maximum Value	Geometric Mean				7	1 -17	ı		Minimum Value:	Maximum Value:	Geometric Mean:
Lab	1400	1432	1620	2075	2412	2830	3108				1427	1628	2076	2413	2831	3109				1402	1636	2088	2425	2843	3122					1401	1635	2089	2426	2844	3110			1

Water Quality Characteristics of Surface Water Samples Collected at Marco Island from April - September 2020

Chyl-a (µg/L)	8.9	8.2	14.0	12.8	15.0	14.1	8.9	15.0	11.3	5.4	14.9	20.8	10.6	18.5	32.3	5.4	32.3	14.8	11.7	13.8	17.0	14.3	15.4	19.7		11.7	19.7	15.1		16.7	7.1	11.9	24.5	8.7	26.9	7.1	26.9	14.2
Color (Pt-Co)	က	က	2	7	6	11	3	7	9	7	œ	9	6	10	41	9	4	6	2	9	9	7	6	14		2	14	7		,	9	80	7	12	15	9	15	6
Turbidity (NTU)	11.4	3.9	6.5	5.2	3.5	3.4	3	7	5	5.6	2.0	3.1	2.4	2.4	6.1	_	က	2	4.8	2.9	4.	3.0	2.1	1.1		_	2	3		[.]	2.3	3.2	2.4	1.1	1.1	1	7	2
Diss. TP (µg/L)	99	81	6/	47	62	62	47	81	65	89	91	112	86	29	83	29	112	85	99	91	109	64	63	69		26	109	73		20	72	78	61	48	26	48	78	61
Total P (µg/L)	92	177	86	62	81	101	62	177	26	84	128	135	113	84	130	84	135	110	98	190	276	84	75	89	-	75	276	117		4	133	103	88	77	83	74	133	91
Part. P (µg/L)	29	96	19	15	19	39	15	96	29	16	37	23	15	17	47	15	47	23	30	66	167	20	12	20		12	167	37		18	61	22	28	29	27	18	61	29
Diss.Org. P (µg/L)	32	26	18	11	21	14	11	32	19	27	28	49	26	27	26	26	49	30	20	36	44	15	24	33		15	44	27		19	17	14	22	24	24	14	24	20
SRP (µg/L)	8	22	61	36	41	48	34	61	45	41	63	63	72	40	22	40	72	22	36	22	92	49	39	36		36	92	45	ļ	37	22	8	33	24	32	24	25	40
Diss. TN (μg/L)	520	280	484	326	438	466	326	280	462	466	929	424	429	429	446	424	929	471	282	202	440	422	397	436		397	202	486		290	662	447	408	388	460	399	662	485
Total N (µg/L)	669	712	202	648	457	495	457	712	211	535	754	484	627	525	551	484	754	573	638	750	474	299	428	501		428	750	555		999	770	531	603	525	623	525	770	615
Part. N (µg/L)	179	132	21	322	19	29	19	322	29	69	78	09	198	96	105	09	198	93	23	45	34	177	31	65		31	177	55	i	8/	108	84	195	126	163	78	195	119
Diss.Org. N (µg/L)	206	563	479	308	433	461	308	563	451	433	638	419	400	424	428	400	638	451	574	678	435	412	392	413		392	678	474		564	647	442	391	394	455	391	647	474
NOx-N (µg/L)	11	14	2	15	2	2	2	15	2	18	25	2	14	2	2	2	25	9	8	14	2	7	2	2		2	14	4		23	12	2	2	7	2	2	23	4
Ammonia N (µg/L)	က	က	3	3	က	က	3	က	3	15	13	က	15	က	16	က	16	6	3	13	က	3	3	21		က	21	5		'n	က	3	15	က	က	3	15	4
Alkalinity (mg/L)	145	140	133	130	148	138	130	148	139	142	138	139	127	139	134	127	142	136	141	131	148	134	129	142		129	148	137		139	131	136	119	118	129	118	139	128
Date Collected	4/29/20	5/26/20	6/29/20	7/27/20	8/31/20	9/23/20	Value:	. Value:	c Mean:	5/5/20	5/26/20	6/29/20	7/27/20	8/31/20	9/23/20	, Value:	. Value:	c Mean:	4/29/20	5/26/20	6/29/20	7/27/20	8/31/20	9/23/20		ı Value:	י Value:	c Mean:		2/2/50	5/26/20	6/29/20	7/27/20	8/31/20	9/23/20	Value:	Value:	c Mean:
Location			M.S	2			Minimum Value:	Maximum Value:	Geometric Mean:			W 2	0			Minimum Value:	Maximum Value:	Geometric Mean:			M-7					Minimum Value:	Maximum Value:	Geometric Mean:				αW	2			Minimum Value:	Maximum Value:	Geometric Mean:
Lab	1403	1619	2077	2414	2832	3111				1431	1618	2079	2415	2833	3112				1404	1617	2080	2416	2834	3114				1		1433	1621	2082	2418	2836	3116			

Water Quality Characteristics of Surface Water Samples Collected at Marco Island from April - September 2020

Chyl-a (µg/L)	6.1	12.2	20.5	15.5	20.2	17.6	6.1	20.5	14.3	15.7	10.7	13.0	15.0	13.5	20.5	10.7	20.5	14.4	17.2	7.1	15.4	10.2	32.5	17.9	7.1	32.5	14.9	1	10.2	19.7	3.4	29.5	26.2	24.4	3.4	29.5	15.3	
Color (Pt-Co)	9	10	12	14	14	27	9	27	12	9	6	80	7	14	16	9	16	10	3	19	8	9	6	8	က	19	8		10	6	14	14	4	21	6	21	13	
Turbidity (NTU)	4.6	2.3	3.3	2.1	1.3	1.8	1	5	2	2.5	2.2	2.1	1.6	0.5	6.0	_	က	1	2.0	6.0	6.0	1.4	0.4	1.2	0	2	_		1.3	1.8	1.8	1.3	0.5	1.9	1	2	_	
Diss. TP (µg/L)	25	98	83	26	73	104	25	104	82	69	82	92	09	61	88	09	92	74	09	74	73	78	63	121	09	121	92		25	8	75	83	09	73	25	84	20	
Total P (µg/L)	75	135	102	118	92	162	22	162	110	87	93	112	81	74	121	74	121	93	82	189	83	102	92	148	92	189	107		29	170	83	113	72	06	29	170	94	
Part. P (µg/L)	18	49	19	21	19	28	18	58	27	18	11	20	21	13	33	11	33	18	22	115	10	24	13	27	10	115	24	!	15	98	8	30	12	17	8	98	20	
Diss.Org. P (µg/L)	21	31	17	10	14	25	10	31	18	27	24	26	35	33	38	24	38	30	20	23	18	26	21	71	18	71	26		13	27	12	26	20	25	12	27	19	
SRP (µg/L)	36	22	99	87	26	6/	36	87	61	42	28	99	22	28	20	25	99	42	40	21	22	25	42	20	40	22	48	1	33	22	63	22	40	48	33	63	20	
Diss. TN (µg/L)	603	200	513	421	416	470	416	603	483	414	618	461	307	466	526	307	618	455	304	150	491	277	451	462	150	491	330		664	656	513	338	458	476	338	664	504	
Total N (µg/L)	673	616	611	640	532	522	522	673	296	909	695	491	628	523	586	491	695	584	293	592	614	339	544	202	339	614	522		754	881	265	206	545	809	206	881	631	
Part. N (µg/L)	20	116	98	219	116	52	25	219	101	192	77	30	321	22	09	30	321	89	588	442	123	62	93	45	45	442	126		90	225	25	168	87	132	25	225	113	
Diss.Org. N (µg/L)	287	477	493	416	411	453	411	287	469	401	593	456	302	461	521	302	593	446	290	140	486	263	446	457	140	486	319		655	631	480	322	453	471	322	655	489	
NOx-N (µg/L)	13	12	2	2	2	2	2	13	4	10	13	2	2	2	2	2	13	4	11	7	2	11	2	2	2	11	4		9	4	2	13	7	2	2	14	5	
Ammonia N (µg/L)	က	11	18	3	3	15	3	18	7	3	12	က	က	3	3	က	12	4	3	က	3	3	ဗ	3	က	က	3		က	1	31	က	ო	3	3	31	5	
Alkalinity (mg/L)	139	140	141	128	130	132	128	141	135	122	140	144	121	137	136	121	144	133	138	132	130	135	133	129	129	138	133		144	138	140	145	136	141	136	145	141	
Date Collected	5/5/20	5/26/20	6/29/20	7/27/20	8/31/20	9/23/20	Value:	Value:	c Mean:	4/29/20	5/27/20	6/29/20	7/27/20	8/31/20	9/23/20	Value:	Value:	c Mean:	4/29/20	5/27/20	6/29/20	7/28/20	8/31/20	9/24/20	Value:	Value:	c Mean:		5/5/20	5/26/20	6/29/20	7/27/20	8/31/20	9/23/20	Value:	Value:	c Mean:	
Location			O M	2			Minimum Value:	Maximum Value:	Geometric Mean:			2				Minimum Value:	Maximum Value:	Geometric Mean:			M-11	-			Minimum Value:	Maximum Value:	Geometric Mean:				M-12	71 101			Minimum Value:	Maximum Value:	Geometric Mean:	
Гар	1435	1622	2083	2419	2838	3117				1405	1625	2084	2420	2839	3118				1395	1434	2124	2427	2845	3123					1436	1623	2085	2421	2840	3119			7	

Water Quality Characteristics of Surface Water Samples Collected at Marco Island from April - September 2020

Chyl-a (µg/L)	10.9	28.7	12.9	20.7	26.0	20.7	10.9	28.7	18.9	16.6	16.8	18.5	23.6	7.3	15.4	7.3	23.6	15.5	16.0	16.5	12.0	16.2	11.4	16.4	11	17	15		12.7	11.3	7.9	15.6	11.7	16.0	8	16	12	
Color (Pt-Co)	11	12	15	15	16	24	11	24	15	2	10	2	4	11	8	4	11	9	3	22	2	4	10	6	3	22	7		2	12	3	7	7	80	2	12	9	
Turbidity (NTU)	3.9	5.4	2.0	2.0	9.0	1.5	1	2	2	4.3	1.8	3.7	2.1	9.0	6.0	_	4	2	5.1	3.5	2.8	1.9	2.4	1.0	1	2	2		9.9	2.3	3.2	1.9	1.5	8.0	-	7	2	
Diss. TP (µg/L)	25	74	102	51	09	45	45	102	61	25	74	22	28	89	73	22	78	99	42	65	28	98	72	71	42	98	64		29	92	81	73	28	22	22	81	89	
Total P (µg/L)	87	116	147	89	75	102	89	147	96	106	151	88	92	79	83	79	151	101	20	184	92	103	89	84	20	184	94		9/	101	86	80	112	82	92	112	91	
Part. P (µg/L)	35	42	45	17	15	22	15	22	31	49	22	31	17	11	10	11	77	59	8	119	37	17	17	13	8	119	23		6	22	17	7	75	25	7	24	18	
Diss.Org. P (µg/L)	16	18	38	15	30	20	15	38	21	24	22	25	35	23	35	22	35	25	7	10	17	19	20	26	2	26	15		59	19	13	17	18	22	13	29	19	
SRP (µg/L)	36	26	49	36	30	22	22	25	39	33	25	32	43	45	38	32	25	40	32	22	41	29	25	45	32	29	48		38	22	89	26	40	32	35	89	48	
Diss. TN (µg/L)	759	562	420	492	481	549	420	759	534	265	630	616	222	498	491	498	630	277	504	629	475	345	438	505	345	629	475		327	437	379	229	403	523	229	523	371	
Total N (µg/L)	1,116	833	525	737	540	583	525	1116	969	655	853	745	069	584	614	584	853	200	638	751	526	364	496	516	364	751	535		459	299	479	272	449	099	272	299	477	
Part. N (µg/L)	357	271	105	245	29	34	34	357	131	63	223	129	133	98	123	63	223	116	134	122	21	19	28	14	14	134	48		132	230	100	43	46	137	43	230	97	
Diss.Org. N (µg/L)	504	545	415	487	476	544	415	545	493	584	909	265	545	493	491	493	909	563	499	612	470	340	433	497	340	612	468		318	417	329	224	398	518	224	518	361	
NOx-N (µg/L)	13	14	2	2	2	2	2	14	4	2	12	16	6	2	2	2	16	7	2	14	2	2	2	2	2	14	လ		9	7	2	2	2	2	2	7	3	
Ammonia N (µg/L)	242	က	ო	3	က	3	3	242	9	3	12	3	က	3	3	က	12	4	က	က	က	က	က	က	3	3	ဗ		က	13	18	က	ო	က	က	18	5	
Alkalinity (mg/L)	150	139	146	131	127	140	127	150	139	131	140	132	136	135	130	131	140	135	144	128	135	136	138	140	128	144	137		145	135	131	140	138	139	131	145	138	
Date Collected	5/5/20	5/27/20	6/29/20	7/27/20	8/31/20	9/23/20	Value:	Value:	c Mean:	4/29/20	5/27/20	6/29/20	7/28/20	8/31/20	9/24/20	Value:	Value:	: Mean:	4/29/20	5/27/20	6/30/20	7/28/20	8/31/20	9/24/20	Value:	Value:	ວ Mean:		4/29/20	5/27/20	6/30/20	7/28/20	8/31/20	9/24/20	Value:	Value:	c Mean:	
Location			M 42	2			Minimum Value:	Maximum Value:	Geometric Mean:			77	<u> </u>			Minimum Value:	Maximur	Geometric Mean:			7	2			Minimum Value:	Maximum Value:	Geometric Mean:	-			M 16	2		ı	Minimum Value:	Maximum Value:	Geometric Mean:	
Lab D	1437	1626	2086	2423	2841	3120				1398	1629	1399	2429	2847					1397	1630	2093	2430	2848	3127					1394	1633	2094	2431	2849	3128				

Water Quality Characteristics of Surface Water Samples Collected at Marco Island from April - September 2020

l ab		Date	Alkalinity	Alkalinity Ammonia N	N-XCN	Diss Ord N	Part N	Total N	Diss TN	SRP	Diss Ord P	Part P	Total P	Diss TP	Turbidity	Color	Chvl-a
	Location	Ö		(hg/L)	(µg/L)	(µg/L)			(µg/L)	(µg/L)	(µg/L)		(hg/L)	(µg/L)	(NTU)	(Pt-Co)	(µg/L)
1396		4/29/20	138	3	10	260	69	642	573	32	2	27	69	42	5.2	3	11.2
1631		5/27/20	130	13	13	938	293	1,257	964	22	17	32	104	72	3.8	21	10.4
2096	M 17	6/30/20	137	က	2	407	35	447	412	92	18	22	140	83	3.5	4	7.3
2432		7/28/20	137	က	2	283	119	407	288	87	22	15	124	109	3.9	9	10.6
2850		8/31/20	137	က	2	415	73	493	420	4	26	23	93	70	1.4	7	5.4
3129		9/24/20	136	3	2	485	09	550	490	41	25	16	82	99	2.6	5	15.6
	Minimu	Minimum Value:	130	3	2	283	35	407	288	35	7	15	69	42	1	3	2
_	Maximu	Maximum Value:	138	13	13	938	293	1257	964	87	26	22	140	109	2	21	16
1	Geomet	Geometric Mean:	136	4	4	480	85	584	488	52	18	25	66	71	3	9	10
						_	Denotes √	value < MDL	Denotes value < MDL; MDL value is listed	is listed							

APPENDIX C

PHOTOGRAPHS OF SEDIMENT CORE SAMPLES COLLECTED IN MARCO ISLAND WATERWAYS

Marco Island Sediment Photos Sites 1 - 4

Site 4

Marco Island Sediment Photos Sites 5 - 8

Site 5

Site 7

Site 6

Site 8

Marco Island Sediment Photos Sites 9 - 12

Site 9

Site 10

Site 11

Marco Island Sediment Photos Sites 13 - 16

Site 13

Site 14

Site 16

Site 15

Marco Island Sediment Photos Sites 17 - 20

Site 20

Site 19

Marco Island Sediment Photos Sites 21 - 24

Site 21

MARCO ISLAND SITE: S-23 Date: 6 of 01 Sample I.D. #: Site 24

Site 23

Marco Island Sediment Photos Sites 25 - 26

APPENDIX D

HYDROLOGIC MODELING USED TO CALCULATE RUNOFF VOLUMES FOR MARCO ISLAND SUB-BASINS 1-5

Calc. Values User Inputs 1, 2, 3, 4, 5, 6, 7 Marco Island Project Name: Basin Name:

Meteorological Zone:

				Annual	Annual Rainfall (inches):	ches):	53.3						
Sub Basin	Treatment 1	Hydrologic Soil Group	Land Use	Area (ac.)	DCIA1 (%)	Non - DCIA CN Value2	Runoff C Value⁴	Generated Runoff Volume (ac-ft)	Runoff Volume Reduction Factor	Stormwater Reduction Volume (ac-ft)	Wetland Reduction Factor	Wetland Reduction Volume (ac-ft)	Delivered Runoff Volume (ac-ft)
-	Direct	A	COASTAL SCRUB	0.33	0.0	35.0	0.007	0.01	0.00	00.0	0.00	00.00	0.01
-	Direct	4	COMMERCIAL	11.99	49.7	71.3	0.448	23.87	0.00	0.00	0.00	00.0	23.87
1	Direct	A	INSTITUTIONAL	5.47	0.0	51.2	0.024	0.58	0.00	0.00	0.00	0.00	0.58
-	Direct	۷	MULTI-FAMILY	40.53	0.1	72.9	0.086	15.52	00.00	00.0	0.00	0.00	15.52
-	Direct	4	RECREATIONAL	1.28	0.0	52.5	0.026	0.15	0.00	00.00	0.00	00.0	0.15
-	Direct	4	SW IMMING BEACH	0.23	0.0	0.77	0.109	0.11	0.00	0.00	0.00	0.00	0.11
-	Direct	A	UPLAND HARDWOOD FORESTS	0.03	0.0	32.0	0.005	00:00	0.00	00.0	0.00	00.00	0.00
1	Direct	А	VACANT NONRESIDENTIAL	0.18	0.0	39.0	0.010	0.01	0.00	0.00	0.00	0.00	0.01
1	Direct	A/D	COASTAL SCRUB	2.28	0.0	0.77	0.109	1.11	0.00	0.00	0.00	0.00	1.11
1	Direct	A/D	MULTI-FAMILY	1.56	0.0	62.0	0.046	0.32	0.00	0.00	0.00	00:00	0.32
1	Direct	A/D	RECREATIONAL	2.70	0.0	85.2	0.185	2.22	0.00	0.00	0.00	0.00	2.22
1	Direct	A/D	UPLAND HARDWOOD FORESTS	7.79	0.0	79.0	0.123	4.26	0.00	0.00	0.00	0.00	4.26
1	Direct	D	MANGROVE SWAMPS	83.36	0.0	0.78	0.215	79.78	0.00	0.00	0.00	0.00	79.78
1	Dry Pond	A	COASTAL SCRUB	1.75	0.0	35.0	0.007	0.05	08.0	0.04	0.00	0.00	0.01
1	Dry Pond	A	COMMERCIAL	36.30	3.7	98.5	0.230	37.05	08.0	29.64	0.00	0.00	7.41
1	Dry Pond	А	DRY PONDS	3.71	0.0	39.0	0.010	0.17	0.80	0.13	0.00	0.00	0.03
1	Dry Pond	А	INSTITUTIONAL	11.16	0.2	76.4	0.107	5.28	0.80	4.23	0.00	0.00	1.06
1	Dry Pond	A	MDR	0.92	0.0	0.07	0.071	0.29	0.80	0.23	0.00	0.00	0.06
1	Dry Pond	А	MULTI-FAMILY	49.81	0.4	77.0	0.112	24.81	0.80	19.85	0.00	0.00	4.96
-	Dry Pond	А	RECREATIONAL	3.70	0.2	61.1	0.045	0.74	0.80	0.59	0.00	0.00	0.15
-	Dry Pond	A/D	COASTAL SCRUB	1.88	0.0	77.0	0.109	0.91	0.80	0.73	0.00	0.00	0.18
1	Dry Pond	A/D	DRY PONDS	1.92	0.0	39.0	0.010	0.09	0.80	0.07	0.00	0.00	0.02
-	Dry Pond	A/D	MDR	0.14	0.0	70.4	0.073	0.05	0.80	0.04	0.00	00:0	0.01
1	Dry Pond	A/D	MULTI-FAMILY	21.28	0.0	72.5	0.084	7.89	0.80	6.32	0.00	0.00	1.58
1	Dry Pond	A/D	UPLAND HARDWOOD FORESTS	2.99	0.0	79.0	0.123	1.63	0.80	1.31	0.00	0.00	0.33
-	None	>	WATERWAYS	565.51	0.0	98.0	0.616	1546.06	0.00	00.00	0.00	0.00	1546.06
7	Pond	A	MDR	1.54	0.0	70.7	0.075	0.51	0.20	0.10	0.00	00:0	0.41
_	Pond	A	UPLAND HARDWOOD FORESTS	1.19	0.0	32.0	0.005	0.03	0.20	0.01	0.00	0.00	0.02
1	Pond	A/D	COASTAL SCRUB	1.18	0.0	0.77	0.109	0.57	0.20	0.11	0.00	0.00	0.46
_	Pond	A/D	MDR	0.84	0.0	69.4	0.069	0.26	0.20	0.05	0.00	0.00	0.21
-	Pond	A/D		0.62	0.0	79.0	0.123	0.34	0.20	0.07	0.00	0.00	0.27
-	Pond	О	MANGROVE SWAMPS	2.66	0.0	87.0	0.215	2.55	0.20	0.51	0.00	0.00	2.04
1	Swale	Α	CEMETERIES	2.43	0.0	47.8	0.019	0.21	0.20	0.04	0.00	0.00	0.17
1	Swale	Α	COASTAL SCRUB	4.88	0.0	35.0	0.007	0.15	0.20	0.03	0.00	0.00	0.12
_	Swale	4	COMMERCIAL	111.65	12.8	77.6	0.204	101.28	0.20	20.26	0.00	0.00	81.02
-	Swale	A	DRY PONDS	0.08	0.0	39.0	0.010	00.00	0.20	0.00	0.00	0.00	0.00
_	Swale	A	INSTITUTIONAL	7.17	6.6	55.9	0.110	3.51	0.20	0.70	0.00	0.00	2.81
-	Swale	Α	MDR	556.67	0.1	0.79	0.062	152.44	0.20	30.49	0.00	0.00	121.95
-	Swale	A	MULTI-FAMILY	140.42	9.0	75.9	0.106	66.15	0.20	13.23	0.00	0.00	52.92
1	Swale	Α	RECREATIONAL	29.59	0.0	39.6	0.010	1.37	0.20	0.27	0.00	0.00	1.10
1	Swale	Α	UPLAND HARDWOOD FORESTS	27.03	0.0	32.0	0.005	0.65	0.20	0.13	0.00	0.00	0.52

User Inputs 1, 2, 3, 4, 5, 6, 7 Marco Island Project Name: Basin Name:

Meteorological Zone:

Calc. Values

53.3

Annual Rainfall (inches):

			-				-						
Sub Basin Treatment 1 Hydrologic Soil Land Use Group	Land L			Area (ac.)	DCIA1 (%)	Non - DCIA CN Value2	Runoff C Value ⁴	Generated Runoff Volume (ac-ft)	Runoff Volume Reduction Factor	Stormwater Reduction Volume (ac-ft)	Wetland Reduction Factor	Wetland Reduction Volume (ac-ft)	Delivered Runoff Volume (ac-ft)
Swale A VACANT NONRESIDENTIAL		VACANT NONRESIDENTI	AL	96.9	0.0	39.0	0.010	0.31	0.20	90.0	0.00	0.00	0.25
Swale A/D COASTAL SCRUB	COASTAL			2.09	0.0	77.0	0.109	1.01	0.20	0.20	0.00	0.00	0.81
Swale A/D MDR		MDR		4.05	0.0	9.79	0.063	1.13	0.20	0.23	00.0	00.0	0.91
Swale A/D MULTI-FAMILY		MULTI-FAMILY		0.68	0.0	62.8	0.048	0.14	0.20	60.0	0.00	0.00	0.12
Swale A/D UPLAND HARDWOOD FORESTS		UPLAND HARDWOOD FORES	LS	0.74	0.0	0.62	0.123	0.40	0.20	80.0	0.00	0.00	0.32
Swale D MANGROVE SWAMPS	MANGROVE	MANGROVE SWAMPS		17.14	0.0	87.0	0.215	16.40	0.20	3.28	0.00	0.00	13.12
Swale W ENCLOSED SALTWATER PONDS	ENCLOSED SALT	ENCLOSED SALTWATER POND	S	5.57	0.0	98.0	0.616	15.23	0.20	3.05	0.00	0.00	12.18
Swale W PONDS		PONDS		4.92	0.0	0.86	0.616	13.45	0.20	2.69	0.00	0.00	10.76
Swale-GC-Pond A MDR		MDR		0.14	0.0	6.02	0.076	0.05	0.36	0.02	0.00	0.00	0.03
Swale-GC-Pond A/D MDR		MDR		0.04	0.0	69.1	0.068	0.01	0.36	0.00	0.00	0.00	0.01
Wet Pond A CEMETERIES		CEMETERIES		0.09	0.0	39.0	0.010	0.00	0.20	0.00	0.00	0.00	0.00
Wet Pond A INSTITUTIONAL	INSTITUT	INSTITUTIONAL		1.32	0.0	67.9	0.036	0.21	0.20	0.04	0.00	0.00	0.17
Wet Pond A MDR		MDR		0.05	0.0	69.1	0.068	0.02	0.20	0.00	0.00	0.00	0.01
Wet Pond A MULTI-FAMILY		MULTI-FAMILY		8.91	0.0	73.9	0.090	3.57	0.20	0.71	0.00	0.00	2.86
Wet Pond W PONDS		PONDS		1.43	0.0	98.0	0.616	3.91	0.20	0.78	0.00	0.00	3.13
Wetland A CEMETERIES	CEMETE	CEMETERIES		0.74	0.0	39.1	0.010	0.03	0.10	00.00	0.00	0.00	0.03
Rear Swale A MDR		MDR		250.24	0.0	65.2	0.055	60.62	0.95	57.58	0.00	0.00	3.03
Rear Swale A/D MDR		MDR		0.71	0.0	70.8	0.075	0.24	0.95	0.23	00.00	00.00	0.01

User Inputs Calc. Values 1, 2, 3, 4, 5, 6, 7 Marco Island Project Name: Basin Name:

Meteorological Zone:

53.3 Annual Rainfall (inches):

Sub Basin	Treatment 1	Hydrologic Soil Group	Land Use	Area (ac.)	DCIA1 (%)	Non - DCIA CN Value2	Runoff C Value⁴	Generated Runoff Volume (ac-ft)	Runoff Volume Reduction Factor	Stormwater Reduction Volume (ac-ft)	Wetland Reduction Factor	Wetland Reduction Volume (ac-ft)	Delivered Runoff Volume (ac-ft)
2	Direct	∢	COMMERCIAL	6.55	38.1	0.06	0.478	13.92	0.00	00.00	0.00	0.00	13.92
2	Direct	∢	HIGHWAY	60.0	26.3	39.0	0.224	60.0	00.00	0.00	00.0	0.00	0.09
2	Direct	٨	MARINAS	1.31	0.0	74.2	0.092	0.53	00.00	00:00	00.0	0.00	0.53
2	Direct	A	MULTI-FAMILY	3.04	0.0	78.8	0.122	1.64	00.00	0.00	00.0	0.00	1.64
2	Direct	A	RECREATIONAL	1.22	0.0	39.0	0.010	90'0	00.00	00:00	00'0	0.00	0.05
2	Direct	A	UTILITIES	2.27	0.0	87.6	0.226	2.28	0.00	0.00	0.00	0.00	2.28
2	Dry Pond	A	COMMERCIAL	9.55	2.1	9.98	0.222	9.40	0.80	7.52	00.0	0.00	1.88
2	Dry Pond	A	DRY PONDS	0.34	0.0	39.0	0.010	0.02	08.0	0.01	00'0	0.00	0.00
2	Dry Pond	A	HIGHWAY	2.45	0.58	78.0	0.717	7.80	0.80	6.24	0.00	0.00	1.56
2	Dry Pond	٨	INSTITUTIONAL	2.30	0.0	6.79	0.064	99'0	08.0	0.52	00.0	0.00	0.13
2	Dry Pond	∢	MARINAS	3.29	0.0	74.1	0.091	1.33	08.0	1.07	00.0	0.00	0.27
2	Dry Pond	٨	MULTI-FAMILY	7.25	0.0	87.8	0.229	7.38	08.0	5.90	00.0	0.00	1.48
2	Dry Pond	A	RECREATIONAL	0.01	0.0	39.0	0.010	00.00	0.80	0.00	0.00	0.00	0.00
2	Dry Pond	A	UTILITIES	5.33	0.0	89.7	0.261	6.19	0.80	4.95	0.00	0.00	1.24
2	None	M	WATERWAYS	75.65	0.0	0.86	0.616	206.82	00.00	00:00	00'0	0.00	206.82
2	Pond	A	UTILITIES	0.62	0.0	93.6	0.384	1.06	0.20	0.21	0.00	0.00	0.85
2	Swale	٨	COMMERCIAL	33.74	2.2	85.5	0.204	30.56	0.20	6.11	00.0	00.0	24.45
2	Swale	A	HIGHWAY	6.58	9.7	80.1	0.183	5.36	0.20	1.07	00.0	0.00	4.29
2	Swale	A	INSTITUTIONAL	99.0	0.0	43.2	0.014	0.04	0.20	0.01	00'0	0.00	0.03
2	Swale	A	MARINAS	0.11	0.0	44.8	0.015	10.0	0.20	00:00	00'0	0.00	0.01
2	Swale	A	MDR	141.55	0.0	68.1	0.065	40.73	0.20	8.15	00.0	0.00	32.58
2	Swale	A	RECREATIONAL	0.23	0.0	55.7	0.032	0.03	0.20	0.01	00.0	0.00	0.03
2	Swale	A	UTILITIES	4.53	0.0	92.6	0.351	90.7	0.20	1.41	0.00	0.00	5.65
2	Swale	A	VACANT NONRESIDENTIAL	0.85	0.0	39.0	0.010	0.04	0.20	0.01	0.00	0.00	0.03
2	Swale-GC-Pond	A	MDR	2.99	0.0	66.2	0.058	22.0	0.36	0.28	0.00	0.00	0.49
2	Rear Swale	٨	auw	69 64	0.0	66.0	0.057	17 74	0.95	16.86	000	000	0.89

Calc. Values User Inputs 1, 2, 3, 4, 5, 6, 7 Marco Island Project Name: Basin Name:

Meteorological Zone:

				Annual	Annual Rainfall (inches):	nches):	53.3						
Sub Basin	Treatment 1	Hydrologic Soil Group	Land Use	Area (ac.)	DCIA1 (%)	Non - DCIA CN Value2	Runoff C Value⁴	Generated Runoff Volume (ac-ft)	Runoff Volume Reduction Factor	Stormwater Reduction Volume (ac-ft)	Wetland Reduction Factor	Wetland Reduction Volume (ac-ft)	Delivered Runoff Volume (ac-ft)
က	Direct	٨	HIGHWAY	0.03	55.9	39.0	0.464	90.0	0.00	00.00	0.00	0.00	90.0
3	Direct	А	RECREATIONAL	2.19	0.0	41.3	0.012	0.12	0.00	0.00	0.00	0.00	0.12
8	Direct	D	MANGROVE SWAMPS	1.13	0.0	87.0	0.215	1.08	0.00	0.00	0.00	0.00	1.08
3	Dry Pond	А	COMMERCIAL	00.9	23.6	78.9	0.288	7.67	0.80	6.13	0.00	0.00	1.53
3	Dry Pond	A	DRY PONDS	1.55	0.0	39.0	0.010	0.07	08.0	90.0	0.00	0.00	0.01
က	Dry Pond	Α	HIGHWAY	1.94	91.7	56.5	0.757	6.53	0.80	5.22	0.00	0.00	1.31
3	Dry Pond	A	INSTITUTIONAL	13.98	0.0	69.1	0.068	4.24	08.0	3.39	0.00	0.00	0.85
3	Dry Pond	А	MDR	3.79	0.0	62.9	0.057	0.96	0.80	0.77	0.00	0.00	0.19
3	Dry Pond	А	MULTI-FAMILY	0.44	0.0	6.02	0.076	0.15	0.80	0.12	0.00	0.00	0.03
3	Dry Pond	А	RECREATIONAL	0.53	0.0	39.0	0.010	0.02	0.80	0.02	0.00	0.00	0.00
3	Golf Ponds	А	MDR	40.68	0.0	68.1	0.065	11.70	0.20	2.34	0.00	0.00	9.36
3	Golf Ponds	А	RECREATIONAL	114.96	0.0	43.7	0.014	7.34	0.20	1.47	0.00	0.00	5.87
က	Golf Ponds	×	PONDS	33.47	0.0	98.0	0.616	91.50	0.20	18.30	0.00	0.00	73.20
3	None	M	WATERWAYS	227.87	0.0	98.0	0.616	622.98	0.00	0.00	0.00	0.00	622.98
8	Pond	Α	COMMERCIAL	6.63	56.4	81.8	0.529	15.58	0.20	3.12	0.00	0.00	12.46
3	Pond	Α	MDR	1.81	0.0	6.09	0.043	0.34	0.20	0.07	0.00	0.00	0.28
3	Pond	А	MULTI-FAMILY	1.54	0.1	7.77	0.115	0.79	0.20	0.16	0.00	0.00	0.63
3	Pond	A	RECREATIONAL	1.00	0.0	39.0	0.010	0.04	0.20	0.01	0.00	0.00	0.04
3	Pond	A	VACANT NONRESIDENTIAL	0.40	0.0	39.0	0.010	0.02	0.20	00:0	0.00	0.00	0.01
3	Pond	A/D	COMMERCIAL	0.02	0.0	89.7	0.261	0.08	0.20	0.02	0.00	0.00	90.0
3	Pond	A/D	MDR	0.82	0.0	69.1	0.068	0.25	0.20	0.05	0.00	0.00	0.20
3	Pond	A/D	MULTI-FAMILY	0.58	0.0	72.9	0.085	0.22	0.20	0.04	0.00	0.00	0.18
3	Pond	A/D	VACANT NONRESIDENTIAL	0.84	0.0	39.0	0.010	0.04	0.20	0.01	0.00	0.00	0.03
3	Pond	W	PONDS	4.29	0.0	98.0	0.616	11.73	0.20	2.35	0.00	0.00	9.38
က	Pond	×	WET PONDS	0.60	0.0	98.0	0.616	1.64	0.20	0.33	0.00	0.00	1.31
က	Swale	۷	COMMERCIAL	7.19	12.0	74.8	0.182	5.81	0.20	1.16	0.00	0.00	4.65
3	Swale	A	HIGHWAY	1.63	22.8	77.2	0.273	1.98	0.20	0.40	0.00	0.00	1.58
က	Swale	4	INSTITUTIONAL	8.87	0.0	71.5	0.079	3.10	0.20	0.62	0.00	0.00	2.48
က	Swale	A	MDR	374.28	0.0	68.0	0.064	107.10	0.20	21.42	0.00	0.00	85.68
3	Swale	А	RECREATIONAL	5.90	0.0	60.6	0.042	1.10	0.20	0.22	0.00	0.00	0.88
3	Swale	А	UPLAND HARDWOOD FORESTS	0.26	0.0	32.0	0.005	0.01	0.20	0.00	0.00	0.00	0.01
3	Swale	А	VACANT NONRESIDENTIAL	1.06	0.0	39.0	0.010	0.05	0.20	0.01	0.00	0.00	0.04
3	Swale-GC-Pond	А	MDR	67.93	0.0	69.1	0.068	20.61	0.36	7.42	0.00	0.00	13.19
3	Swale-GC-Pond	А	RECREATIONAL	0.23	0.0	48.8	0.020	0.02	0.36	0.01	0.00	0.00	0.01
က	Swale-GC-Pond	A/D	MDR	0.05	0.0	69.1	0.068	0.02	0.36	0.01	0.00	0.00	0.01
က	Swale-Pond	٨	COMMERCIAL	0.01	0.0	0.86	0.616	0.03	0.36	0.01	0.00	0.00	0.02
က	Swale-Pond	A	MDR	10.52	0.0	66.1	0.058	2.70	0.36	0.97	0.00	0.00	1.73
က	Swale-Pond	A	MULTI-FAMILY	3.81	0.2	0.09	0.042	0.71	0.36	0.26	0.00	0.00	0.45
	Rear Swale	А	MDR	214.43	0.0	65.2	0.055	51.94	0.95	49.34	0.00	0.00	2.60

Calc. Values User Inputs 1, 2, 3, 4, 5, 6, 7 Marco Island Project Name: Basin Name:

53.3 Meteorological Zone:

Annual Rainfall (inches):

Sub Basin	Treatment 1	Hydrologic Soil Group	Land Use	Area (ac.)	DCIA1 (%)	Non - DCIA CN Value2	Runoff C Value⁴	Generated Runoff Volume (ac-ft)	Runoff Volume Reduction Factor	Stormwater Reduction Volume (ac-ft)	Wetland Reduction Factor	Wetland Reduction Volume (ac-ft)	Delivered Runoff Volume (ac-ft)
4	Direct	A	COMMERCIAL	14.14	9.79	62.0	0.571	35.88	0.00	00'0	0.00	0.00	35.88
4	Direct	۷	MULTI-FAMILY	18.22	0.0	75.1	0.096	7.79	00.00	0.00	0.00	0.00	7.79
4	Direct	A/D	MULTI-FAMILY	0.55	0.0	73.2	0.087	0.21	0.00	0.00	0.00	0.00	0.21
4	Dry Pond	A	COASTAL SCRUB	15.11	0.0	35.0	200.0	0.47	0.80	0.38	0.00	0.00	0.09
4	Dry Pond	A	COMMERCIAL	16.83	6'89	6.99	0.510	38.10	08.0	30.48	0.00	0.00	7.62
4	Dry Pond	А	DRY PONDS	9.95	0.0	39.0	0.010	0.44	0.80	0.35	0.00	0.00	0.09
4	Dry Pond	A	INSTITUTIONAL	7.61	0.0	80.0	0.130	4.39	0.80	3.51	0.00	0.00	0.88
4	Dry Pond	А	MDR	0.05	0.0	69.1	0.068	0.02	0.80	0.01	0.00	0.00	0.00
4	Dry Pond	А	MULTI-FAMILY	227.21	2.8	75.3	0.118	119.02	0.80	95.21	0.00	0.00	23.80
4	Dry Pond	A	RECREATIONAL	10.64	0.0	0.69	0.068	3.21	0.80	2.57	0.00	0.00	0.64
4	Dry Pond	A	SWIMMING BEACH	1.25	0.0	77.0	0.109	0.61	0.80	0.49	0.00	0.00	0.12
4	Dry Pond	A	VACANT NONRESIDENTIAL	0.55	0.0	39.0	0.010	0.02	08.0	0.02	0.00	0.00	0.00
4	Dry Pond	A/D	COASTAL SCRUB	4.68	0.0	77.0	0.109	2.27	0.80	1.82	0.00	0.00	0.45
4	Dry Pond	A/D	DRY PONDS	0.11	0.0	39.0	0.010	0.00	0.80	00.0	0.00	0.00	0.00
4	Dry Pond	A/D	MULTI-FAMILY	0.21	0.0	77.3	0.111	0.10	0.80	80.0	0.00	0.00	0.02
4	None	W	WATERWAYS	374.28	0.0	98.0	0.616	1023.25	0.00	00.0	0.00	0.00	1023.25
4	Swale	A	COMMERCIAL	43.90	12.1	75.6	0.187	36.50	0.20	7.30	0.00	0.00	29.20
4	Swale	A	HDR	0.99	6.3	39.0	0.086	0.38	0.20	0.08	0.00	0.00	0.30
4	Swale	Α	INSTITUTIONAL	3.61	0.0	54.5	0.029	0.47	0.20	60.0	0.00	0.00	0.38
4	Swale	۷	MDR	363.92	0.0	67.6	0.063	101.85	0.20	20.37	0.00	0.00	81.48
4	Swale	٧	MULTI-FAMILY	17.81	0.0	77.3	0.111	8.81	0.20	1.76	0.00	0.00	7.05
4	Swale	Α	RECREATIONAL	3.57	0.0	45.2	0.016	0.25	0.20	0.05	0.00	0.00	0.20
4	Swale	A	UTILITIES	3.41	0.0	80.3	0.133	2.01	0.20	0.40	0.00	0.00	1.61
4	Swale	∢	VACANT NONRESIDENTIAL	1.71	0.0	39.0	0.010	0.08	0.20	0.02	0.00	00.00	90.0
4	Wet Pond	A	HDR	8.69	25.7	62.9	0.247	9.55	0.20	1.91	0.00	0.00	7.64
4	Wet Pond	W	PONDS	2.67	0.0	98.0	0.616	7.30	0.20	1.46	0.00	0.00	5.84
4	Rear Swale	A	MDR	177.70	0.0	65.0	0.054	42.49	0.95	40.36	0.00	0.00	2.12

Calc. Values User Inputs 1, 2, 3, 4, 5, 6, 7 Marco Island Project Name: Basin Name:

53.3 Annual Rainfall (inches): Meteorological Zone:

4		
	ļ	

Sub Basin	Treatment 1	Hydrologic Soil Group	Land Use	Area (ac.)	DCIA1 (%)	Non - DCIA CN Value2	Runoff C Value⁴	Generated Runoff Volume (ac-ft)	Runoff Volume Reduction Factor	Stormwater Reduction Volume (ac-ft)	Wetland Reduction Factor	Wetland Reduction Volume (ac-ft)	Delivered Runoff Volume (ac-ft)
2	Direct	∢	INSTITUTIONAL	0.53	0.0	40.0	0.011	0.03	0.00	0.00	0.00	00.0	0.03
5	Direct	∢		0.98	0.0	32.0	0.005	0.02	0.00	0.00	0.00	0.00	0.02
5	Direct	*	PONDS	8.15	0.0	98.0	0.616	22.28	0.00	0.00	0.00	0.00	22.28
2	Dry Pond	∢	COMMERCIAL	14.66	72.9	64.6	0.614	40.00	0.80	32.00	0.00	0.00	8.00
2	Dry Pond	∢	DRY PONDS	0.55	0.0	39.0	0.010	0.02	0.80	0.02	0.00	00.0	00:0
5	Dry Pond	4	INSTITUTIONAL	8.35	0.0	0.69	0.068	2.52	0.80	2.02	0.00	0.00	0.50
2	Dry Pond	∢	MDR	2.08	0.0	61.0	0.043	0.40	0.80	0.32	0.00	00.0	0.08
2	Dry Pond	∢	MULTI-FAMILY	7.76	35.4	67.0	0.331	11.40	0.80	9.12	0.00	0.00	2.28
2	Dry Pond	∢	RECREATIONAL	5.92	2.3	76.1	0.120	3.15	0.80	2.52	0.00	0.00	0.63
2	Dry Pond	∢	UPLAND HARDWOOD FORESTS	0.21	0.0	32.0	0.005	0.01	0.80	0.00	0.00	00.0	00:0
2	Dry Pond	∢	VACANT NONRESIDENTIAL	0.72	0.0	39.0	0.010	0.03	0.80	0.03	0.00	00'0	0.01
5	None	*	WATERWAYS	281.65	0.0	98.0	0.616	770.01	0.00	00.00	0.00	00.0	770.01
5	Pond	4	INSTITUTIONAL	7.01	0.0	59.5	0.039	1.23	0.20	0.25	0.00	0.00	0.98
2	Pond	∢	MDR	5.61	0.0	0.69	0.068	1.69	0.20	0.34	0.00	00.0	1.35
2	Pond	A	UPLAND HARDWOOD FORESTS	0.45	0.0	32.0	0.005	0.01	0.20	0.00	0.00	00'0	0.01
2	Pond	W	PONDS	11.35	0.0	98.0	0.616	31.03	0.20	6.21	0.00	00.0	24.82
2	Swale	∢	COASTAL SCRUB	1.64	0.0	35.0	0.007	0.05	0.20	0.01	0.00	00.0	0.04
5	Swale	A	COMMERCIAL	10.46	0.0	80.0	0.130	6.03	0.20	1.21	0.00	00.0	4.83
5	Swale	A	INSTITUTIONAL	1.35	0.0	43.5	0.014	0.09	0.20	0.02	0.00	00.0	0.07
2	Swale	٧	MDR	428.88	0.0	66.4	0.059	111.96	0.20	22.39	0.00	00.0	89.57
5	Swale	A	MULTI-FAMILY	0.34	0.0	89.3	0.254	0.38	0.20	0.08	0.00	00.0	0.31
5	Swale	A	RECREATIONAL	9.26	11.9	47.1	0.114	4.69	0.20	0.94	0.00	00.0	3.75
5	Swale	٧	UPLAND HARDWOOD FORESTS	18.79	0.0	32.0	0.005	0.45	0.20	60.0	00.00	00.0	0.36
2	Swale	٧	UTILITIES	6.67	0.0	4.77	0.112	3.32	0.20	99.0	00.0	00.0	2.65
5	Swale	A	VACANT NONRESIDENTIAL	0.89	0.0	39.0	0.010	0.04	0.20	0.01	0.00	00.0	0.03
5	Swale	A/D	MDR	0.11	0.0	69.1	0.068	0.03	0.20	0.01	0.00	00.0	0.03
5	Swale	A/D	UPLAND HARDWOOD FORESTS	0.11	0.0	79.0	0.123	0.06	0.20	0.01	0.00	00.0	0.05
5	Swale-Pond	A	COMMERCIAL	2.48	0.0	72.4	0.083	0.91	0.36	0.33	0.00	0.00	0.59
5	Swale-Pond	A	INSTITUTIONAL	7.07	0.0	50.0	0.022	69.0	0.36	0.25	0.00	00.0	0.44
2	Swale-Pond	∢	MDR	85.40	0.0	65.8	0.057	21.49	0.36	7.74	0.00	00'0	13.75
5	Swale-Pond	A	MULTI-FAMILY	0.30	14.1	40.8	0.126	0.17	0.36	0.06	0.00	0.00	0.11
5	Swale-Pond	A	RECREATIONAL	1.81	0.0	47.2	0.018	0.15	0.36	0.05	0.00	0.00	0.09
2	Wetland	A	MDR	0.31	0.0	69.1	0.068	0.09	0.10	0.01	0.00	00'0	0.08
5	Wetland	∢	UPLAND HARDWOOD FORESTS	0.37	0.0	32.0	0.005	0.01	0.10	0.00	0.00	0.00	0.01
5	Wetland	A/D	MDR	0.09	0.0	69.1	0.068	0.03	0.10	0.00	0.00	0.00	0.02
5	Wetland	A/D	UPLAND HARDWOOD FORESTS	0.47	0.0	79.0	0.123	0.26	0.10	0.03	0.00	0.00	0.23
2	Rear Swale	٧	MDR	183.54	0.0	64.1	0.051	41.92	0.95	39.82	00.0	00'0	2.10

User Inputs Calc. Values 1, 2, 3, 4, 5, 6, 7 Marco Island Project Name: Basin Name:

Meteorological Zone

Annual Rainfall (inches):

4	
 6	

				Annua	Annual Rainfall (inches):	nches):	53.3						
Sub Basin	Treatment 1	Hydrologic Soil Group	Land Use	Area (ac.)	DCIA1 (%)	Non - DCIA CN Value2	Runoff C Value⁴	Generated Runoff Volume (ac-ft)	Runoff Volume Reduction Factor	Stormwater Reduction Volume (ac-ft)	Wetland Reduction Factor	Wetland Reduction Volume (ac-ft)	Delivered Runoff Volume (ac-ft)
9	Direct	A	COASTAL SCRUB	57.46	0.0	35.0	0.007	1.80	0.00	00.0	0.00	0.00	1.80
9	Direct	A	MDR	4.38	0.0	65.7	0.056	1.10	00.00	00:00	0.00	00.00	1.10
9	Direct	A	MULTI-FAMILY	7.78	0.0	59.2	0.039	1.34	00.00	0.00	0.00	0.00	1.34
9	Direct	A	RECREATIONAL	0.82	0.1	61.3	0.045	0.16	00.00	0.00	0.00	0.00	0.16
9	Direct	A	SWIMMING BEACH	281.49	0.0	77.0	0.109	136.63	00.00	0.00	0.00	0.00	136.63
9	Direct	A	UPLAND HARDWOOD FORESTS	0.84	0.0	32.0	0.005	0.02	0.00	0.00	0.00	0.00	0.02
9	Direct	A/D	COASTAL SCRUB	56.76	0.0	77.0	0.109	27.55	0.00	0.00	0.00	0.00	27.55
9	Direct	A/D	MDR	3.80	0.0	68.5	0.066	1.12	0.00	0.00	0.00	0.00	1.12
9	Direct	A/D	MULTI-FAMILY	1.32	0.0	65.8	0.057	0.33	0.00	0.00	0.00	0.00	0.33
9	Direct	A/D	RECREATIONAL	0.73	0.0	82.9	0.160	0.52	0.00	0.00	0.00	0.00	0.52
9	Direct	A/D	UPLAND HARDWOOD FORESTS	0.82	0.0	79.0	0.123	0.45	00.00	0.00	0.00	0.00	0.45
9	Direct	D	MANGROVE SWAMPS	22.20	0.0	87.0	0.215	21.25	0.00	0.00	0.00	0.00	21.25
9	Direct	W	ENCLOSED SALTWATER PONDS	17.79	0.0	98.0	0.616	48.64	0.00	0.00	0.00	0.00	48.64
9	Direct	W	TIDAL FLATS	41.66	0.0	94.0	0.397	73.39	0.00	0.00	0.00	0.00	73.39

Calc. Values User Inputs 1, 2, 3, 4, 5, 6, 7 Marco Island Project Name: Basin Name:

53.3 Annual Rainfall (inches):

Meteorological Zone:

								Generated	Runoff	Stormwater		Wetland	Delivered
Sub Basin	Treatment 1	Hydrologic Soil Group	Land Use	Area (ac.)	DCIA1 (%)	Non - DCIA CN Value2	Runoff C Value ⁴	Runoff Volume (ac-ft)	Volume Reduction Factor	Reduction Volume (ac-ft)	Wetland Reduction Factor	Reduction Volume (ac-ft)	Runoff Volume (ac-ft)
7	Direct	A	COASTAL SCRUB	4.54	0.0	35.0	0.007	0.14	0.00	00.0	0.00	0.00	0.14
7	Direct	A	MDR	32.68	0.0	64.4	0.052	7.58	00.00	0.00	0.00	00.0	7.58
7	Direct	А	MULTI-FAMILY	6.75	0.0	71.9	0.081	2.42	00.0	0.00	0.00	0.00	2.42
7	Direct	А	RECREATIONAL	0.47	0.0	61.2	0.044	60.0	00.0	0.00	0.00	0.00	0.09
7	Direct	A	SHRUB AND BRUSHLAND	0.83	0.0	38.0	0.009	0.03	00.0	0.00	0.00	00'0	0.03
7	Direct	А	UPLAND HARDWOOD FORESTS	4.45	0.0	32.0	0.005	0.11	0.00	0.00	0.00	0.00	0.11
7	Direct	A/D	COASTAL SCRUB	0.04	0.0	0.77	0.109	0.02	00.00	0.00	0.00	00.0	0.02
7	Direct	A/D	MDR	8.22	0.0	62.7	0.048	1.74	00.00	00.0	0.00	00.0	1.74
7	Direct	A/D	MULTI-FAMILY	3.71	0.0	57.8	0.036	0.59	0.00	0.00	0.00	0.00	0.59
7	Direct	A/D	SHRUB AND BRUSHLAND	6.10	0.0	77.0	0.109	2.96	00.0	0.00	0.00	0.00	2.96
7	Direct	A/D	UPLAND HARDWOOD FORESTS	2.60	0.0	79.0	0.123	1.42	00.0	0.00	0.00	0.00	1.42
7	Direct	D	MANGROVE SWAMPS	169.06	0.0	87.0	0.215	161.79	0.00	0.00	0.00	0.00	161.79
7	Direct	W	SALTWATER MARSHES	14.37	0.0	98.0	0.616	39.29	00.0	0.00	0.00	0.00	39.29
7	Dry Pond	А	DRY PONDS	0.28	0.0	39.0	0.010	0.01	08.0	0.01	0.00	0.00	0.00
7	Dry Pond	А	INSTITUTIONAL	2.23	0.0	9.92	0.107	1.06	08'0	0.84	0.00	0.00	0.21
7	Dry Pond	А	MDR	2.58	0.0	6.09	0.043	0.49	08'0	0.39	0.00	0.00	0.10
7	Dry Pond	А	MULTI-FAMILY	2.12	0.0	85.0	0.182	1.71	0.80	1.37	0.00	0.00	0.34
7	Dry Pond	Α	RECREATIONAL	2.37	0.0	57.7	0.036	0.38	0.80	0:30	0.00	0.00	0.08
7	Dry Pond	А	UPLAND HARDWOOD FORESTS	0.56	0.0	32.0	0.005	0.01	0.80	0.01	0.00	0.00	0.00
7	Dry Pond	A/D	DRY PONDS	0.04	0.0	39.0	0.010	0.00	0.80	0.00	0.00	00.00	0.00
7	Dry Pond	A/D	MDR	0.84	0.0	56.4	0.033	0.12	0.80	0.10	0.00	0.00	0.02
7	Dry Pond	A/D	MULTI-FAMILY	0.47	0.0	76.2	0.104	0.22	08.0	0.17	0.00	0.00	0.04
7	Dry Pond	A/D	SHRUB AND BRUSHLAND	0.35	0.0	77.0	0.109	0.17	08'0	0.14	0.00	0.00	0.03
7	Dry Pond	A/D	UPLAND HARDWOOD FORESTS	0.29	0.0	79.0	0.123	0.16	0.80	0.13	00.00	00.00	0.03
7	Swale	۷	COMMERCIAL	0.41	0.0	70.2	0.072	0.13	0.20	0.03	0.00	0.00	0.11
7	Swale	Α	MDR	57.45	0.4	70.8	0.078	19.99	0.20	4.00	00.00	0.00	15.99
7	Swale	A	MULTI-FAMILY	5.27	0.0	74.0	0.091	2.12	0.20	0.42	00.00	00.00	1.70
7	Swale	4	UPLAND HARDWOOD FORESTS	60.6	0.0	32.0	0.005	0.22	0.20	0.04	0.00	00.00	0.17
7	Swale	A/D	MDR	1.75	0.0	71.7	0.080	0.62	0.20	0.12	0.00	0.00	0.50
7	Swale	A/D	SHRUB AND BRUSHLAND	0.65	0.0	77.0	0.109	0.32	0.20	0.06	0.00	0.00	0.25
7	Wet Pond	A/D	SHRUB AND BRUSHLAND	0.49	0.0	77.0	0.109	0.24	0.20	0.05	0.00	0.00	0.19
7	Wet Pond	W	WET PONDS	0.36	0.0	98.0	0.616	0.98	0.20	0.20	0.00	0.00	0.79
7	Wetland	А	INSTITUTIONAL	0.60	0.0	56.1	0.032	0.09	0.10	0.01	0.00	0.00	0.08
7	Wetland	Α	MDR	2.10	0.0	67.4	0.062	0.58	0.10	90.0	00.00	00.00	0.52
7	Wetland	Α	UPLAND HARDWOOD FORESTS	1.59	0.0	32.0	0.005	0.04	0.10	00.00	00.00	00.00	0.03
7	Wetland	A/D	MDR	0.62	0.0	60.4	0.042	0.11	0.10	0.01	0.00	0.00	0.10
7	Wetland	A/D	SHRUB AND BRUSHLAND	3.74	0.0	77.0	0.109	1.82	0.10	0.18	0.00	0.00	1.63
7	Wetland	A/D	UPLAND HARDWOOD FORESTS	0.03	0.0	79.0	0.123	0.02	0.10	0.00	00:00	0.00	0.01

APPENDIX E

CHARACTERISTICS OF SHALLOW GROUNDWATER SEEPAGE COLLECTED IN MARCO ISLAND FROM APRIL-NOVEMBER 2020

E-1: Field Measurements of Seepage Inflow Volumes

E-2: Chemical Characteristics of Collected Seepage Samples

E-1: Field Measurements of Seepage Inflow Volumes

Location: Marco Island Site: 1

Date Installed: 5/5/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Time Collected	Volume Collected	Previous (Eve		Seepage Time	Seepage (liters/m²-day)	Comments / Observations
	Collected	(liters)	Date	Time	(days)	(iiters/iii -day)	
5/5/20	8:37						Bags Installed
5/26/20	17:14	8.75	5/5/20	8:37	21.4	1.5	Sample collected, bag in good condition
6/29/20	17:11		5/26/20	17:14			No sample collected, meter flipped, reinstalled
7/27/20	9:44	55	6/29/20	17:11	27.7	7.4	Sample collected, bag in good condition
8/31/20	11:55	37	7/27/20	9:44	35.1	3.9	Sample collected, bag in good condition
9/23/20	11:34	110	8/31/20	11:55	23.0	17.7	Sample collected, bag in good condition
11/30/20	11:48	8.75	9/23/20	11:34	68.0	0.5	Sample collected, meter removed
					Mean:	4.64	

Seepage Meter Field Measurements

Site:___2__

Date Installed: 4/29/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Location: Marco Island

Date	Time Collected	Volume Collected	Previous (Eve	Collection ent	Seepage Time	Seepage (liters/m²-day)	Comments / Observations
	Ooliccica	(liters)	Date	Time	(days)	(iiters/iii -day)	
4/29/20	19:43						Bags Installed
5/26/20	16:42	5.8	4/29/20	19:43	26.9	0.8	Sample collected, bag in good condition
6/29/20	16:32	8.8	5/26/20	16:42	34.0	1.0	Sample collected, bag in good condition
7/27/20	8:05	15.5	6/29/20	16:32	27.6	2.1	Sample collected, bag in good condition
8/31/20	12:21	6.5	7/27/20	8:05	35.2	0.7	Sample collected, bag in good condition
9/23/20	13:26	28.8	8/31/20	12:21	23.0	4.6	Sample collected, bag in good condition
11/30/20	12:08	74.0	9/23/20	13:26	67.9	4.0	Sample collected, meter removed
					Mean:	2.40	

Seepage Meter Field Measurements

Location: Marco Island Site: 3

Date Installed: 4/29/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Time Collected	Volume Collected	Previous (Eve		Seepage Seepage ((liters/m²-day)	Comments / Observations	
	Collected	(liters)	Date	Time	(days)	(iiters/iii -day)	
4/29/20	17:55						Bags Installed
5/26/20	15:30	7.8	4/29/20	17:55	26.9	1.1	Sample collected, bag in good condition
6/29/20	15:16	23.3	5/26/20	15:30	34.0	2.5	Sample collected, bag in good condition
7/27/20	8:29	15.8	6/29/20	15:16	27.7	2.1	Sample collected, bag in good condition
8/31/20	12:48	8.8	7/27/20	8:29	35.2	0.9	Sample collected, bag in good condition
9/23/20	11:50	16.5	8/31/20	12:48	23.0	2.7	Sample collected, bag in good condition
11/30/20	11:27	12.5	9/23/20	11:50	68.0	0.7	Sample collected, meter removed
	•		-		Mean:	1.46	

Location: Marco Island Site: 4

Date Installed: 5/5/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Time Collected	Volume Collected	Previous (Eve		Seepage Time	Seepage (liters/m²-day)	Comments / Observations
	Collected	(liters)	Date	Time	(days)	(liters/m -day)	
5/5/20	10:57						Bags Installed
5/26/20	18:36		5/5/20	10:57			No sample collected, bag damaged, bag replaced
6/29/20	18:03	110	5/26/20	18:36	34.0	12.0	Sample collected, bag in good condition
7/27/20	10:19	110	6/29/20	18:03	27.7	14.7	Sample collected, bag in good condition
8/31/20	15:10	21.5	7/27/20	10:19	35.2	2.3	Sample collected, bag in good condition
9/23/20	14:23	73.0	8/31/20	15:10	23.0	11.8	Sample collected, bag in good condition
11/30/20	13:37	98.0	9/23/20	14:23	68.0	5.3	Sample collected, meter removed
					Mean:	8.14	

Seepage Meter Field Measurements

Location: Marco Island Site: 5

Date Installed: 5/5/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Date Time Collected		Previous Collection Event		Seepage Time	Seepage (liters/m²-day)	Comments / Observations
	Collected	(liters)	Date	Time	(days)	(iiters/m -day)	
5/5/20	11:45						Bags Installed
5/26/20	18:55	80.5	5/5/20	11:45	21.3	14.0	Sample collected, bag in good condition
6/29/20	18:29	55.0	5/26/20	18:55	34.0	6.0	Sample collected, bag in good condition
7/27/20	10:49		6/29/20	18:29			No sample collected, meter flipped, meter reinstalled
8/31/20	15:47	6.8	7/27/20	10:49	35.2	0.7	Sample collected, bag in good condition
9/23/20	14:50	55.0	8/31/20	15:47	23.0	8.9	Sample collected, bag in good condition
11/30/20	14:00	5.8	9/23/20	14:50	68.0	0.3	Sample collected, meter removed
		-			Mean:	4.14	-

Seepage Meter Field Measurements

Location: Marco Island Site: 6

Date Installed: 5/5/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Date Time Collected	Volume Collected	Previous Collection Event		Seepage Time	Seepage (liters/m²-day)	Comments / Observations
	Collected	(liters)	Date	Time	(days)	(iiters/m -day)	
5/5/20	12:48						Bags Installed
5/27/20	9:34	95.0	5/5/20	12:48	21.9	16.1	Sample collected, bag in good condition
6/29/20	19:27	110	5/27/20	9:34	33.4	12.2	Sample collected, bag in good condition
7/27/20	11:33	110	6/29/20	19:27	27.7	14.7	Sample collected, bag in good condition
8/31/20	16:41	73.0	7/27/20	11:33	35.2	7.7	Sample collected, bag in good condition
9/23/20	15:40	110	8/31/20	16:41	23.0	17.7	Sample collected, bag in good condition
11/30/20	14:40		9/23/20	15:40			No sample collected, meter flipped, meter removed
					Mean:	13.07	

Location: Marco Island Site: 7

Date Installed: 4/29/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Date Time Collected	Volume Collected	Previous Collection Event		Seepage Time	(liters/m² dov)	Comments / Observations
	Collected	(liters)	Date	Time	(days)	(iiters/iii -day)	
4/29/20	19:06						Bags Installed
5/27/20	8:30	90	4/29/20	19:06	27.6	12.1	Sample collected, bag in good condition
6/29/20	15:42	110	5/27/20	8:30	33.3	12.2	Sample collected, bag in good condition
7/27/20	9:09	110	6/29/20	15:42	27.7	14.7	Sample collected, bag in good condition
8/31/20	14:02	110	7/27/20	9:09	35.2	11.6	Sample collected, bag in good condition
9/23/20	12:40		8/31/20	14:02			No sample collected, can't find meter, replaced meter
11/30/20	12:27		9/23/20	12:40			No sample collected, can't find meter
_					Mean:	12.57	

Seepage Meter Field Measurements

Location: Marco Island Site: 8

Date Installed: 4/29/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Time Collected	Volume Collected	Previous Ev		Seepage Time	/litere/m²-day/\	Comments / Observations
	Collected	(liters)	Date	Time	(days)	(liters/m -day)	
4/29/20	18:35						Bags Installed
5/27/20	8:02	90	4/29/20	18:35	27.6	12.1	Sample collected, bag in good condition
6/29/20	16:18	110	5/27/20	8:02	33.3	12.2	Sample collected, bag in good condition
7/27/20	8:47	110	6/29/20	16:18	27.7	14.7	Sample collected, bag in good condition
8/31/20	13:23	55	7/27/20	8:47	35.2	5.8	Sample collected, bag in good condition
9/23/20	12:12	110	8/31/20	13:23	23.0	17.8	Sample collected, bag in good condition
11/30/20	12:48	74	9/23/20	12:12	68.0	4.0	Sample collected, meter removed
					Mean:	9.47	

Seepage Meter Field Measurements

Location: Marco Island Site: 9

Date Installed: 5/5/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Date Time	Volume Collected	Previous Collection Event		Seepage Time	Seepage (liters/m²-day)	Comments / Observations
	Collected	(liters)	Date	Time	(days)	(iiters/m -day)	
5/5/20	12:11						Bags Installed
5/26/20	19:19	90.0	5/5/20	12:11	21.3	15.7	Sample collected, bag in good condition
6/29/20	19:09	55.0	5/26/20	19:19	34.0	6.0	Sample collected, bag in good condition
7/27/20	11:08	5.8	6/29/20	19:09	27.7	0.8	Sample collected, bag in good condition
8/31/20	16:19	25.8	7/27/20	11:08	35.2	2.7	Sample collected, bag in good condition
9/23/20	15:14	55.0	8/31/20	16:19	23.0	8.9	Sample collected, bag in good condition
11/30/20	14:03		9/23/20	15:14			No sample collected, bag damaged, meter removed
					Mean:	6.08	

Location: Marco Island Site: 10

Date Installed: 5/5/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Time Collected	Collected Ev	rious Collection Se Event		Seepage (liters/m²-day)	Comments / Observations	
	Concoled	(liters)	Date	Time	(days)	(iiters/iii -uay)	
5/5/20	13:32						Bags Installed
5/27/20	9:57		5/5/20	13:32			Sample collected, bag in good condition
6/29/20	19:56	73	5/27/20	9:57	33.4	8.1	No sample collected, bag damaged, bag replaced
7/27/20	12:07	110	6/29/20	19:56	27.7	14.7	Sample collected, bag in good condition
8/31/20	17:10	6.5	7/27/20	12:07	35.2	0.7	Sample collected, bag in good condition
9/23/20	16:05	30.5	8/31/20	17:10	23.0	4.9	Sample collected, bag in good condition
11/30/20	15:00	14.25	9/23/20	16:05	68.0	0.8	Sample collected, meter removed
					Mean:	4.63	

Seepage Meter Field Measurements

Location: Marco Island Site: 11_

Date Installed: 4/29/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Time Collected	Volume Collected	Previous (Eve		Seepage Time	Seepage (liters/m²-day)	Comments / Observations
	Collected	(liters)	Date	Time	(days)	(iiters/m -day)	
4/29/20	15:41						Bags Installed
5/26/20	11:18	95.0	4/29/20	15:41	26.8	13.1	Sample collected, bag in good condition
6/29/20	10:44	110	5/26/20	11:18	34.0	12.0	Sample collected, bag in good condition
7/27/20	13:50	110	6/29/20	10:44	28.1	14.5	Sample collected, bag in good condition
8/31/20	9:20	9.3	7/27/20	13:50	34.8	1.0	Sample collected, bag in good condition
9/23/20	9:22	73.0	8/31/20	9:20	23.0	11.8	Sample collected, bag in good condition
11/30/20	10:20	12.8	9/23/20	9:22	68.0	0.7	Sample collected, meter removed
					Mean:	7.07	<u> </u>

Seepage Meter Field Measurements

Location: Marco Island Site: 12

Date Installed: 4/29/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Time Collected	ed Collected Event Time (liters/m	Seepage (liters/m²-day)	Comments / Observations			
	Collected	(liters)	Date	Time	(days)	(iiters/m -day)	
4/29/20	13:00						Bags Installed
5/26/20	13:15	83.0	4/29/20	13:00	27.0	11.4	Sample collected, bag in good condition
6/29/20	11:53	110	5/26/20	13:15	33.9	12.0	Sample collected, bag in good condition
7/27/20	14:56	110	6/29/20	11:53	28.1	14.5	Sample collected, bag in good condition
8/31/20	10:10	39.8	7/27/20	14:56	34.8	4.2	Sample collected, bag in good condition
9/23/20	9:57	73.0	8/31/20	10:10	23.0	11.8	Sample collected, bag in good condition
11/30/20	9:46	98.0	9/23/20	9:57	68.0	5.3	Sample collected, meter removed
					Mean:	8.86	

Location: Marco Island Site: 13

Date Installed: 5/5/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Date Time Collected	Volume Collected	Previous Collection Event		Seepage Time	Seepage (liters/m²-day)	Comments / Observations
	Collected	(liters)	Date	Time	(days)	(liters/iii -day)	
5/5/20	11:55						Bags Installed
5/26/20	19:05	95.0	5/5/20	11:55	21.3	16.5	Sample collected, bag in good condition
6/29/20	18:41	110	5/26/20	19:05	34.0	12.0	Sample collected, bag in good condition
7/27/20	10:55		6/29/20	18:41			No sample collected, bag damaged, bag replaced
8/31/20	16:05	15.3	7/27/20	10:55	35.2	1.6	Sample collected, bag in good condition
9/23/20	14:59	110	8/31/20	16:05	23.0	17.7	Sample collected, bag in good condition
11/30/20	14:08	148	9/23/20	14:59	68.0	8.1	Sample collected, meter removed
_					Mean:	9.76	

Seepage Meter Field Measurements

Location: Marco Island Site: 14

Date Installed: 4/29/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Time Collected	Volume Collected	Previous (Eve		Seepage Time	Seepage (liters/m²-day)	Comments / Observations
	Collected	(liters)	Date	Time	(days)	(iiters/m -day)	
4/29/20	11:33						Bags Installed
5/26/20	12:43	68.0	4/29/20	11:33	27.0	9.3	Sample collected, bag in good condition
6/29/20	11:24	37.0	5/26/20	12:43	33.9	4.0	Sample collected, bag in good condition
7/27/20	14:21	29.8	6/29/20	11:24	28.1	3.9	Sample collected, bag in good condition
8/31/20	9:49	55.0	7/27/20	14:21	34.8	5.9	Sample collected, bag in good condition
9/23/20	9:42	33.5	8/31/20	9:49	23.0	5.4	Sample collected, bag in good condition
11/30/20	9:30	8.3	9/23/20	9:42	68.0	0.4	Sample collected, meter removed
					Mean:	3.99	

Seepage Meter Field Measurements

Location: Marco Island Site: 15

Date Installed: 4/29/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Time Collected	Volume Collected	Previous Ev	Collection ent	Seepage Time	Seepage (liters/m²-day)	Comments / Observations
	Collected	(liters)	Date	Time	(days)	(iiters/iii -day)	
4/29/20	13:54						Bags Installed
5/26/20	12:07	95.0	4/29/20	13:54	26.9	13.1	Sample collected, bag in good condition
6/29/20	11:14	55.0	5/26/20	12:07	34.0	6.0	Sample collected, bag in good condition
7/27/20	15:24	7.8	6/29/20	11:14	28.2	1.0	Sample collected, bag in good condition
8/31/20	10:04	23.3	7/27/20	15:24	34.8	2.5	Sample collected, bag in good condition
9/23/20	10:19	73.0	8/31/20	10:04	23.0	11.7	Sample collected, bag in good condition
11/30/20	9:17	74.0	9/23/20	10:19	68.0	4.0	Sample collected, meter removed
					Mean:	5.66	

Location: Marco Island Site: 16

Date Installed: 4/29/20 Chamber Diameter: 0.58 m Sediment Area Covered: 0.27 m²

Date	Time Collected	Volume Collected		Collection ent	Seepage Time	Seepage (liters/m²-day)	Comments / Observations
	Collected	(liters)	Date	Time	(days)	(liters/m -day)	
4/29/20	14:27						Bags Installed
5/26/20	10:32		4/29/20	14:27			No sample collected, can't find meter, replaced meter
6/29/20	10:04		5/26/20	10:32			No sample collected, can't find meter, replaced meter
7/27/20	16:12		6/29/20	10:04			No sample collected, can't find meter, replaced meter
8/31/20	8:42		7/27/20	16:12			No sample collected, can't find meter
9/23/20	9:01		8/31/20	8:42			No sample collected, can't find meter
11/30/20	8:48		9/23/20	9:01			No sample collected, can't find meter
					Moan:		

Mean: ----

Characteristics of Groundwater Seepage Samples Collected at Marco Island from May-November 2020

Lab ID	Site	Date	pН	Alkalinity	Cond	Ammonia N	NOx-N	Diss.Org. N	Total N	SRP	Diss.Org. P	Total
20-xxxx)		Collected	(s.u.)	(mg/L)	(µmho/cm)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L
2396	SP-1	7/27/20	7.56	144	47,190	129	603	135	867	75	66	141
2812	SP-1	8/31/20	7.59	151	46,652	80	414	342	836	126	64	190
3091	SP-1	9/23/20	7.40	129	43,248	133	548	288	969	76	86	162
3729	SP-1	11/30/20	7.24	134	47400	195	631	806	1632	116	6	122
	nimum Val		7.24	129	43,248	80	414	135	836	75	6	122
	ximum Va		7.59	151	47,400	195	631	806	1,632	126	86	190
Geom	etric Mean	Value:	7.45	139	46,091	128	542	322	1,035	96	38	152
2058	SP-2	6/30/20	7.81	144	50,140	173	142	743	1,058	121	40	161
2397	SP-2	7/27/20	7.81	138	45,210	151	236	583	970	72	45	117
2813	SP-2	8/31/20	7.72	147	42,620	155	211	773	1,139	112	38	150
3092	SP-2	9/23/20	7.58	145	37,418	489	257	548	1,139	116	118	234
3730	SP-2	11/30/20	7.68	140	43400	104	435	857	1396	75	43	118
3730	3F-Z	11/30/20	7.00	140	43400	104	433	657	1390	73	43	110
Mi	nimum Val	ue:	7.58	138	37,418	104	142	548	970	72	38	117
Ma	ximum Va	ue:	7.81	147	50,140	489	435	857	1,396	121	118	234
Geom	etric Mean	Value:	7.72	143	43,563	183	240	691	1,161	97	51	151
2059	SP-3	6/30/20	7.74	138	50,794	45	172	584	801	114	36	150
2398	SP-3	7/27/20	7.79	144	46,860	95	169	556	820	58	70	128
2814	SP-3	8/31/20	7.54	142	46,117	186	124	773	1,083	109	37	146
3093	SP-3	9/23/20	7.53	128	40,068	283	88	754	1,125	73	19	92
3731	SP-3	11/30/20	7.19	139	47000	287	219	940	1446	78	100	178
Mi	nimum Val	ιιο· Ι	7.19	128	40,068	45	88	556	801	58	19	92
	ximum Va		7.79	144	50,794	287	219	940	1,446	114	100	178
	etric Mean		7.56	138	46,034	145	147	708	1,030	84	45	136
Coom	oti io iviouri	value.	7.50	130	40,034	143	147	700	1,000	04	43	130
2060	SP-4	6/30/20	7.87	158	52,211	555	163	446	1,164	242	52	294
2400	SP-4	7/27/20	7.80	151	43,560	449	341	562	1,352	190	30	220
2815	SP-4	8/31/20	7.63	139	47,401	376	203	708	1,287	245	24	269
3094	SP-4	9/23/20	7.59	142	44,838	697	130	398	1,225	265	27	292
3732	SP-4	11/30/20	7.63	135	47300	92	329	923	1344	133	97	230
	nimum Val		7.59	135	43,560	92	130	398	1,164	133	24	220
	ximum Va		7.87	158	52,211	697	341	923	1,352	265	97	294
Geom	etric Mean	Value:	7.70	145	46,971	360	217	579	1,272	209	40	259
2062	SP-5	6/30/20	7.99	146	49,922	21	548	483	1,052	120	9	129
2817	SP-5	8/31/20	7.72	142	46,652	126	88	596	810	72	43	115
3095	SP-5	9/23/20	7.63	128	37,736	221	155	513	889	72	10	82
3733	SP-5	11/30/20	7.56	128	47100	1137	104	969	2210	83	4	87
0100	0, 0	11/00/20	7.00	120	17 100	1107	101	000	ZZIO			
Mi	nimum Val	ue:	7.56	128	37,736	21	88	483	810	72	4	82
Ma	ximum Va	ue:	7.99	146	49,922	1,137	548	969	2,210	120	43	129
IVIC	etric Mean	Value:	7.72	136	45,106	161	167	615	1,137	85	11	101
Geom			7.57	408	40,221	3,432	110	921	4,463	250	43	293
	SP-6	6/30/20			45,540	2,998	90	792	3,880	190	44	234
Geom	SP-6	6/30/20 7/27/20	7.54	382	40,040		101		4.074	120	40	179
Geom 2063	SP-6 SP-6		7.54 7.68	382 245	44,726	1,229	101	541	1,871	130	49	173
Geom 2063 2401	SP-6	7/27/20			,	1,229 1,655	101	541 157	1,871	137	33	
2063 2401 2818 3096	SP-6 SP-6 SP-6	7/27/20 8/31/20 9/23/20	7.68 7.19	245 219	44,726 37,524	1,655	124	157	1,936	137	33	170
2063 2401 2818 3096	SP-6 SP-6 SP-6	7/27/20 8/31/20 9/23/20 ue:	7.68 7.19 7.19	245 219 219	44,726 37,524 37,524	1,655 1,229	124 90	157 157	1,936 1,871	137 130	33 33	170 170
2063 2401 2818 3096 Mii Ma	SP-6 SP-6 SP-6 nimum Val	7/27/20 8/31/20 9/23/20 ue: lue:	7.68 7.19 7.19 7.68	245 219 219 408	44,726 37,524 37,524 45,540	1,655 1,229 3,432	90 124	157 157 921	1,936 1,871 4,463	137 130 250	33 33 49	170 170 293
2063 2401 2818 3096 Mil Ma	SP-6 SP-6 SP-6	7/27/20 8/31/20 9/23/20 ue: lue:	7.68 7.19 7.19	245 219 219	44,726 37,524 37,524	1,655 1,229	124 90	157 157	1,936 1,871	137 130	33 33	170 170 293
2063 2401 2818 3096 Mil Ma Geom	SP-6 SP-6 SP-6 nimum Val eximum Val	7/27/20 8/31/20 9/23/20 ue: lue: Value:	7.68 7.19 7.19 7.68 7.49	245 219 219 408 302	44,726 37,524 37,524 45,540 41,872	1,655 1,229 3,432 2,139	90 124 106	157 157 921 499	1,936 1,871 4,463 2,814	137 130 250 171	33 33 49 42	170 170 293 214
2063 2401 2818 3096 Mil Ma Geom	SP-6 SP-6 SP-6 nimum Val eximum Val etric Mean	7/27/20 8/31/20 9/23/20 ue: lue: Value:	7.68 7.19 7.19 7.68 7.49	245 219 219 408 302	44,726 37,524 37,524 45,540 41,872	1,655 1,229 3,432 2,139	90 124 106	157 157 921 499	1,936 1,871 4,463 2,814	137 130 250 171	33 49 42	170 293 214
2063 2401 2818 3096 Mil Ma Geom	SP-6 SP-6 SP-6 nimum Val eximum Val	7/27/20 8/31/20 9/23/20 ue: ue: Value: 6/30/20 7/27/20	7.68 7.19 7.19 7.68 7.49	245 219 219 408 302	44,726 37,524 37,524 45,540 41,872 49,813 47,080	1,655 1,229 3,432 2,139	90 124 106	157 157 921 499	1,936 1,871 4,463 2,814	137 130 250 171	33 33 49 42	170 293 214 146
2063 2401 2818 3096 Mi Ma Geom	SP-6 SP-6 SP-6 nimum Val eximum Val etric Mean SP-7 SP-7	7/27/20 8/31/20 9/23/20 ue: lue: Value:	7.68 7.19 7.19 7.68 7.49 7.93 7.73	245 219 219 408 302 147 150	44,726 37,524 37,524 45,540 41,872	1,655 1,229 3,432 2,139	90 124 106 97 541	157 157 921 499 623 330	1,936 1,871 4,463 2,814 739 885	137 130 250 171 87 37	33 49 42 59 103	170 293 214 146
2063 2401 2818 3096 Mi Ma Geom 2064 2402 2820	SP-6 SP-6 SP-6 nimum Val eximum Val etric Mean SP-7 SP-7	7/27/20 8/31/20 9/23/20 ue: ue: Value: 6/30/20 7/27/20 8/31/20	7.68 7.19 7.19 7.68 7.49 7.93 7.73	245 219 219 408 302 147 150	44,726 37,524 37,524 45,540 41,872 49,813 47,080	1,655 1,229 3,432 2,139	90 124 106 97 541	157 157 921 499 623 330	1,936 1,871 4,463 2,814 739 885	137 130 250 171 87 37	33 49 42 59 103	170 170 293 214 140 140 224
Geom. 2063 2401 2818 3096 Mi Ma Geom. 2064 2402 2820 Mi	SP-6 SP-6 SP-6 SP-6 Inimum Valetric Mean SP-7 SP-7 SP-7	7/27/20 8/31/20 9/23/20 ue: ue: Value: 6/30/20 7/27/20 8/31/20 ue:	7.68 7.19 7.19 7.68 7.49 7.93 7.73 7.74	245 219 219 408 302 147 150 149	44,726 37,524 37,524 45,540 41,872 49,813 47,080 38,630	1,655 1,229 3,432 2,139 19 14 296	90 124 106 97 541 419	157 921 499 623 330 979	1,936 1,871 4,463 2,814 739 885 1,694	137 130 250 171 87 37 41	33 49 42 59 103 183	170 293 214 146 140 224

Characteristics of Groundwater Seepage Samples Collected at Marco Island from May-November 2020

		Date	pН	Alkalinity	Cond	Ammonia N	NOx-N	Diss.Org. N	Total N	SRP	Diss.Org. P	Total F
Lab ID (20-xxxx)	Site	Collected	(s.u.)	(mg/L)	(µmho/cm)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
2065	SP-8	6/30/20	7.84	148	50,576	54	1,034	490	1,578	200	54	254
2404	SP-8	7/27/20	7.64	157	48,510	78	747	674	1,499	299	37	336
2821	SP-8	8/31/20	7.61	138	-	561	188	370	1,119	166	32	198
					44,298							
3097	SP-8 SP-8	9/23/20	7.37	220	39,220	1,582	100	269	1,951	341	23	364
3734	3F-0	11/30/20	7.61	142	42400	610	191	887	1688	152	38	190
Mi	nimum Val	ue:	7.37	138	39,220	54	100	269	1,119	152	23	190
Ма	ximum Val	ue:	7.84	220	50,576	1,582	1,034	887	1,951	341	54	364
Geom	etric Mean	Value:	7.61	159	44,813	296	308	493	1,542	220	35	259
2066	SP-9	6/30/20	8.37	146	50,794	39	145	503	687	89	20	109
2405	SP-9	7/27/20	7.82	131	47,520	46	205	424	675	85	23	108
2822	SP-9	8/31/20	7.59	142	44,940	40	481	489	1,010	118	17	135
3099	SP-9	9/23/20	7.82	152	43,460	78	159	441	678	158	6	164
	nimum Val		7.59	131	43,460	39	145	424	675	85	6	108
	ximum Val		8.37	152	50,794	78	481	503	1,010	158	23	164
Geom	etric Mean	Value:	7.89	143	46,596	49	218	463	751	109	15	127
2000	CD 40	6/00/00	7 70	100	E0 005	055	0.040	252	2.000	440	0.7	505
2068	SP-10	6/30/20	7.78	188	50,685	855	2,018	353	3,226	448	87	535
2406	SP-10	7/27/20	7.56	175	46,090	1,091	600	792	2,483	280	65	345
2823	SP-10	8/31/20	7.71	151	46,438	1,102	152	552	1,806	311	63	374
3100	SP-10	9/23/20	7.63	167	45,898	2,323	415	360	3,098	383	49	432
3736	SP-10	11/30/20	7.59	147	46200	562	398	988	1948	171	70	241
Mi	nimum Val	uo: I	7.56	147	45,898	562	152	353	1 906	171	49	241
	ximum Val		7.56 7.78	188	50,685	2,323	2,018	988	1,806 3,226	448	87	535
	etric Mean		7.75	165	47,028	1,061	497	560	2,445	303	66	373
Gcom	ctric ivicari	value.	7.00	100	47,020	1,001	431	360	2,445	303	66	3/3
2069	SP-11	6/30/20	7.89	139	52,211	21	180	672	873	90	77	167
2407	SP-11	7/27/20	7.62	140	47,740	49	76	639	764	43	120	163
2824	SP-11	8/31/20	7.53	158	47,508	70	179	702	951	51	85	136
3101	SP-11	9/23/20	7.79	145	40,068	335	166	393	894	84	62	146
3738	SP-11	11/30/20	7.84	146	47800	54	247	768	1069	42	3	45
0100	01 11	11/00/20	7.01	110	17 000	01		7.00	1000	12	- U	10
Mi	nimum Val	ue:	7.53	139	40,068	21	76	393	764	42	3	45
Ma	ximum Val	ue:	7.89	158	52,211	335	247	768	1,069	90	120	167
Geom	etric Mean	Value:	7.73	145	46,895	67	159	619	905	59	43	119
2070	SP-12	6/30/20	8.32	190	47,415	30	295	455	780	133	89	222
2408	SP-12	7/27/20	7.74	139	47,080	52	42	399	493	56	142	198
2825	SP-12	8/31/20	7.60	143	46,973	365	327	189	881	121	157	278
3102	SP-12	9/23/20	8.01	168	33,708	288	467	169	924	85	103	188
3739	SP-12	11/30/20	7.72	141	46900	17	140	709	866	39	12	51
		-							493	39	12	51
	nimum Val		7.60	139	33,708	17	42	169				
Ма	ximum Val	ue:	8.32	190	47,415	365	467	709	924	133	157	278
Ма		ue:									157 75	
Ma Geom	etric Mean	ue: Value:	8.32 7.87	190 155	47,415 44,045	365 77	467 193	709 333	924 770	133 79	75	278 164
Geom	etric Mean SP-13	Value: 6/30/20	8.32 7.87 8.14	190 155	47,415 44,045 48,614	365 77 225	467 193 466	709 333 319	924 770 1,010	133 79	75	278 164 155
Ma Geom 2071 2826	SP-13 SP-13	6/30/20 8/31/20	8.32 7.87 8.14 7.63	190 155 149 150	47,415 44,045 48,614 44,833	365 77 225 213	467 193 466 119	709 333 319 495	924 770 1,010 827	133 79 123 114	75 32 20	278 164 155 134
2071 2826 3103	SP-13 SP-13 SP-13	6/30/20 8/31/20 9/23/20	8.32 7.87 8.14 7.63 7.95	190 155 149 150 158	47,415 44,045 48,614 44,833 35,722	365 77 225 213 539	467 193 466 119 142	709 333 319 495 294	924 770 1,010 827 975	133 79 123 114 116	75 32 20 122	278 164 155 134 238
Ma Geom 2071 2826	SP-13 SP-13	6/30/20 8/31/20	8.32 7.87 8.14 7.63	190 155 149 150	47,415 44,045 48,614 44,833	365 77 225 213	467 193 466 119	709 333 319 495	924 770 1,010 827	133 79 123 114	75 32 20	278 164 155 134 238
2071 2826 3103 3740	SP-13 SP-13 SP-13 SP-13 SP-13	6/30/20 8/31/20 9/23/20 11/30/20	8.32 7.87 8.14 7.63 7.95 7.57	190 155 149 150 158 157	47,415 44,045 48,614 44,833 35,722 46100	225 213 539 230	466 119 142 276	709 333 319 495 294 806	924 770 1,010 827 975 1312	133 79 123 114 116 122	32 20 122 67	278 164 155 134 238 189
2071 2826 3103 3740	SP-13 SP-13 SP-13 SP-13	6/30/20 8/31/20 9/23/20 11/30/20	8.32 7.87 8.14 7.63 7.95 7.57	190 155 149 150 158 157	47,415 44,045 48,614 44,833 35,722 46100 35,722	365 77 225 213 539 230	467 193 466 119 142 276	709 333 319 495 294 806	924 770 1,010 827 975 1312	133 79 123 114 116 122	32 20 122 67	278 164 155 134 238 189
2071 2826 3103 3740	SP-13 SP-13 SP-13 SP-13 SP-13 SP-13	6/30/20 8/31/20 9/23/20 11/30/20	8.32 7.87 8.14 7.63 7.95 7.57 7.57	190 155 149 150 158 157 149 158	47,415 44,045 48,614 44,833 35,722 46100 35,722 48,614	365 77 225 213 539 230 213 539	467 193 466 119 142 276 119 466	709 333 319 495 294 806	924 770 1,010 827 975 1312 827 1,312	133 79 123 114 116 122 114 123	75 32 20 122 67 20 122	278 164 155 134 238 189 134 238
2071 2826 3103 3740	SP-13 SP-13 SP-13 SP-13	6/30/20 8/31/20 9/23/20 11/30/20	8.32 7.87 8.14 7.63 7.95 7.57	190 155 149 150 158 157	47,415 44,045 48,614 44,833 35,722 46100 35,722	365 77 225 213 539 230	467 193 466 119 142 276	709 333 319 495 294 806	924 770 1,010 827 975 1312	133 79 123 114 116 122	32 20 122 67	278 164 155 134 238 189 134 238
2071 2826 3103 3740 Mi Ma Geom	SP-13 SP-13 SP-13 SP-13 SP-13 SP-13 SP-13 SP-13 Community Value of the American Mean	6/30/20 8/31/20 9/23/20 11/30/20 ue: ue: Value:	8.32 7.87 8.14 7.63 7.95 7.57 7.57 8.14 7.82	190 155 149 150 158 157 149 158 153	47,415 44,045 48,614 44,833 35,722 46100 35,722 48,614 43,526	365 77 225 213 539 230 213 539 278	467 193 466 119 142 276 119 466 216	709 333 319 495 294 806 294 806 440	924 770 1,010 827 975 1312 827 1,312 1,017	133 79 123 114 116 122 114 123 119	75 32 20 122 67 20 122 48	278 164 155 134 238 189 134 238 175
2071 2826 3103 3740 Mi Ma Geom	SP-13 SP-13 SP-13 SP-13 SP-13 SP-13 SP-14	6/30/20 8/31/20 9/23/20 11/30/20 ue: ue: Value:	8.32 7.87 8.14 7.63 7.95 7.57 7.57 8.14 7.82	190 155 149 150 158 157 149 158 153	47,415 44,045 48,614 44,833 35,722 46100 35,722 48,614 43,526 52,647	365 77 225 213 539 230 213 539 278	467 193 466 119 142 276 119 466 216	709 333 319 495 294 806 294 806 440	924 770 1,010 827 975 1312 827 1,312 1,017	133 79 123 114 116 122 114 123 119	75 32 20 122 67 20 122 48	278 164 155 134 238 189 134 238 175
2071 2826 3103 3740 Mii Ma Geom	SP-13 SP-13 SP-13 SP-13 SP-13 SP-14 SP-14	6/30/20 8/31/20 9/23/20 11/30/20 ue: ue: Value:	8.32 7.87 8.14 7.63 7.95 7.57 7.57 8.14 7.82	190 155 149 150 158 157 149 158 153 152 133	47,415 44,045 48,614 44,833 35,722 46100 35,722 48,614 43,526 52,647 48,510	365 77 225 213 539 230 213 539 278	467 193 466 119 142 276 119 466 216	709 333 319 495 294 806 294 806 440	924 770 1,010 827 975 1312 827 1,312 1,017	133 79 123 114 116 122 114 123 119 240 188	75 32 20 122 67 20 122 48	278 164 155 134 238 189 134 238 175
Ma Geom 2071 2826 3103 3740 Mi Ma Geom 2072 2409 2827	SP-13 SP-13 SP-13 SP-13 SP-13 SP-14 SP-14 SP-14	6/30/20 8/31/20 9/23/20 11/30/20 ue: ue: Value: 6/30/20 7/27/20 8/31/20	8.32 7.87 8.14 7.63 7.95 7.57 8.14 7.82 8.06 7.72 7.48	190 155 149 150 158 157 149 158 153 153 152 133 147	47,415 44,045 48,614 44,833 35,722 46100 35,722 48,614 43,526 52,647 48,510 49,113	365 77 225 213 539 230 213 539 278 656 359 206	467 193 466 119 142 276 119 466 216	709 333 319 495 294 806 294 806 440 499 597 275	924 770 1,010 827 975 1312 827 1,312 1,017	133 79 123 114 116 122 114 123 119 240 188 326	75 32 20 122 67 20 122 48 23 56 70	278 164 155 134 238 189 134 238 175 263 244 396
Ma Geom 2071 2826 3103 3740 Mi Ma Geom 2072 2409 2827 3104	SP-13 SP-13 SP-13 SP-13 SP-13 SP-14 SP-14 SP-14 SP-14 SP-14	lue: Value: 6/30/20 8/31/20 9/23/20 11/30/20 ue: ue: Value: 6/30/20 7/27/20 8/31/20 9/23/20	8.32 7.87 8.14 7.63 7.95 7.57 7.57 8.14 7.82 8.06 7.72 7.48 7.86	190 155 149 150 158 157 149 158 153 153 147 161	47,415 44,045 48,614 44,833 35,722 46100 35,722 48,614 43,526 52,647 48,510 49,113 44,202	365 77 225 213 539 230 213 539 278 656 359 206 740	467 193 466 119 142 276 119 466 216 355 470 847 470	709 333 319 495 294 806 294 806 440 499 597 275 444	924 770 1,010 827 975 1312 827 1,312 1,017 1,510 1,426 1,328 1,654	133 79 123 114 116 122 114 123 119 240 188 326 168	75 32 20 122 67 20 122 48 23 56 70 192	278 164 155 134 238 189 134 238 175 263 244 396 360
Ma Geom 2071 2826 3103 3740 Mi Ma Geom 2072 2409 2827	SP-13 SP-13 SP-13 SP-13 SP-13 SP-14 SP-14 SP-14	6/30/20 8/31/20 9/23/20 11/30/20 ue: ue: Value: 6/30/20 7/27/20 8/31/20	8.32 7.87 8.14 7.63 7.95 7.57 8.14 7.82 8.06 7.72 7.48	190 155 149 150 158 157 149 158 153 153 152 133 147	47,415 44,045 48,614 44,833 35,722 46100 35,722 48,614 43,526 52,647 48,510 49,113	365 77 225 213 539 230 213 539 278 656 359 206	467 193 466 119 142 276 119 466 216	709 333 319 495 294 806 294 806 440 499 597 275	924 770 1,010 827 975 1312 827 1,312 1,017	133 79 123 114 116 122 114 123 119 240 188 326	75 32 20 122 67 20 122 48 23 56 70	278 164 155 134 238 189 134 238
Ma Geom 2071 2826 3103 3740 Mi Ma Geom 2072 2409 2827 3104 3741	SP-13 SP-13 SP-13 SP-13 SP-13 SP-14 SP-14 SP-14 SP-14 SP-14	6/30/20 8/31/20 9/23/20 11/30/20 ue: ue: Value: 6/30/20 6/30/20 11/30/20 11/30/20	8.32 7.87 8.14 7.63 7.57 7.57 8.14 7.82 8.06 7.72 7.48 7.86 7.33	190 155 149 150 158 157 149 158 153 153 147 161	47,415 44,045 48,614 44,833 35,722 46100 35,722 48,614 43,526 52,647 48,510 49,113 44,202 48300	365 77 225 213 539 230 213 539 278 656 359 206 740	467 193 466 119 142 276 119 466 216 355 470 847 470	709 333 319 495 294 806 294 806 440 499 597 275 444	924 770 1,010 827 975 1312 827 1,312 1,017 1,510 1,426 1,328 1,654 1289	133 79 123 114 116 122 114 123 119 240 188 326 168 111	75 32 20 122 67 20 122 48 23 56 70 192	278 164 155 134 238 189 134 238 175 263 244 396 360
Ma Geom 2071 2826 3103 3740 Mi Ma Geom 2072 2409 2827 3104 3741	SP-13 SP-13 SP-13 SP-13 SP-13 Inimum Val etric Mean SP-14 SP-14 SP-14 SP-14 SP-14	6/30/20 8/31/20 11/30/20 11/30/20 11/30/20 ue: ue: Value: 6/30/20 7/27/20 8/31/20 9/23/20 11/30/20 ue:	8.32 7.87 8.14 7.63 7.95 7.57 7.57 8.14 7.82 8.06 7.72 7.48 7.86	190 155 149 150 158 157 149 158 153 152 133 147 161 132	47,415 44,045 48,614 44,833 35,722 46100 35,722 48,614 43,526 52,647 48,510 49,113 44,202	365 77 225 213 539 230 213 539 278 656 359 206 740 514	467 193 466 119 142 276 119 466 216 355 470 847 470 667	709 333 319 495 294 806 440 499 597 275 444 108	924 770 1,010 827 975 1312 827 1,312 1,017 1,510 1,426 1,328 1,654	133 79 123 114 116 122 114 123 119 240 188 326 168	75 32 20 122 67 20 122 48 23 56 70 192 44	278 164 155 134 238 189 134 238 175 263 244 396 360 155

Characteristics of Groundwater Seepage Samples Collected at Marco Island from May-November 2020

Lab ID (20-xxxx)	Site	Date Collected	pH (s.u.)	Alkalinity (mg/L)	Cond (µmho/cm)	Ammonia N (µg/L)	NOx-N (μg/L)	Diss.Org. N (µg/L)	Total N (μg/L)	SRP (µg/L)	Diss.Org. P (µg/L)	Total P (µg/L)
2073	SP-15	6/30/20	7.93	160	52,102	282	173	659	1,114	119	42	161
2410	SP-15	7/27/20	7.82	138	47,960	22	229	793	1,044	89	21	110
2828	SP-15	8/31/20	7.51	161	46,866	75	379	508	962	143	24	167
3106	SP-15	9/23/20	8.02	164	43,990	403	299	332	1,034	190	56	246
3742	SP-15	11/30/20	7.53	147	45900	151	268	805	1224	87	77	164
	nimum Val ximum Val		7.51 8.02	138 164	43,990 52,102	22 403	173 379	332 805	962 1,224	87 190	21 77	110 246
Geom	etric Mean	Value:	7.76	154	47,288	123	261	589	1,072	120	39	164

APPENDIX F

CHARACTERISTICS OF MONITORED INPUTS TO MARCO ISLAND WATERWAYS FROM MAY-OCTOBER 2020

F-1: Bulk Precipitation

F-2: Stormwater Runoff

F-3: Reuse Irrigation

F-4: Reuse Pond on Golf Course

F-1: Bulk Precipitation

Characteristics of Bulk Precipitation Samples Collected at Marco Island from June - October 2020

																			_			1
TSS	(mg/L)	2.7	1.1	14.6	1.0	3.4	3.0	2.3	0.7	4.2	2.5	2.2	1.3	0.3	5.2	1.3	6.3	12.2	0.3	14.6	2.4	
Color	(Pt-Co)	1	2	က	1	2	-	2	-	2	-	1	_	2	-	1	-	1	_	2	-	
Turbidity	(NTU)	1.1	0.8	1.9	0.8	2.3	1.7	0.8	9.0	4.1	2.1	0.4	9.0	1.2	6.0	1.1	0.7	1.5	0.4	4.1	1.	
Diss. TP	(hg/L)	81	92	266	41	15	23	13	14	6	42	6	30	31	11	21	84	69	6	266	31	
Total P	(hg/L)	26	112	354	79	17	28	16	20	28	22	1	22	47	15	25	06	77	11	354	43	
Part. P	(hg/L)	16	20	88	38	2	5	3	9	19	13	2	27	16	4	4	9	80	2	88	6	
Diss.Org. P	(hg/L)	80	88	61	36	11	18	12	13	9	35	9	26	30	10	19	21	24	9	88	22	
SRP	(hg/L)	1	4	205	2	4	2	-	-	က	7	က	4	_	_	2	63	45	_	205	4	
Diss. TN	(hg/L)	150	288	2,248	372	351	239	59	133	466	181	111	355	168	152	56	339	206	26	2,248	234	
Total N	(hg/L)	164	326	2,255	419	402	268	84	180	525	230	132	381	183	210	65	372	548	65	2,255	273	
Part. N	(hg/L)	14	38	7	47	21	29	25	47	29	49	21	26	15	28	6	33	42	7	59	28	
Diss.Org. N	(hg/L)	4	187	006	75	26	36	54	43	245	18	8	195	32	35	8	17	207	4	006	20	
N-xON	(hg/L)	82	92	137	148	184	137	2	87	184	160	100	141	100	113	39	184	86	2	184	92	
Ammonia N	(hg/L)	64	0	1,211	149	70	99	က	က	37	က	ဇ	19	36	4	6	138	201	က	1,211	26	
Cond.	(mp/oqum)	7	17	26	15	22	18	11	œ	7	18	10	31	31	19	30	18	23	7	31	16	
Alkalinity	(mg/L)	19.7	13.8	14.6	12.8	19.3	14.8	16.0	18.9	10.5	13.7	25.5	13.0	20.0	16.5	26.5	28.0	31.5	10.5	31.5	17.7	
Hd	(s.u.)	98'9	6.32	5.87	6.13	6.75	6.59	6.31	6.49	6.25	6.29	6.43	6.14	6.27	6.23	6.58	6.31	6.42	5.87	98.9	6.36	
Date	Collected	6/3/20	6/9/20	6/17/20	6/25/20	7/8/20	7/16/20	7/21/20	7/27/20	8/5/20	8/12/20	8/19/20	8/23/20	8/31/20	9/10/20	9/14/20	10/19/20	10/28/20	Minimum Value:	Maximum Value:	ic Mean:	
Lab ID	(20-xxxx)	1700	1753	1871	2016	2178	2310	2340	2394	2497	2557	2636	2709	2808	2917	2940	3451	3554	Minimur	Maximu	Geometric Mean:	

F-2: Stormwater Runoff	

Characteristics of Stormwater Runoff Samples Collected at Marco Island from May - October 2020

Site 1 9/14/20 8/19/20 8/19/20 9/14/20 9/14/20 9/28/20 8/12/20 8/12/20 8/12/20 9/28/20	um Vallum	6.43 7.19 6.43 7.19 6.90 6.90 7.85 7.85 7.85	$\frac{1}{2}$	(hmho/cm)	(µg/L)	(µg/L)	(µg/L) 14	(µg/L) 189	(µg/L) 301	(µg/L) 112	٦	(µg/L)	(µg/L)	(µg/L) 215	(µg/L) 167	(NIU)	(Pt-Co)	(mg/L)
88/ 99/ 99/ 99/ 99/ 99/ 99/ 99/ 99/ 99/	num Vall	6.43 7.19 6.90 6.90 7.85 7.85 7.85 7.85	36	66	က	05	14	189	301	112	145	22	48	215	167	1.3	23	
99- 100- 100- 100- 100- 100- 100- 100- 1	etric Me	7.11 7.19 6.30 6.30 7.89 7.85 8.21 7.67	101 102 36			ů,						1	!					4.6
10/ 10/ 10/ 10/ 10/ 10/ 10/ 10/ 10/ 10/	etric Me	6.43 7.19 6.90 7.89 7.85 8.21 7.67	36	1,057	51	22	262	112	813	701	233	101	53	387	334	5.1	2.2	48.8
8/8/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9	num Val	6.43 7.19 6.90 7.89 7.85 8.21 7.67	36	1,194	3	208	519	180	910	730	54	19	32	105	73	87.5	26	196.0
88/8/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9/	num Val	6.43 7.19 6.90 7.89 7.85 8.21 7.67	36															
88 89/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9/9/	num Val	7.19 6.90 7.89 7.85 8.21 7.67		66	3	22	14	112	301	112	54	19	32	105	73	1.3	23	4.6
88 87 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	num Val	6.90 7.89 7.85 8.21 7.67	102	1,194	51	208	595	189	910	730	233	101	53	387	334	87.5	77	196.0
2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2	num Val	7.89 7.85 8.21 7.67	72	200	8	103	163	156	909	386	122	35	43	206	160	8.3	36	35.3
	num Val	7.85																
	num Val	7.85 8.21 7.67	104	41,724	61	119	658	165	1,003	838	75	16	44	135	91	9.7	20	20.8
	num Val	8.21	144	51,984	88	176	421	354	1,039	685	75	16	15	106	91	18.9	18	29.3
	num Val	7.67	84.2	28,930	92	93	477	2	299	662	72	87	16	175	159	3.4	17	5.3
	num Val		150	23,210	172	107	459	109	847	738	49	7	9	62	56	1.3	32	8.0
	num Val	7.42	117	35,310	147	102	470	43	762	719	80	6	2	91	89	5.2	18	7.7
8/12/20 9/23/20 9/28/20 10/5/20	num Val	7.81	157	23,868	က	80	810	88	981	893	25	2	O	39	30	1.7	21	4.4
9/23/20 9/28/20 10/5/20	num Val	7.96	126	28,997	က	435	532	113	1,083	970	122	80	2	135	130	5.2	16	13.2
9/28/20	num Val	7.62	131	43,977	19	159	385	55	618	563	40	9	16	62	46	2.3	25	10.8
10/5/20	num Vali	7.58	122	27,878	40	105	358	33	536	503	133	10	25	168	143	3.6	14	3.5
00/01/01	num Val	7.46	130	29,256	249	195	433	101	978	877	94	20	20	134	114	27.4	29	300.0
10/12/20	num Val	7.59	133	40,664	116	135	872	1,302	2,425	1,123	168	37	73	278	205	304.7	41	591.0
	num Val num Val																	
Minimum	num Val	7.42	84	23,210	3	80	358	2	536	503	22	2	2	39	30	1.3	14	8.0
Maxir	netric Me	8.21	157	51,984	249	435	872	1,302	2,425	1,123	168	87	73	278	202	304.7	41	591.0
Geom		7.73	125	33,080	47	137	512	06	915	260	75	13	14	110	92	7.2	22	14.9
0019112	7/10	767	F 0.4	2 710	76	499	176	166	151	300	100	30	101	170	140	10.7	cc	202
02/01/1		7.37	500.4	3,710	200	55	2.00	100	1000	777	123	07	1 2 6	120	450	13.7	23	0.27
Cite 2 9/E/20		7 . 10	22.3	1,301	20	۲2 د	120	<u> </u>	200	604	101	0 <	C7 4	27	20 6		7 7	0.0
		7.67	109.0	1 464	ე ო	101	522	30	675	180	147	35	o %	210	182	6 C	- 4	o. 6
9/14/20		7.32	119.0	1,441	o m	2	277	47	329	282	119	43	1 4	176	162	0.8	8 8	8.7
Minimum	mum Value:	7.18	22	1,117	က	2	115	36	306	171	25	4	5	8	29	0.7	1	1.9
Maxir	Maximum Value:	7.90	119	3,718	37	133	989	166	727	691	147	43	131	274	182	13.7	34	72.6
Geom	Geometric Mean:	7.48	29	1,692	80	17	267	71	467	359	68	14	23	135	105	1.9	20	9.7
06/26/5	BE	7 79	137.0	53.352	87	82	429	230	828	598	147	96	17	190	173	1.5	14	18
6/25/20		7.75	140.0	48 941	5 m	2	602	167	774	607	112	26	155	293	138	3.4	. 1	16.2
6/30/20		7.76	134.0	50,794	o (n)	23	496	18	540	522	49	, ∞	22	62	57		2 /	2.7
7/8/20		7.82	150.0	48,950	22	က	499	51	575	524	41	10	80	29	51	1.5	1	4.9
7/27/20	BF (7.82	127.0	21,670	39	2	530	20	591	571	100	11	17	128	111	4.1	တ	4.1
Site 2 8/19/20		7.81	120.0	37,129	က	107	616	52	778	726	93	19	42	154	112	1.3	16	2.8
8/23/20) BF	7.76	123.0	47,064	က	40	555	72	029	598	34	16	7	22	20	0.5	တ	3.9
9/10/20) BF	7.81	111.0	52,644	က	2	421	190	616	426	266	33	35	334	299	8.0	12	3.7
9/23/20) BF	7.78	138.0	43,228	43	147	345	29	564	535	72	13	13	86	85	1.6	13	4.5
10/12/20	0 BF	7.92	136.0	43,784	က	20	856	34	943	606	41	18	O	89	29	4.3	10	10.6
10/19/20	0 BF	7.63	136.0	52,520	8	30	428	21	513	492	94	∞	21	123	102	0.8	9	3.3
Minin	Minimum Value:	7.63	111	21,670	က	2	345	18	513	426	34	80	7	22	20	0.5	9	2.7
Maxir	Maximum Value:	7.92	150	53,352	87	147	856	230	943	606	266	33	155	334	588	4.3	16	16.2
Geom	Geometric Mean:	7.79	132	44,290	10	17	511	54	099	280	79	15	20	121	96	1.4	11	5.0

Characteristics of Stormwater Runoff Samples Collected at Marco Island from May - October 2020

Separation Sep		Location	Date Collected	Sample Type	рН (s.u.)	Alkalinity (mg/L)	Cond. (µmho/cm)	NH3-N (µg/L)	NOx-N (µg/L)	Diss.Org. N (µg/L)	۵ =	Total N (µg/L)	Diss. TN (µg/L)	, ,	Diss.Org. P (µg/L)	Part. P (µg/L)	Total P (µg/L)	Diss. TP (µg/L)	Turbidity (NTU)	Color (Pt-Co)	TSS (mg/L)
Second S	1552		5/19/20	SW	8.75	25.1	296	1,252	288	404	193	2,137	1,944	63	40	40	143	103	6.9	24	9.7
Separation Sep	969		6/3/20	SW	7.97	24.8	1,191	1,442	69	844	719	3,074	2,355	49	82	227	361	134	39.0	75	67.2
	751		6/9/20	SW	8.59	246	738	833	863	069	360	2,746	2,386	103	96	301	200	199	10.6	53	25.9
Street	969		6/17/20	SW	66.9	268	2,000	1,417	9	1,020	239	2,682	2,443	42	41	308	391	83	25.4	22	10.2
Secondary Seco	337	Site 3	7/21/20	SW	7.07	163	1,064	970	94	286	94	1,444	1,350	34	35	41	110	69	1.5	8	4.1
Secretary Service Serv	194	2	8/5/20	SW	7.42	127	747	306	45	354	10	715	202	34	105	46	185	139	3.6	40	2.4
Section Sect	333		8/19/20	SW	7.21	22.8	97	3	99	379	39	487	448	242	38	10	290	280	1.2	43	2.5
Secondary Material Seconda	90,		8/23/20	SW	7.24	48.0	3,127	3	357	29	134	523	389	110	44	39	193	154	1.4	19	7.9
Minimum Value Control 915		9/10/20	SW SW	7.37	41.9	268	3	256	160	203	629 415	426 360	141	30	8	193	171	1.7	19	5.8	
Minimum Nation: 8175 State State																					
Sheek String St			Minimum	י Value:	69.9	22.8	26	3	9	29	10	415	360	34	30	8	110	69	1.2	19	2.4
Sin Strate Strate			Maximun	n Value:	8.75	268	3,127	1,442	863	1,020	719	3,074	2,443	242	105	308	500	280	39.0	75	
Sign 3 77772 B F 72.2 204 2.8 110.0 10.0 12.2 11.0 14.0 17.2 10.0 14.0 14.0 14.0 17.2 10.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0			Geometr	ic Mean:	7.50	67.3	759	105	11/	308	121	1,128	296	9/	51	51	/77	138	4.4	38	8.4
Single S	40		5/27/20	出	7.33	189	32,604	899	264	194	175	1,301	1,126	81	37	10	128	118	4.6	42	15.0
No.	55		6/30/20	BF	7.42	204	26,269	1,102	2	310	146	1,560	1,414	22	21	30	108	78	10.7	28	5.2
No. 92		7/8/20	BF	7.29	201	29,150	974	17	69	282	1,342	1,060	124	ო	25	152	127	6.1	42	4.9	
Minimum Male Minimum Minimum Male Minimum Male Minimum M	307	Site 3	7/16/20	BF	6.82	217	22,220	1,218	12	71	273	1,574	1,301	29	6	211	279	89	8.2	45	13.3
No. 1019-2020 EP 7.11 R.42 St. 100 1.05	91		7/27/20	胎 :	6.94	208	24,860	1,423	2	368	133	1,926	1,793	86	25	62	185	123	5.8	65	9.7
Mathematic Mathemati	80		9/23/20	<u>т</u> г	7.11	142	30,602	1,039	16	623	121	1,799	1,678	43	999	62	204	142	2.5	54	8.5
Mahimmum Mullane 8.6.2 138 22.220 145 145 145 1430 145	2			5								001	2								
			Minimum	ו Value:	6.82	138	22,220	186	2	69	65	1,238	1,060	43	3	10	108	89	4.2	56	4.9
Sile			Maximun	n Value:	7.42	217	38,896	1,423	737	623	282	1,926	1,793	124	66	211	279	142	10.7	65	19.7
Sile 4 772 20 20 20 20 20 20 2			Geometr	ic Mean:	7.16	183	28,795	816	7.7	208	154	1,516	1,340	9/	13	45	1/0	108	0.7	46	9.7
Sile 4 (1972) SW (982	66		6/3/20	SW	7.99	314.0	2,376	332	82	758	8	1,180	1,172	257	89	75	400	325	5.6	61	7.8
Sin 4 (1772) SW	22		6/9/20	SW	8.26	343.0	1,824	441	26	859	8	1,334	1,326	301	53	30	384	354	7.4	61	20.1
Sile 4 771/20 SW 769 724 474 70 357 71 191 789 588 588 39 142 446 59 55 Reficio SW 776 442 1420 36 32 225 281 341 517 371 441 441 330 288 114 Reficio SW 778 450 1206 32 225 281 241 277 273 121 441 441 330 288 114 Reficio SW 778 450 1206 32 323 611 247 1221 974 127 203 131 441 330 288 114 Reficio SW 778 450 1206 32 225 321 2418 2.087 630 114 481 330 303 219 65 Reficio SW 778 450 237 441 1075 922 371 2418 2.087 630 1698 428 114 481 113 481 Reficio SW 778 450 237 441 1075 922 371 2418 2.087 630 203 450 891 731 113 491 Reficio Ref	0		6/17/20	SW	6.93	33.2	06	09	137	269	63	529	466	228	42	45	315	270	12.9	33	17.5
National N	80 9	Site 4	7/16/20	SW	7.69	124.0	474	20	357	171	191	789	598	285	39	142	466	324	6.6	55	25.0
Minimum Value; 6.93 5.74 6.57 6.74 6.75 6.75 6.74 6.75	χ 20 10 10 10 10 10 10 10 10 10 10 10 10 10		07/17/1	M S	7.01	04.2	1,420	9 %	222	281	351	893	242	107	18	125	344	230	20 00	- 7	0.87
101/202 SN 7.44 SN 7.54 SN 7.55 SN 7.54 SN 7.55 SN 7	0 0		0/2/20	A 60	7.70	45.0	0,200	320	331	746	747	1,22.1	974	121	203	13.1	401	330	7 T E	4 90	20.0
Maximum Value: 6.83 3.33 90 3.2 2.6 171 8 5.29 466 89 18 30 303 2.219 5.6 3.3 Maximum Value: 8.26 343 2.376 441 1,075 922 351 2.418 2.097 630 203 160 891 731 44.8 114 14.8	25		10/12/20	SW SW	7.53	51.9	887	100	1,075	922	321	2,418	2,097	630	101	160	891	731	11.3	49	25.8
Minimum Value: 6 693 333 90 32 2 6 6 171 8 6 529 466 89 18 30 303 219 56 33 3 8 9 8 44 1 1075 6 922 2418 5724 6 65 8 85 420 334 7 138 6 45 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8																					
Maximum Value: 8.26 343 2.376 441 1075 922 351 2.418 2.097 650 203 160 891 731 448 114			Minimum	י Value:	6.93	33	06	32	26	171	8	529	466	88	18	30	303	219	9.6	33	7.8
Geometric Mean: 7 64 98 843 111 165 494 80 1088 927 228 65 85 420 324 13.8 62 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Maximun	n Value:	8.26	343	2,376	441	1,075	922	351	2,418	2,097	630	203	160	891	731	44.8	114	78.0
Site 4 6.27/20 BF 7.87 265.0 16.987 544 12 15 1,072 1,098 79 220 1,397 1,177 4.6 79 7/8/20 BF 8.31 326.0 5,379 538 620 216 221 1,595 1,574 289 61 78 428 350 3.3 70 7/8/20 BF 7,83 113.0 26,950 79 167 216 221 1,595 1,574 289 61 78 48 350 3.3 70 8/19/20 BF 7,54 156.0 41,499 162 79 991 365 1,240 90 1,27 462 143 36 20 176 246 246 1,374 36 23 202 178 246 27 Site 4 8/19/20 16 45 24 465 323 1,27 4 55 11 246			Geometr	ic Mean:	7.64	86	843	111	165	494	80	1,098	927	228	65	82	420	324	13.8	62	26.7
7/8/20 BF 8.31 326.0 5,379 538 620 216 221 1,595 1,374 289 61 78 428 350 3.3 70 1/27/20 BF 7.83 113.0 26,950 79 167 216 303 765 462 143 36 23 202 179 246 26 8/19/20 BF 7.54 156.0 41,409 167 216 303 765 462 143 36 23 202 179 246 26 8/19/20 BF 7.72 124,00 40.386 127 113 825 712 4 52 178 27 178 82 7.3 178 93 7.1 26 92 7.3 178 93 7.1 82 82 17 82 178 93 7.1 82 178 93 7.1 82 188 1,64 94	41		5/27/20	H	7.87	265.0	16.997	544	12	516	157	1,229	1.072	1.098	62	220	1.397	1.177	4.6	62	5.8
71/21/20 BF 7.83 113.0 26,950 79 167 216 303 765 462 143 36 23 202 179 24.6 26 26 26 26 26 26 26	77		7/8/20	BF	8.31	326.0	5,379	538	620	216	221	1,595	1,374	289	61	78	428	350	3.3	20	23.6
Site 4 813/3C0 BF 77.5 124.0 40.386 127 133 645 335 1,240 905 122 4 52 178 126 7.3 17 2 124.0 40.386 127 133 645 335 1,240 905 122 4 52 178 126 7.3 17 2 124.0 40.386 127 133 645 335 1,240 905 122 4 52 178 126 7.3 17 2 124.0 40.386 127 138 645 335 1,485 323 14 25 32 118 93 1.1 26 31 1	92		7/27/20	BF	7.83	113.0	26,950	79	167	216	303	765	462	143	36	23	202	179	24.6	56	36.8
Site 4 8/23/20 BF 7.72 124.0 40,386 127 133 645 335 1,240 905 122 4 52 178 126 7.3 177 178 124.0 40,386 127 133 645 335 1,240 905 122 4 52 118 93 1.1 26 178 1.0	34		8/19/20	BF	7.54	156.0	41,409	162	79	991	361	1,593	1,232	207	501	285	993	208	0.4	23	8.5
9/23/20 BF 7.42 59.1 35,952 50 435 227 113 825 712 82 111 25 118 93 1.1 26 26 26 28 323 323 323 32 32 32	20	Site 4	8/23/20	BF	7.72	124.0	40,386	127	133	645	335	1,240	905	122	4	52	178	126	7.3	17	13.7
10/15/20 BF 7.87 128.0 19,854 86 616 239 673 1,614 941 208 58 232 498 266 98.9 24 24 24 24 24 24 24 2	81		9/23/20	<u></u> Н	7.42	59.1	35,952	37.2	435	227	113	825	712	323	 0	25	118	93	1.1	26	4.3
10/19/20 BF 7.34 60.9 41,912 229 128 283 84 724 640 95 4 9 108 99 0.5 14 Minimum Value: 7.34 59.1 5,379 50 12 216 84 724 462 82 4 9 108 93 0.4 14 Maximum Value: 8.31 326 42,506 544 850 991 673 1,485 1,098 501 285 1,397 1,177 98.9 79 Geometric Mean: 7.76 139.2 25,897 176 194 344 218 1,186 922 204 27 56 331 260 4.6 31	40		10/5/20	<u>г</u> В	7.87	128.0	19,854	98	616	239	673	1,614	941	208	58	232	498	266	98.9	24	471.0
7.34 59.1 5,379 50 12 216 84 724 462 82 4 9 108 93 0.4 14 8.31 326 42,506 544 850 991 673 1,623 1,098 501 285 1,397 1,177 98.9 79 7.76 139.2 25,897 176 194 344 218 1,186 922 204 27 56 331 260 4.6 31	49		10/19/20	BF	7.34	6.09	41,912	229	128	283	84	724	640	92	4	6	108	66	0.5	14	1.5
8.31 326 42,506 544 850 991 673 1,623 1,098 501 285 1,397 1,177 98.9 79 77.76 139.2 25,897 176 194 344 218 1,186 922 204 27 56 331 260 4.6 31			Minimi	Value:	7 34	50.1	5 370	Z)	12	216	Va	107	167	68	_	d	108	03	7	77	4 تر
7.76 139.2 25,897 176 194 344 218 1,186 922 204 27 56 331 260 4.6 31			Maximum	Value.	45.7	33.1	3,379 42 FOE	00	71	210	673	1 623	402 1 48E	1 008	4 0	200	1 307	4 4 7 7	4.0	4 6	0.77
7.70 139.2 23,037 170 194 344 2.10 1,100 322 204 2.7 30 331 200 4.0 31			NaxIIIIdi	n value.	10.0	120.2	42,300	176	930	999	07.0	1,023	1,403	0,030	301	203	1,597	7,11,1	80.9	5 6	747
			ספטוופיוו	C Meal.	۱.۱٥	139.2	780,02	0/1	134	044	7 10	1,100	276	ZU4	17	ac	100	707	4.0	10	7.01

Characteristics of Stormwater Runoff Samples Collected at Marco Island from May - October 2020

Lab Location	ID FOCAL	2635	2708	2916 Site 5	2939	3241				2309	2339	2393	2496	2556 Sito E	3082	3171	3326	3450	3553				
	Collected	8/19/20	8/23/20	5 9/10/20	9/14/20	10/5/20	Minin	Maxir	Geom	7/16/20	7/21/20	7/27/20	8/5/20		9/23/20	9/28/20	10/12/20	10/19/20	10/28/20	Minin	Maxir	Geomet	
Sample	d Type	SW	SW	SW	SW	SW	Minimum Value:	Maximum Value:	Geometric Mean:	BF	BF	BF	BF	BF	BF	BF	BF	BF	BF	Minimum Value:	Maximum Value:	netric Mean:	
Hd	(s.u.)	7.93	7.62	7.41	7.84	7.59	7.41	7.93	7.68	8.27	69.7	8.74	7.11	8.45	7.74	7.68	7.82	7.79	7.93	7.11	8.74	7.91	
Alkalinity	(mg/L)	51.8	50.9	52.1	61.9	164	51	164	29	179.0	268.0	262.0	160.0	145.0	173.0	218.0	165.0	164.0	64.1	64.1	268	169.1	
Cond.	(hmho/cm)	163	242	699	263	4,950	163	4,950	510	36,410	30,910	30,910	29,376	33,277	24,075	17,914	28,704	41,392	33,624	17,914	41,392	29,977	
NH3-N	(µg/L)	3	21	155	35	9/	3	155	30	45	401	75	09	က	39	17	က	325	3	3	401	29	
N-xON	(hg/L)	101	70	61	2	393	2	393	51	162	17	272	104	284	528	864	737	231	325	17	864	237	
Diss.Org. N	(hg/L)	92	623	382	284	238	92	623	261	345	498	430	490	362	151	168	673	61	377	61	673	296	
Part. N	(hg/L)	36	87	211	53	26	56	211	62	105	79	88	96	61	09	17	39	40	105	17	105	61	-
Total N [(hg/L)	216	801	808	374	733	216	808	521	259	962	865	750	710	778	1,066	1,452	657	810	259	1,452	848	
_	(hg/L)	180	714	598	321	707	180	714	445	552	916	777	654	649	718	1,049	1,413	617	705	552	1,413	774	-
	(hg/L)	35	29	164	23	163	23	164	99	197	94	205	43	112	136	332	419	125	217	43	419	157	-
Diss.Org. P	(hg/L)	27	56	27	51	105	27	105	22	24	က	37	88	55	12	27	9	6	4	က	88	16	
Part. P	(hg/L)	19	30	69	38	8	8	69	26	2	40	26	17	ဇ	29	14	12	7	59	3	69	15	
Total P	(hg/L)	131	145	260	112	276	112	276	172	226	137	268	148	170	177	373	437	141	280	137	437	218	-
Diss. TP Te	(hg/L)	112	115	191	74	268	74	268	137	221	97	242	131	167	148	359	425	134	221	26	425	194	-
Turbidity	(NTU)	13.1	7.1	1.7	6.5	16.9	1.7	16.9	7.0	1.3	3.4	2.4	18.0	57.0	2.4	6.0	1.8	1.8	2.1	6.0	57.0	3.3	-
	(Pt-Co) (21	22	48	39	34	21	48	31	20	62	53	54	41	29	29	22	13	20	13	62	31	-
TSS	(mg/L)	22.8	7.9	2.5	5.5	8.6	2.5	22.8	7.5	2.5	3.8	2.2	8.0	34.0	4.9	1.6	4.3	3.1	39.8	1.6	39.8	5.5	

F-3: Reuse Irrigation	

Characteristics of Reuse Irrigation Samples Collected at Marco Island from May - October 2020

WH3-N NOX-N Diss, Org. N Part. Part. Part. N Total N Diss, Org. N Part. Part. N Total N Diss, Org. N Part. Part. N Total Numbridity Color Numbridity Colo	6,507 6,186 4,708 2,086 477 5,559 5,227 1.9 10 1.0 4.9 4.9 4.9 4.9 391 12 3.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6
NH3-N NOx-N Diss.Org. N Part. N Total N Diss. TN SRP Diss.Org. P Part. P Total N Diss. TN (hg/L)	8,180 4,708 2,086 477 5,559 5,227 1.9 4.356 2.300 391 121 3.267 3.090 0.3
NH3-N NOX-N Diss.Org N Part. N Total N Diss. TN SRP Diss. Org P (lug/L) (lug/L) (lug/L) (lug/L) (lug/L) (lug/L) (lug/L) (lug/L) (lug/L) (lug/L) (lug/L) (lug/L) (lug/L)	8,186 4,708 2,086 4/7 3,559 5,27 4,356 2,300 391 121 3,267 3,090
NH3-N NOX-M Diss.Org. N Part. N Total N Diss., TN SRP Diss.Org. P Part. P Total N 29 7,242 505 58 7,834 7,776 2,909 788 477 4,114 29 7,242 505 58 7,834 7,776 2,909 788 477 4,114 9 3,747 762 75 4,424 4,567 2,091 881 52 30.4 29 3,747 762 75 4,424 4,568 3,082 4 4 4,317 29 3,747 762 75 4,424 4,587 2,090 78 4,518 3,084 4 4,317 3,024 4 4,317 4,312 3,024 4,518 3,084 4 4,312 3,024 4,518 3,084 4,312 3,024 4,312 3,024 4,312 3,024 4,312 3,024 4,312 3,024 4,312 3,024 4,312<	8,18b 4,708 2,08b 477 3,559 4.356 2.300 391 121 3,252
NH3-N NOX-N Diss.Org. N Part. N Total N Diss. TN SRP (µg/L)	6,186 4,708 2,086 477 4,356 2,300 391 121
NH3-N NOx-N Diss.Org. N Part. N Total N Diss.TN SRP Diss.Org. N (µg/L) (µ	8,186 4,708 2,086 4,356 2,300 391
NH3-N NOx-N Diss.Org. N Part. N Total N Diss. TN SRP Diss.Org. N (µg/L) (8,186 4,708 4,356 2,300
NH3-N NOX-N DISs.Org. N Part. N Total N DISs. TN 29 7,242 505 58 7,834 7,776 26 3,012 448 242 3,676 3,676 18 3,012 448 777 4,424 4,367 19 3,747 762 75 4,593 4,518 29 3,747 762 75 4,624 4,367 29 4,139 364 92 4,629 4,518 29 4,139 364 92 4,624 4,518 29 4,139 364 92 4,629 4,518 27 4,572 565 36 5,200 5,164 27 4,572 565 36 5,200 5,164 27 4,572 588 12 3,650 3,638 28 80 2,002 2,875 4,287 4,487 29 2,932 81 <t< th=""><th>8,186</th></t<>	8,186
NH3-N NOX-N Diss.Org. N Part. N Total N (µg/L) (µg/L) (µg/L) (µg/L) 29	
(µg/L) (4,629
(ug/L)	- 1
(ug/L)	1,672
(ug/L)	2,983
	3.263
	11
Cond. (µmho/cm) [1,422] 1,422 1,4831 1,243 1,243 1,242 1,242 1,242 1,242 1,242 1,242 1,379 1,379 1,386 1,386 1,386 1,386 1,386 1,495 1,496 1,199 1,596	1,933
	07 1
	7.36
Sample Type SW	Mean:
Date Collected Sam Collected 6.719/20 SW 6/17/20 6.7320 SW 6/320 6.7320 SW 6/320 6.77720 SW 6/320 7.78/20 SW 7/76/20 7.716/20 SW 7/76/20 7.721/20 SW 7/721/20 8/5/20 SW 8/31/20 8/31/20 SW 8/11/20 8/31/20 SW 9/14/20 9/23/20 SW 9/14/20 9/23/20 SW 9/14/20 9/28/20 SW 9/14/20 9/14/20 SW 9/16/20	Geometric Mean:
Reuse	
Lab 1550 1637 1695 1750 1750 1868 2014 2053 2334 2334 2338 2491 2653 2653 2653 2693 2704 2913 2913 2913 2913 3077 3077 3168 3168 3168 3168 3168 3168 3168 3168	

F-4: Reuse Pond on Golf Cou	<u>rse</u>

Characteristics of Reuse Irrigation Samples Collected at Marco Island from May - October 2020

Lab	location	Date	Sample	Hd	Alkalinity	Cond.	NH3-N	N-xON	Diss.Org. N	Part. N	Total N	Diss. TN	SRP	Diss.Org. P	Part. P	Total P	Diss. TP	Turbidity	Color	TSS
Q	Location	Collected	Type	(s.u.)	(mg/L)	(hmho/cm)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(NTN)	(Pt-Co)	(mg/L)
2498		8/5/20	Outfall	7.39	135	1,237	110	2	1,066	889	2,077	1,178	53	92	142	287	145	14.2	100	12.0
2637		8/19/20	Outfall	7.89	133	1,773	72	290	1,215	1,176	2,753	1,577	160	505	27	692	999	3.8	66	11.6
2558		8/12/20	Outfall	90.7	122	16,157	475	2	1,594	1,527	3,598	2,071	179	300	179	658	479	8.6	149	12.2
2710		8/23/20	Outfall	7.21	138	19,186	372	2	3,601	561	4,536	3,975	171	61	173	405	232	8.5	111	9.7
2809		8/31/20	Outfall	7.82	154	24,824	113	2	736	262	1,113	851	92	22	51	168	117	5.6	104	7.1
2918	0	9/10/20	Outfall	7.62	123	1,757	264	2	1,309	296	1,871	1,575	170	159	216	545	329	3.6	136	15.4
2941	Pond	9/14/20	Outfall	7.72	128	3,681	328	2	926	262	1,548	1,286	131	253	308	692	384	2.2	104	19.5
3083	2	9/23/20	Outfall	7.53	132	15,750	330	2	546	644	1,522	878	225	26	20	271	251	3.3	118	15.6
3172		9/28/20	Outfall	7.45	152	13,155	244	2	490	466	1,202	736	169	292	19	755	736	2.7	104	8.0
3243		10/5/20	Outfall	7.14	148	13,420	643	45	729	182	1,599	1,417	170	169	34	373	339	4.3	127	4.1
3327		10/12/20	Outfall	7.41	129	24,128	416	132	1,200	781	2,529	1,748	190	16	42	248	206	8.1	82	7.0
3452		10/19/20	Outfall	7.61	129	29,016	445	105	418	161	1,129	896	161	46	43	250	207	1.7	89	3.6
3555		10/28/20	Outfall	7.63	121	×	999	31	765	14	1,476	1,462	54	230	72	356	284	2.2	71	4.3
		Minimum Value:	n Value:	7.06	121	1,237	72	2	418	14	1,113	736	53	16	19	168	117	1.7	89	3.6
		Maximum Value:	n Value:	7.89	154	29,016	999	290	3,601	1,527	4,536	3,975	225	292	308	755	736	14.2	149	19.5
		Geometric Mean:	c Mean:	7.49	134	8,789	286	6	950	361	1,882	1,370	137	109	89	395	294	4.1	103	8.8

APPENDIX G

RESULTS OF BENTHIC SEDIMENT RELEASE EXPERIMENTS

G-1: Lab Analyses Conducted During Sediment Release Experiments

G-2: Sediment Nutrient Release Plots

G-1: Lab Analyses Conducted During Sediment Release Experiments

Results of Sediment Benthic Nutrient Release Rate Studies at Marco Island Sites

Date	Time (days)	NH3	NO _x	Organic N	Total N	SRP (IIG/L)	Organic P	Total P	Volume	Total N	SRP	Total P
24.00	(1)8H		(1)(E)		<u></u>	رجورت) (<mark>اevel (inches)</mark>	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(F3)(E) 21.75	(2)	(61)	(SH)	(61)
0	43		2	472	517	69	56	92	4.84	2,503	334	460
6/8/20 3 225	225		15	493	733	62	26	88	4.81	3,523	298	423
2	253		33	515	801	64	27	91	4.78	3,832	306	435
7	261		71	503	835	88	27	115	4.76	3,976	419	548
10	276		324	505	1,105	105	24	129	4.73	5,223	496	610
14	211		337	220	1,118	133	27	160	4.68	5,234	623	749
	131		491	638	1,260	150	56	176	4.65	5,856	269	818
19	36		542	069	1,268	179	26	205	4.62	5,864	828	948
22	17		262	738	1,350	223	28	251	4.59	6,198	1,024	1,152
	3		611	816	1,430	242	26	268	4.55	6,500	1,100	1,218
31	3		687	840	1,530	283	25	308	4.49	6,868	1,270	1,383
33	3		717	844	1,564	289	28	317	4.47	6,985	1,291	1,416
7/10/20 35 3	3		662	888	1,553	317	26	343	4.44	6,901	1,409	1,524
38	3		647	846	1,496	338	25	363	4.41	6,597	1,490	1,601
40	3		657	847	1,507	363	36	399	4.39	6,611	1,592	1,750
24.00				End	Ending water le	level (inches):		22.50				
0	22		2	699	693	141	22	163	4.84	3,355	683	789
	238		2	653	893	101	21	122	4.82	4,303	487	588
5 506	909		2	648	1,156	92	22	114	4.80	5,554	442	548
7	531		2	718	1,251	109	22	134	4.79	5,992	522	642
	220		7	729	1,301	139	27	166	4.77	6,204	663	792
13	633		2	734	1,369	195	23	218	4.75	6,499	926	1,035
15	869		2	846	1,546	256	25	281	4.73	7,316	1,212	1,330
17	788		2	286	1,777	316	31	347	4.72	8,384	1,491	1,637
19	947		2	686	1,938	333	25	358	4.70	9,116	1,566	1,684
	1,010		2	984	1,996	338	20	358	4.69	9,360	1,585	1,679
25	1,029		2	1,015	2,046	356	21	377	4.66	9,535	1,659	1,757
	1,063		2	1,042	2,107	417	25	442	4.65	9,804	1,940	2,057
9/2/20 33 1,178	1,178		2	1,087	2,267	430	29	459	4.60	10,435	1,979	2,113
9/4/20 35 1,296	1,296		2	1,018	2,316	504	59	533	4.59	10,627	2,313	2,446
	1,397	1	2	1,054	2,453	999	25	691	4.55	11,167	3,032	3,146
9/11/20 42 1,375	1,375		2	1,003	2,380	731	26	757	4.54	10,800	3,317	3,435

Results of Sediment Benthic Nutrient Release Rate Studies at Marco Island Sites

	Redox	Date		NH3	Ŷ	Organic N	Total N	SRP	Organic P	Total P	Volume	Total N	SRP	Total P
Site	Condition	Collected	Time (days)	(hg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(L)	(brl)	(brl)	(bd)
Startin	Starting water level (inches):	inches):	24.00				Ending water level (inches)	vel (inches):		22.00				
S-4		6/5/20	0	58	2	476	536	74	26	100	4.84	2,595	358	484
S-4		6/8/20	က	304	2	505	811	80	24	104	4.81	3,901	385	200
S-4		6/10/20	2	483	21	495	666	82	56	111	4.79	4,785	407	532
S-4		6/12/20	7	548	125	502	1,175	102	26	128	4.77	5,605	487	611
S-4		6/15/20	10	711	268	523	1,502	116	26	142	4.74	7,119	220	673
S-4		6/19/20	14	345	089	585	1,610	129	27	156	4.70	7,566	909	733
S-4		6/22/20	17	152	910	909	1,668	151	28	179	4.67	7,788	705	836
S-4	Aerobic	6/24/20	19	20	1,094	290	1,704	159	22	181	4.65	7,922	739	841
S-4		6/27/20	22	16	1,129	583	1,728	161	33	194	4.62	7,981	744	968
S-4		7/1/20	26	က	1,344	262	1,942	173	36	209	4.58	8,891	792	957
S-4		7/6/20	31	က	947	638	1,588	178	41	219	4.53	7,190	908	992
S-4		7/8/20	33	က	720	681	1,404	216	31	247	4.51	6,329	974	1,113
S-4		7/10/20	35	က	728	269	1,428	247	41	288	4.49	6,408	1,108	1,292
S-4		7/13/20	38	က	729	691	1,423	259	46	305	4.46	6,343	1,154	1,359
S-4		7/15/20	40	က	749	636	1,388	265	49	314	4.44	6,159	1,176	1,393
Startin	Starting water level (inches):	inches):	24.00			En	Ending water level (inches	evel (inches):		22.50				
S-4		7/31/20	0	16	2	643	661	127	26	153	4.84	3,200	615	741
S-4		8/3/20	ო	119	2	808	929	122	25	147	4.82	4,477	588	708
S-4		8/5/20	2	121	2	962	919	112	26	138	4.80	4,415	538	663
S-4		8/7/20	7	184	2	824	1,010	171	25	196	4.79	4,838	819	939
S-4		8/10/20	10	232	2	817	1,051	229	27	256	4.77	5,012	1,092	1,221
S-4		8/13/20	13	268	2	867	1,137	249	33	282	4.75	5,397	1,182	1,339
S-4		8/15/20	15	286	2	885	1,173	286	32	318	4.73	5,551	1,353	1,505
S-4	Cis Cis	8/17/20	17	369	2	206	1,278	318	40	358	4.72	6,030	1,500	1,689
S-4	AIIONIC	8/19/20	19	463	2	937	1,402	326	35	361	4.70	6,595	1,533	1,698
S-4		8/21/20	21	537	2	965	1,504	368	35	403	4.69	7,053	1,726	1,890
S-4		8/25/20	25	999	2	915	1,583	401	35	436	4.66	7,378	1,869	2,032
S-4		8/26/20	26	724	2	843	1,569	421	40	461	4.65	7,301	1,959	2,145
S-4		9/2/20	33	938	2	847	1,787	438	38	476	4.60	8,225	2,016	2,191
S-4		9/4/20	35	1,072	2	890	1,964	461	39	200	4.59	9,012	2,115	2,294
S-4		9/9/20	40	1,111	2	837	1,950	483	37	520	4.55	8,877	2,199	2,367
S-4		9/11/20	42	1,302	2	806	2,110	513	8	547	4.54	9,575	2,328	2,482

Results of Sediment Benthic Nutrient Release Rate Studies at Marco Island Sites

	Redox	Date		NH3	ŇOŇ	Organic N	Total N	SRP	Organic P	Total P	Volume	Total N	SRP	Total P
Site	Condition	Collected	Time (days)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(L)	(brl)	(brl)	(pd)
Startin	Starting water level (inches):	(inches):	24.00			_	Ending water level (inches)	vel (inches):		22.00				
S-5		6/5/20	0	33	2	445	480	20	23	93	4.84	2,323	339	450
S-5		6/8/20	3	82	2	473	257	75	23	98	4.81	2,679	361	471
S-5		6/10/20	5	103	2	510	615	70	37	107	4.79	2,946	335	513
S-5		6/12/20	7	213	13	512	738	62	34	96	4.77	3,520	296	458
S-5		6/15/20	10	242	20	633	945	84	33	117	4.74	4,479	398	555
S-5		6/19/20	14	314	131	639	1,084	92	34	129	4.70	5,094	446	909
S-5		6/22/20	17	252	257	265	1,106	115	36	151	4.67	5,164	537	705
S-5	Aerobic	6/24/20	19	156	320	999	1,141	142	36	178	4.65	5,304	099	828
S-5		6/27/20	22	128	389	929	1,173	181	22	203	4.62	5,418	836	938
S-5		7/1/20	26	က	449	736	1,188	210	24	234	4.58	5,439	961	1,071
S-5		7/6/20	31	က	451	744	1,198	218	23	241	4.53	5,424	286	1,091
S-5		7/8/20	33	က	481	728	1,212	369	30	399	4.51	5,463	1,663	1,799
S-5		7/10/20	35	က	471	824	1,298	357	35	392	4.49	5,825	1,602	1,759
S-5		7/13/20	38	က	473	808	1,284	334	32	366	4.46	5,723	1,489	1,631
S-5		7/15/20	40	3	475	825	1,303	329	28	357	4.44	5,782	1,460	1,584
Startin	Starting water level (inches):	inches):	24.00			Ē	Ending water level (inches	vel (inches):		21.75				
S-5		7/31/20	0	3	2	634	639	58	20	78	4.84	3,093	281	378
S-5		8/3/20	က	172	2	269	871	71	18	89	4.81	4,188	341	428
S-5		8/5/20	2	291	2	724	1,017	98	18	104	4.79	4,868	412	498
S-5		8/7/20	7	345	2	770	1,117	107	20	127	4.76	5,322	510	605
S-5		8/10/20	10	372	2	830	1,204	153	21	174	4.73	5,698	724	823
S-5		8/13/20	13	385	2	848	1,235	166	23	189	4.70	5,805	780	888
S-5		8/15/20	15	405	2	872	1,279	212	25	237	4.68	5,984	992	1,109
S-5	O iyou	8/17/20	17	495	2	875	1,372	217	24	241	4.66	6,389	1,011	1,122
S-5	אומאומ	8/19/20	19	683	2	802	1,487	233	20	253	4.64	6,893	1,080	1,173
S-5		8/21/20	21	602	2	807	1,518	238	24	262	4.61	7,004	1,098	1,209
S-5		8/25/20	25	739	2	788	1,529	228	24	252	4.57	6,988	1,042	1,152
S-5		8/26/20	26	883	2	777	1,662	236	27	263	4.56	7,578	1,076	1,199
S-5		9/2/20	33	897	2	778	1,677	258	23	281	4.48	7,520	1,157	1,260
S-5		9/4/20	35	096	2	748	1,710	274	25	299	4.46	7,631	1,223	1,334
S-5		9/9/20	40	1,072	2	728	1,802	296	28	324	4.41	7,944	1,305	1,428
S-5		9/11/20	42	1,107	2	749	1,858	327	28	355	4.39	8,151	1,434	1,557

Results of Sediment Benthic Nutrient Release Rate Studies at Marco Island Sites

	Redox	Date		NH3	ŇOX	Organic N	Total N	SRP	Organic P	Total P	Volume	Total N	SRP	Total P
SITE	Condition	Collected	IIme (days)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(L)	(bd)	(hg)	(hg)
Startin	Starting water level (inches):	(inches):	24.00			En	<u>_</u>	level (inches):		20.75				
6-S		6/5/20	0	44	2	485	531	92	17	63	4.84	2,570	368	450
S-9		6/8/20	3	135	2	420	222	89	22	111	4.79	2,669	426	532
6-S		6/10/20	5	183	13	202	703	92	21	116	4.76	3,345	452	552
8-6 S		6/12/20	7	215	19	220	784	107	23	130	4.73	3,705	909	614
S-9		6/15/20	10	334	80	220	964	118	30	148	4.68	4,508	552	692
6-S		6/19/20	14	303	142	623	1,068	134	30	164	4.61	4,925	618	756
6-S		6/22/20	17	259	205	684	1,148	183	23	206	4.56	5,237	835	940
6-S	Aerobic	6/24/20	19	217	251	765	1,233	207	27	234	4.53	5,584	938	1,060
6 - S		6/27/20	22	81	277	721	1,079	229	32	261	4.48	4,834	1,026	1,169
6 - S		7/1/20	26	ဗ	316	788	1,107	242	30	272	4.41	4,887	1,068	1,201
6-S		7/6/20	31	3	324	811	1,138	304	33	337	4.33	4,930	1,317	1,460
6-S		7/8/20	33	က	475	852	1,330	389	33	422	4.30	5,719	1,673	1,815
6-S		7/10/20	35	က	502	805	1,310	429	4	473	4.27	5,590	1,831	2,018
6-S		7/13/20	38	ဇ	477	832	1,312	474	39	513	4.22	5,534	1,999	2,164
8-6 S		7/15/20	40	3	496	810	1,309	430	41	471	4.19	5,478	1,800	1,971
Startin	Starting water level (inches):	inches):	24.00			En	≣nding water le	level (inches):		21.75				
6-S		7/31/20	0	20	2	629	651	116	22	138	4.84	3,151	562	899
6-S		8/3/20	က	186	2	636	824	108	15	123	4.81	3,962	519	591
6-S		8/5/20	2	208	2	692	626	88	16	104	4.79	4,686	421	498
6-S		8/7/20	7	258	2	765	1,025	87	20	107	4.76	4,884	415	510
6-S		8/10/20	10	285	2	762	1,049	114	19	133	4.73	4,964	240	629
6-S		8/13/20	13	234	2	842	1,078	163	21	184	4.70	2,067	992	865
6-S		8/15/20	15	322	2	861	1,185	180	26	206	4.68	5,544	842	964
6-S	(i)	8/17/20	17	330	2	783	1,115	228	25	253	4.66	5,192	1,062	1,178
6-S	Alloxic	8/19/20	19	376	2	785	1,163	247	25	272	4.64	5,391	1,145	1,261
6 - S		8/21/20	21	415	2	793	1,210	268	31	299	4.61	5,583	1,236	1,379
6-S		8/25/20	25	523	2	788	1,313	281	34	315	4.57	6,001	1,284	1,440
8-6 S		8/26/20	26	592	2	770	1,364	283	41	324	4.56	6,219	1,290	1,477
6-S		9/2/20	33	603	2	292	1,372	252	77	329	4.48	6,152	1,130	1,475
6-S		9/4/20	35	633	2	770	1,405	308	37	345	4.46	6,270	1,374	1,540
6-S		9/9/20	40	208	2	713	1,423	422	51	473	4.41	6,273	1,860	2,085
8-S		9/11/20	42	725	2	730	1,457	451	28	209	4.39	6,391	1,978	2,233

Results of Sediment Benthic Nutrient Release Rate Studies at Marco Island Sites

ا ا	Date	Time (days)	NH3	×ON	Organic N	Total N	SRP	Organic P	Total P	Volume	Total N	SRP	Total P
T	24.00	1	(µg/c)	(hg/L)	(µg/L) Enc	(µg/L) Ending water le	(µg/L) <mark>vel (inches):</mark>	(µg/r)	(µg/L) 21.50	(7)	(bd)	(6rl)	(6rl)
7/31/20 0	0	\vdash	26	2	969	724	37	14	51	4.84	3,505	179	247
8/3/20 3	က		66	2	586	289	34	19	53	4.80	3,301	163	255
8/5/20 5	2		164	2	220	716	38	17	55	4.78	3,423	182	263
8/7/20 7	7		277	2	287	998	40	26	99	4.76	4,119	190	314
	10		510	2	643	1,155	7.1	26	26	4.72	5,452	335	458
8/13/20 13	13		562	2	804	1,368	74	29	103	4.68	6,408	347	483
	15		623	2	858	1,483	92	38	114	4.66	6,911	354	531
	17		786	2	1,015	1,803	82	38	120	4.64	8,360	380	556
8/19/20 19	19		404	78	1,434	1,916	89	33	122	4.61	8,837	411	563
	21		335	181	1,760	2,276	92	34	126	4.59	10,443	422	578
	25		208	638	1,336	2,182	100	36	136	4.54	9,907	454	617
8/26/20 26	26		က	1,362	532	1,897	111	33	144	4.53	8,590	503	652
	33		က	1,254	456	1,713	114	38	152	4.44	7,613	207	929
	35		က	1,242	371	1,616	138	40	178	4.42	7,143	610	787
9/9/20 40	40		က	1,066	309	1,378	198	38	236	4.36	600'9	863	1,029
/20	42		3	1,041	182	1,226	110	44	154	4.34	5,316	477	668
	24.00				_	≣nding water le	vel (inches):		22.25				
9/25/20 0	0		3	2	453	458	92	18	94	4.84	2,217	368	455
9/28/20 3	က		က	2	425	430	86	18	104	4.81	2,067	413	200
	7		143	2	450	262	06	19	109	4.76	2,833	428	519
	10		347	2	445	794	93	22	115	4.73	3,753	440	544
10/7/20	12		468	2	436	906	26	25	122	4.70	4,262	456	574
	14		200	2	547	1,049	101	25	126	4.68	4,911	473	290
	17		548	2	621	1,171	121	23	144	4.65	5,442	562	699
10/14/20 19	19		726	2	622	1,350	135	23	158	4.62	6,243	624	731
	21		930	2	502	1,434	142	27	169	4.60	6,598	653	778
10/19/20 24	24		1,172	2	339	1,513	159	25	184	4.57	6,910	726	840
	26		1,045	2	378	1,425	161	23	184	4.54	6,476	732	836
10/23/20 28	28		1,010	2	370	1,382	168	27	195	4.52	6,249	260	882
	31		696	2	318	1,289	171	35	206	4.49	5,785	792	924

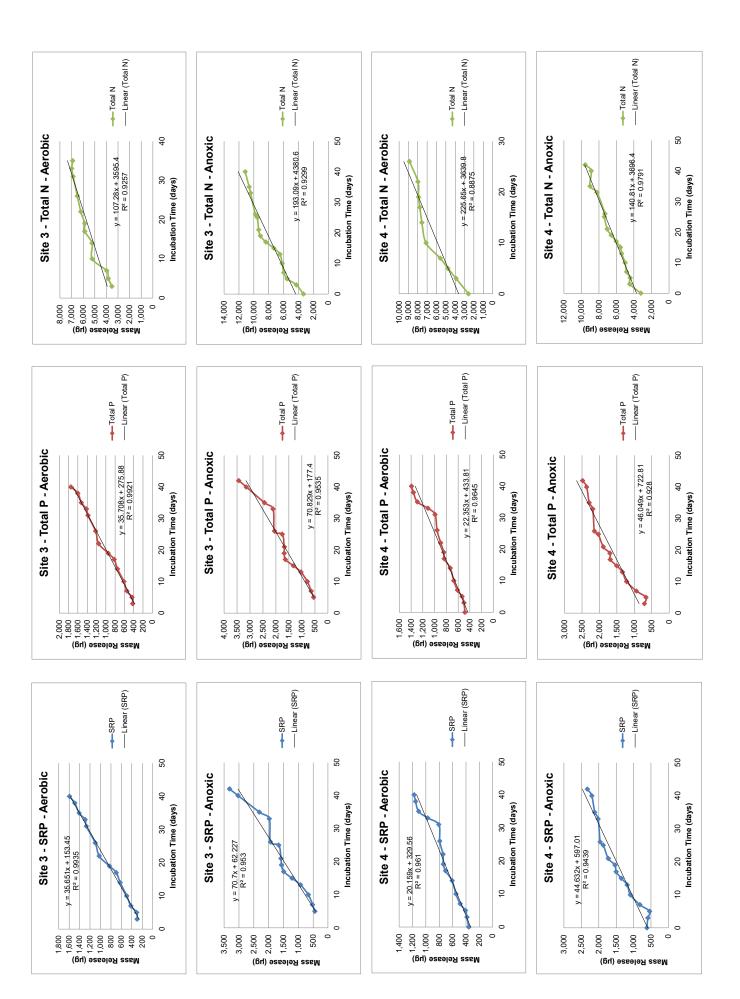
Results of Sediment Benthic Nutrient Release Rate Studies at Marco Island Sites

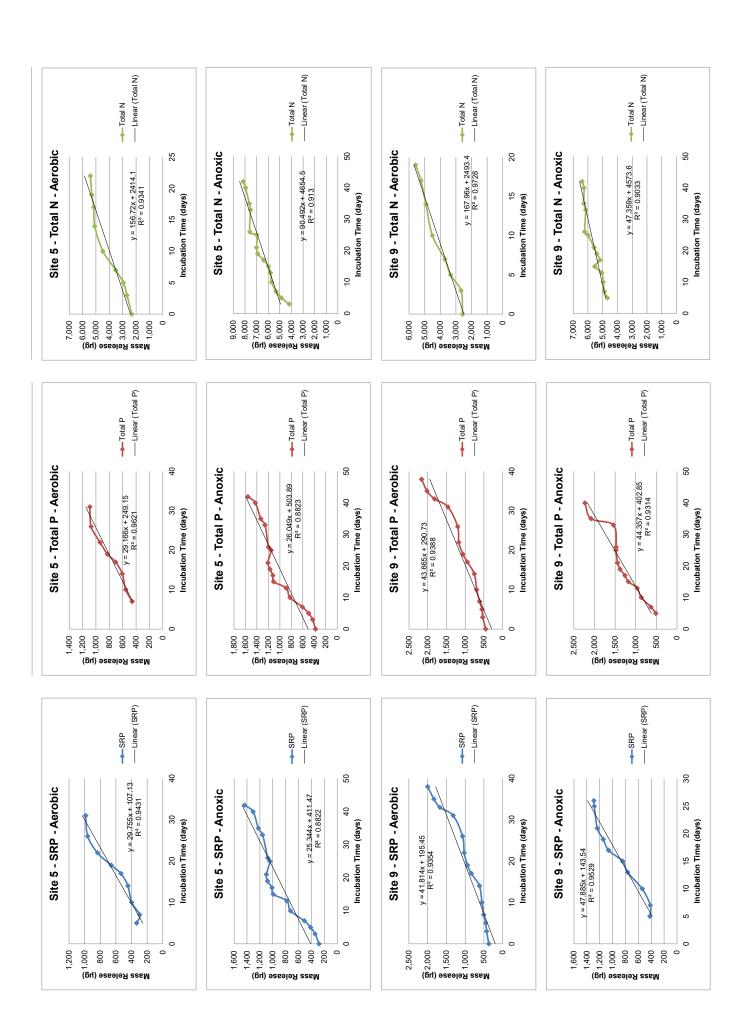
O. i.o.	Redox	Date	Time (ave)	NH3	NOx	Organic N	Total N	SRP	Organic P	Total P	Volume	Total N	SRP	Total P
alle	Condition	Collected	illie (days)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(L)	(bd)	(pg)	(рд)
Startin	Starting water level (i	(inches):	24.00			Enc	erl	evel (inches):		20.25				
S-15		7/31/20	0	27	2	689	718	26	12	89	4.84	3,476	271	329
S-15		8/3/20	3	135	2	717	854	62	13	75	4.79	4,088	297	359
S-15		8/5/20	2	175	2	724	901	47	41	61	4.75	4,280	223	290
S-15		8/7/20	7	180	2	789	971	52	4	99	4.71	4,578	245	311
S-15		8/10/20	10	478	38	746	1,262	57	15	72	4.66	5,882	266	336
S-15		8/13/20	13	178	127	1,066	1,371	61	16	77	4.61	6,315	281	355
S-15		8/15/20	15	06	361	1,107	1,558	65	16	81	4.57	7,121	297	370
S-15	oido v	8/17/20	17	က	410	1,212	1,625	69	18	87	4.53	7,368	313	394
S-15	אַנוֹחַחָּוּאַל	8/19/20	19	က	516	1,181	1,700	75	17	92	4.50	7,647	337	414
S-15		8/21/20	21	3	603	1,248	1,854	79	18	26	4.46	8,273	353	433
S-15		8/25/20	25	က	682	1,770	2,455	84	18	102	4.39	10,778	369	448
S-15		8/26/20	26	3	678	1,487	2,168	89	21	110	4.37	9,479	389	481
S-15		9/2/20	33	က	618	1,173	1,794	26	20	117	4.25	7,618	412	497
S-15		9/4/20	35	3	909	725	1,334	111	24	135	4.21	5,617	467	568
S-15		9/9/20	40	3	464	563	1,030	120	23	143	4.12	4,244	494	589
S-15		9/11/20	42	3	489	495	987	149	24	173	4.08	4,031	609	707
Startin	Starting water level (i	(inches):	24.00				Ending water le	vel (inches):		21.50				
S-15		9/25/20	0	3	2	478	483	49	28	2.2	4.84	2,338	237	373
S-15		9/28/20	3	3	2	482	487	29	29	96	4.79	2,334	321	460
S-15		10/2/20	7	52	2	472	526	26	29	126	4.73	2,486	458	296
S-15		10/5/20	10	152	2	474	628	121	28	149	4.68	2,938	999	269
S-15		10/7/20	12	328	2	504	834	151	27	178	4.65	3,874	701	827
S-15		10/9/20	14	400	2	551	953	266	24	290	4.61	4,396	1,227	1,338
S-15	Anoxic	10/12/20	17	538	2	574	1,114	322	36	358	4.56	5,084	1,470	1,634
S-15		10/14/20	19	1,154	2	208	1,664	428	37	465	4.53	7,540	1,939	2,107
S-15		10/16/20	21	1,278	2	537	1,817	317	41	358	4.50	8,175	1,426	1,611
S-15		10/19/20	24	1,415	2	515	1,932	236	42	278	4.45	8,598	1,050	1,237
S-15		10/21/20	26	1,253	2	536	1,791	216	45	261	4.42	7,912	954	1,153
S-15		10/23/20	28	1,039	2	472	1,513	188	41	229	4.39	6,635	824	1,004
S-15		10/26/20	31	1.007	2	424	1.433	153	42	195	4.34	6.214	663	846

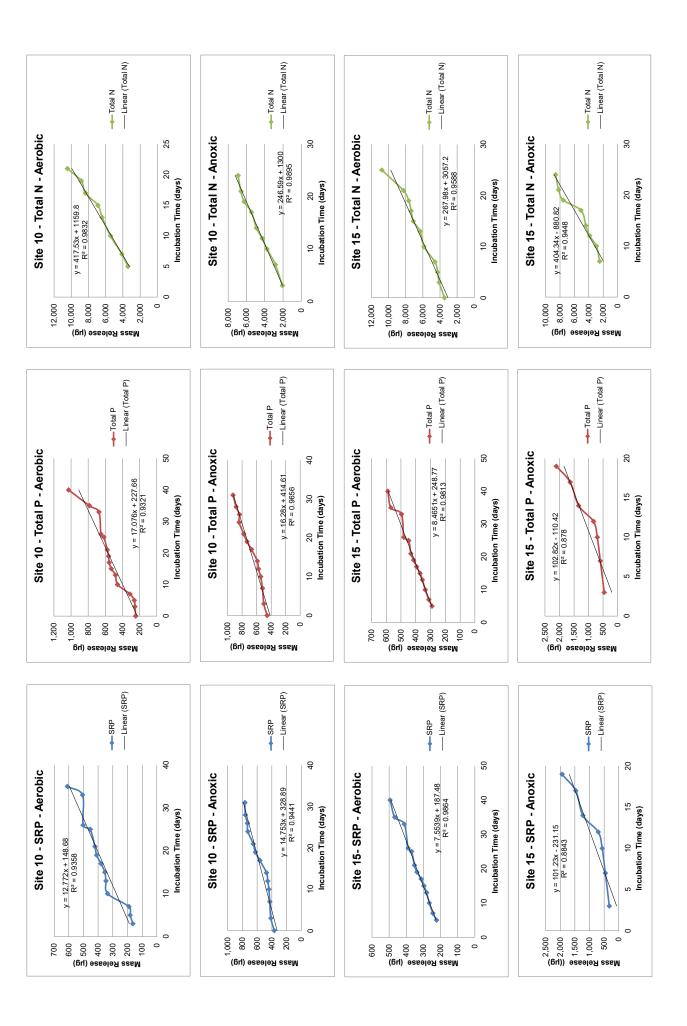
Results of Sediment Benthic Nutrient Release Rate Studies at Marco Island Sites

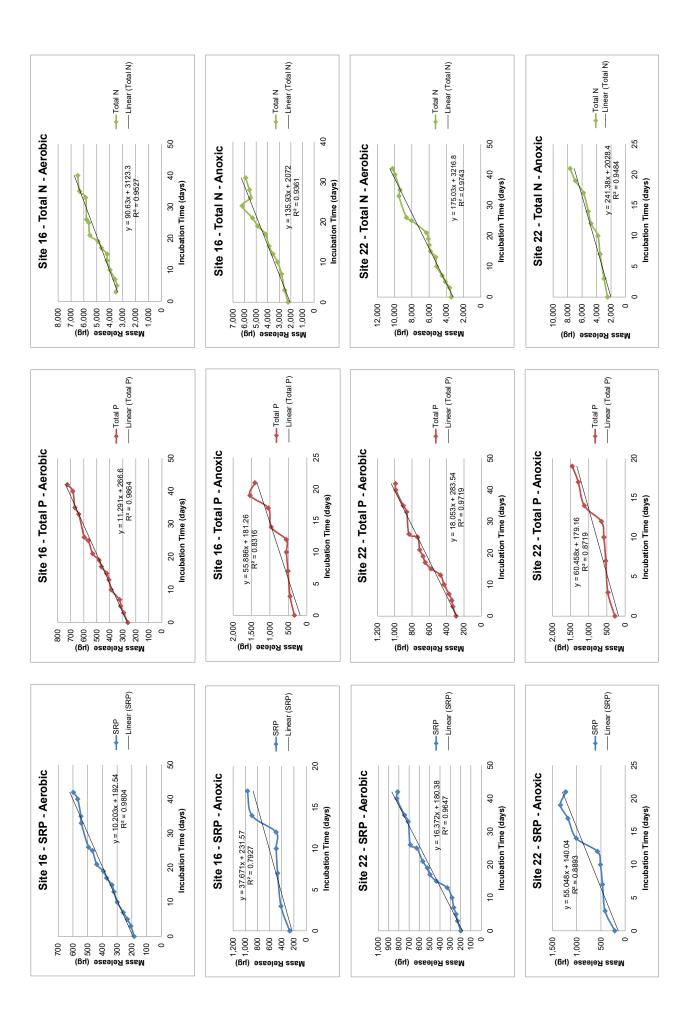
4	Redox	Date	Tanap, omit	NH3	×ON	Organic N	Total N	SRP	Organic P	Total P	Volume	Total N	SRP	Total P
) ITE	Condition	Collected	IIme (days)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(L)	(hg)	(hg)	(hg)
Startin	Starting water level (ii	(inches):	24.00				Ending water lev	vel (inches):		22.25				
S-16		7/31/20	0	133	2	633	768	38	16	54	4.84	3,718	184	261
S-16		8/3/20	က	125	2	909	733	43	18	61	4.82	3,530	207	294
S-16		8/5/20	2	61	26	630	717	48	18	99	4.80	3,441	230	317
S-16		8/7/20	7	22	09	699	751	54	41	68	4.78	3,591	258	325
S-16		8/10/20	10	6	135	692	836	63	19	82	4.76	3,976	300	390
S-16		8/13/20	13	က	217	699	889	89	18	86	4.73	4,206	322	407
S-16		8/15/20	15	က	241	647	891	7.1	19	06	4.71	4,201	335	424
S-16	(id	8/17/20	17	က	292	693	988	62	20	66	4.70	4,641	371	465
S-16	Aeropic	8/19/20	19	က	313	731	1,047	84	19	103	4.68	4,901	393	482
S-16		8/21/20	21	က	395	787	1,185	94	20	114	4.66	5,527	438	532
S-16		8/25/20	25	က	469	742	1,214	101	21	122	4.63	5,621	468	565
S-16		8/26/20	26	က	488	762	1,253	107	22	129	4.62	5,791	495	596
S-16		9/2/20	33	က	538	745	1,286	119	21	140	4.56	5,868	543	639
S-16		9/4/20	35	က	622	692	1,394	120	27	147	4.55	6,338	546	899
S-16		9/9/20	40	က	622	812	1,437	126	26	152	4.50	6,473	568	685
S-16		9/11/20	42	3	809	783	1,394	133	29	162	4.49	6,256	262	727
Startin	Starting water level (ii	(inches):	24.00			Ш	nding water lev	evel (inches):		21.75				
S-16		9/25/20	0	ဗ	2	458	463	56	14	20	4.84	2,241	271	339
S-16		9/28/20	က	က	2	524	529	98	6	92	4.80	2,537	413	456
S-16		10/2/20	7	137	2	454	593	66	6	108	4.74	2,810	469	512
S-16		10/5/20	10	169	2	200	671	105	13	118	4.69	3,150	493	554
S-16		10/7/20	12	239	2	520	761	106	14	120	4.66	3,550	494	260
S-16		10/9/20	14	301	2	536	839	192	17	209	4.64	3,889	890	696
S-16	Anoxic	10/12/20	17	369	2	543	914	210	18	228	4.59	4,197	964	1,047
S-16		10/14/20	19	487	2	218	1,067	314	24	338	4.56	4,868	1,433	1,542
S-16		10/16/20	21	211	2	262	1,174	285	26	311	4.53	5,322	1,292	1,410
S-16		10/19/20	24	712	2	899	1,382	264	27	291	4.49	6,204	1,185	1,306
S-16		10/21/20	26	548	2	682	1,232	249	28	277	4.46	5,495	1,111	1,235
S-16		10/23/20	28	611	2	648	1,261	229	24	253	4.43	5,587	1,015	1,121
S-16		10/26/20	31	899	2	929	1,346	200	28	228	4.39	5,905	877	1,000

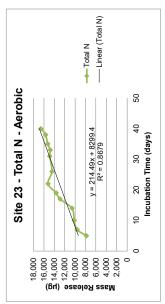
Results of Sediment Benthic Nutrient Release Rate Studies at Marco Island Sites

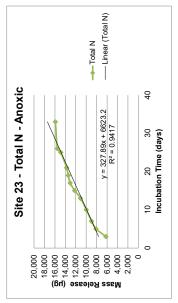

Redox	Date	Time (davs)	NH3	×ON	Organic N	Total N	SRP	Organic P	Total P	Volume	Total N	SRP	Total P
ျ	Collected	(afpp)	(hg/L)	(hg/L)	(µg/L)	(hg/L)	(µg/L)	(hg/L)	(µg/L)	(L)	(рд)	(bd)	(pd)
Starting water level (inches)	es):	24.00			Enc	Ending water lev	evel (inches):		21.75				
L	7/31/20	0	92	2	628	902	41	19	09	4.84	3,417	198	290
	8/3/20	ო	129	2	621	752	48	20	89	4.81	3,616	231	327
	8/5/20	2	257	2	299	858	51	20	7.1	4.79	4,107	244	340
	8/7/20	7	385	2	553	940	56	22	78	4.76	4,479	267	372
	8/10/20	10	434	2	647	1,083	09	31	91	4.73	5,125	284	431
_	8/13/20	13	364	2	747	1,113	70	30	100	4.70	5,231	329	470
_	8/15/20	15	285	125	840	1,250	93	31	124	4.68	5,848	435	580
	8/17/20	17	187	136	096	1,283	107	32	139	4.66	5,975	498	647
	8/19/20	19	37	231	1,046	1,314	113	32	145	4.64	6,091	524	672
_	8/21/20	21	က	295	1,068	1,366	123	31	154	4.61	6,302	292	711
_	8/25/20	25	က	968	855	1,754	137	24	161	4.57	8,017	929	736
_	8/26/20	26	က	947	943	1,893	151	32	183	4.56	8,631	689	834
	9/2/20	33	က	1,120	994	2,117	158	8	192	4.48	9,493	708	861
_	9/4/20	35	က	1,168	930	2,101	167	35	202	4.46	9,375	745	901
	9/9/20	40	က	1,356	006	2,259	186	38	224	4.41	9,958	820	987
	9/11/20	42	3	1,416	915	2,334	185	41	226	4.39	10,239	812	991
ıΞ	Starting water level (inches):	24.00			En	≣nding water lev	vel (inches):		22.00				
Г Т	9/25/20	0	3	2	208	513	44	14	28	4.84	2,483	213	281
	9/28/20	က	က	2	615	620	86	13	66	4.80	2,977	413	475
	10/2/20	7	171	2	999	739	98	14	112	4.75	3,510	465	532
	10/5/20	10	248	2	562	812	108	16	124	4.71	3,825	209	584
	10/7/20	12	427	2	588	1,017	122	17	139	4.68	4,764	571	651
	10/9/20	41	553	2	551	1,106	217	24	241	4.66	5,152	1,011	1,123
	10/12/20	17	652	2	603	1,257	256	23	279	4.62	5,807	1,183	1,289
	10/14/20	19	947	2	562	1,511	291	26	317	4.59	6,941	1,337	1,456
	10/16/20	21	1,077	2	598	1,677	269	33	302	4.57	7,659	1,229	1,379
	10/19/20	24	1,082	2	542	1,626	241	32	273	4.53	7,363	1,091	1,236
	10/21/20	26	1,139	2	196	1,337	206	31	237	4.50	6,019	927	1,067
	10/23/20	28	1,122	2	314	1,438	143	32	175	4.48	6,437	640	783
	10/26/20	31	1,106	2	332	1,440	118	33	151	4.44	6,390	524	670

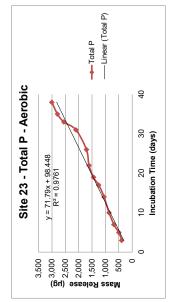

Results of Sediment Benthic Nutrient Release Rate Studies at Marco Island Sites

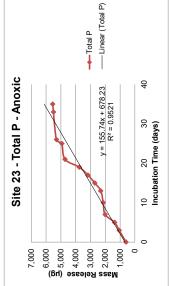

Ending water 425	IIme (days)			(// 2011)	(1) (1)	- Otal r	Volume	Total N	SRP	Total P
2 425 480 2 448 1,077 36 69 659 2,012 175 662 2,146 328 666 2,256 841 716 2,760 1,345 722 2,937 2,043 828 3,295 2,340 995 3,402 2,404 995 3,402 2,404 995 3,402 2,756 979 3,738 2,756 979 3,738 2,756 979 3,738 2,756 789 2,903 2,768 1,289 2 763 2,983 2 763 2,882 2 763 2,983 2 763 2,865 2 763 2,865 2 763 2,865 2 763 2,865 2 763 2,865 2 763 2,865 2 763 2,865 2 763 2,865 2 764 3,605 2 774 2,983 2 774 3,602 2 776 3,405	100	(hg/L)		(µg/L)	(µg/L)	(µg/L)		(Brl)	(6rl)	(Brl)
2 418 1,077 36 429 1,635 69 659 2,012 175 662 2,146 328 666 2,256 841 716 2,760 1,345 722 2,937 2,043 828 3,285 2,351 970 3,285 2,351 970 3,285 2,351 926 3,402 2,585 929 3,402 2,756 979 3,738 2,756 979 3,738 2,756 979 3,738 2,756 979 3,738 2,756 979 3,738 2,756 979 3,738 2 768 1,882 2 762 2,108 2 774 2,986 2 774 2,983 2 774 2,983 2 774 2,983 <td< td=""><td>H</td><td>2</td><td>480</td><td>75</td><td>17</td><td>92</td><td>4.84</td><td>2.323</td><td>363</td><td>445</td></td<>	H	2	480	75	17	92	4.84	2.323	363	445
36 429 1,635 69 659 2,012 328 666 2,246 841 716 2,760 1,345 722 2,937 2,043 828 3,295 2,3312 970 3,285 2,351 926 3,402 2,404 995 3,402 2,585 979 3,738 2,756 979 3,738 2,768 1,882 2,763 2,965 2,763 2,965 2,763 2,965 2,763 2,965 2,763 2,965 2,763 3,265 2,764 3,565 2,764 3,405 2,764 3,405 2,764 3,405 2,764 3,405 2,764 3,405 2,764 3,548	3 657	2		64	17	81	4.81	5,181	308	390
69 659 2,012 175 662 2,146 328 666 2,256 841 716 2,760 1,345 722 2,937 2,043 828 3,295 2,3312 902 3,155 2,351 926 3,402 2,404 995 3,402 2,585 929 3,517 2,756 979 3,738 2 775 979 3,738 2 780 1,882 2 763 2,108 2 762 2,108 2 762 2,108 2 763 2,808 2 763 2,808 2 775 2,905 2 763 2,808 2 775 2,905 2 775 2,905 2 776 2,905 2 777 2,896 2 771 2,896 2 774 2,983 2 771 3,602				85	19	104	4.79	7,832	407	498
175 662 2,146 328 666 2,256 841 716 2,760 1,345 722 2,937 2,043 828 3,295 2,3312 902 3,155 2,351 926 3,280 2,404 995 3,402 2,585 929 3,517 2,756 979 3,738 2 780 792 2 768 1,289 2 769 2,108 2 762 2,108 2 762 2,108 2 763 2,808 2 763 2,808 2 774 2,896 2 774 2,896 2 774 2,896 2 774 2,896 2 774 2,896 2 774 3,602 2 774 3,602				125	18	143	4.77	9,597	596	682
328 666 2,256 841 716 2,760 1,345 722 2,937 2,043 828 3,295 2,332 902 3,155 2,351 926 3,280 2,404 995 3,402 2,585 929 3,402 2,756 979 3,738 2 776 1,693 2 768 1,289 2 769 1,882 2 769 2,108 2 762 2,108 2 762 2,108 2 763 2,806 2 775 2,358 2 763 2,806 2 776 2,358 2 776 2,358 2 777 2,896 2 774 2,896 2 774 2,896 2 774 3,602 2 774 3,602	,			163	19	182	4.74	10,171	773	863
841 716 2,760 1,345 722 2,937 2,043 828 3,295 2,232 902 3,155 2,312 970 3,285 2,351 926 3,280 2,404 995 3,402 2,756 979 3,738 2,756 979 3,738 2 780 1,289 2 762 2,108 2 762 2,108 2 762 2,108 2 762 2,108 2 763 2,808 2 763 2,808 2 773 2,808 2 773 2,808 2 773 2,808 2 774 2,896 2 774 3,602 2 777 3,544				202	21	223	4.70	10,602	949	1,048
1,345 722 2,937 2,043 828 3,295 2,232 902 3,155 2,312 970 3,285 2,360 2,361 2,404 995 3,402 2,756 979 3,781 2,895 2,605 2,108 2 2,766 2,358 2,605 2 2,768 2,605 2,2408 2,2	1,20			246	22	268	4.67	12,887	1,149	1,251
2,043 828 3,295 2,232 902 3,155 2,312 970 3,285 2,351 926 3,285 2,404 995 3,402 2,585 929 3,517 2,756 979 3,517 2 776 1,693 2 776 1,882 2 762 2,108 2 762 2,108 2 762 2,108 2 762 2,108 2 775 2,808 2 775 2,808 2 771 2,896 2 773 2,983 2 774 2,983 2 774 3,602 2 774 3,602				290	21	311	4.65	13,654	1,348	1,446
2,232 902 3,155 2,312 970 3,285 2,351 926 3,280 2,404 995 3,402 2,585 929 3,517 2,756 979 3,738 2 780 780 792 2 768 1,289 2 762 2,108 2 762 2,108 2 762 2,108 2 762 2,108 2 762 2,358 2 773 2,358 2 773 2,808 2 773 2,808 2 774 2,983 2 774 2,983 2 774 3,602				321	28	349	4.62	15,219	1,483	1,612
2,312 970 3,285 2,351 926 3,280 2,404 995 3,402 2,585 929 3,517 2,756 979 3,738				349	24	373	4.58	14,445	1,598	1,708
2,351 926 3,280 2,404 995 3,402 2,585 929 3,517 2,756 979 3,738		2,312		442	22	464	4.53	14,874	2,001	2,101
2,404 995 3,402 2,585 929 3,517 2,756 979 3,738		2,351		536	30	266	4.51	14,785	2,416	2,551
2,585 929 3,517 2,756 979 3,738 Ending water 9 780 792 2 768 1,289 2 751 1,693 2 772 2,108 2 772 2,108 2 772 2,108 2 772 2,358 2 773 2,808 2 771 2,896 2 774 2,983 2 774 3,645		2,404		265	25	622	4.49	15,267	2,679	2,791
2,756 979 3,738 Ending water 792 9 780 792 2 768 1,289 2 751 1,693 2 762 2,108 2 745 2,358 2 745 2,808 2 745 2,605 2 744 2,983 2 711 2,896 2 734 2,983 2 783 3,255 2 761 3,548 2 771 3,548 2 771 3,548 2 771 3,548	က	2,585		645	29	674	4.46	15,676	2,875	3,004
Ending water 9	က	2,756		624	22	646	4.44	16,586	2,769	2,866
9 780 2 768 2 751 2 680 2 752 2 745 2 745 2 745 2 745 2 745 2 745 2 745 2 745 2 745 2 747	24.00		_	level (inches):		21.75				
2 768 2 680 2 680 2 751 2 762 2 745 2 745 2 744 2 744 2 744 2 774	3	6		104	20	124	4.84	3,834	503	009
2 751 2 680 2 762 2 745 2 745 2 748 2 711 2 734 2 783 2 783 2 761	518	2		200	21	221	4.81	6,198	962	1,063
2 680 2 762 2 745 2 745 2 748 2 711 2 734 2 783 2 783 2 761	940	2		264	22	286	4.79	8,104	1,264	1,369
2 762 2 745 2 745 2 798 2 711 2 734 2 783 2 761 2 761	1,20	2		398	24	422	4.76	8,968	1,896	2,011
2 745 2 798 2 763 2 711 2 734 2 783 2 761 2 761				425	27	452	4.73	9,976	2,011	2,139
2 798 2 763 2 711 2 734 2 783 2 761 2 761				467	24	491	4.70	11,083	2,195	2,308
2 763 2 711 2 711 2 734 2 783 2 761 2 741				555	25	580	4.68	12,187	2,597	2,714
2 711 2 734 2 783 2 783 2 761 2 761				929	26	682	4.66	13,076	3,055	3,176
2 734 2 783 2 728 2 761 2 741				787	24	811	4.64	13,424	3,648	3,759
2 783 2 728 2 761 2 741				994	30	1,024	4.61	13,763	4,586	4,724
2 728 2 761 2 741 2 770				1,054	27	1,081	4.57	14,877	4,817	4,941
2 761 2 741 2 770				1,134	29	1,163	4.56	15,526	5,171	5,303
2 741	33 2,78			1,198	29	1,227	4.48	15,909	5,372	5,502
2 770		2		1,214	30	1,244	4.46	16,074	5,417	5,551
2		2		1,212	30	1,242	4.41	16,064	5,343	5,475
3,316 2 755 4,073		2		1,250	30	1,280	4.39	17,867	5,483	5,615

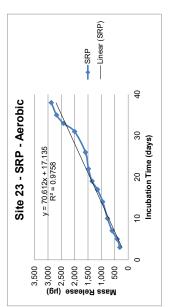

Denotes value < MDL; MDL value is listed

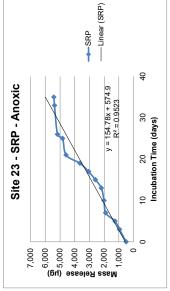

G-2: Sediment Nutrient Release Plots	











APPENDIX H

RESULTS OF STABLE ISOTOPE ANALYSES CONDUCTED ON MARCO ISLAND SAMPLES

H-1: Laboratory Documentation

H-2: Sample Results

H-1: Laboratory Docume	entation entation

UNIVERSITY OF CALIFORNIA, DAVIS

BERKELEY • DAVIS • IRVINE • LOS ANGELES • MERCED • RIVERSIDE • SAN DIEGO • SAN FRANCISCO

STABLE ISOTOPE FACILITY DEPARTMENT OF PLANT SCIENCES ONE SHIELDS AVE DAVIS, CALIFORNIA 95616 530-752-8100 SANTA BARBARA • SANTA CRUZ

UNIVERSITY OF CALIFORNIA COLLEGE OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES

Stable Isotope Facility Data Report

 Principal Investigator:
 Harvey Harper
 Email:
 hharper@erd.org

 Researcher
 Harry Seenauth
 Email:
 hseenauth@erd.org

Institution: Environmental Research and Design

Project: Marco Island

Submission Date: 12/15/20 Report Date: 03/12/21

Analysis: ¹⁵N & ¹⁸O Analysis of Nitrate (NO₃⁻) by Bacterial Denitrification Assay using a GasBench IRMS

 $\frac{\delta^{15}N}{\text{Mean SD for sample material replicates in this project:}} \frac{\delta^{15}N}{\pm 0.06\,\%} \frac{\delta^{18}O}{\pm 0.30\,\%}$

Mean SD for reference material replicates in this project: ±0.16 ‰ ±0.37 ‰

Mean absolute accuracy for calibrated reference materials within: ±0.04 ‰ ±0.27 ‰

Notes: Twenty samples are below the limit of quantification (LOQ). Isotope results for samples below the

LOQ may not be reliable.

Sample count to be charged: 212

Additional charges: 4 reanalyses due to inaccurate [NO₃] data provided by client

Reported by: Kate Pecsok Ewert

kepecsok@ucdavis.edu

Please review your data in a timely fashion, so that we may fully address any questions or concerns.

UC Davis Sta	UC Davis Stable Isotope Facility										
Sample Submission Form	nission Form										
Last Name: First Name:	Harvey Harvey										
Counter	Sample ID	Amount (mL)	Type of water	Source of water	Analysis	Enriched?	Estimated Enrichment or	H	Salinity or Conductivity	Concentration of NO ₃ or DOC/DIC	Special Notes
Instructions	20 character limit	integer	20 character limit	20 character limit	20 character limit			integer	hmho/cm	hg/l as N	
Example 1	PSW 21	2	Filtered seawater	Pugent Sound, WA	180/160 of water	o N	-10 +/- 3 d180 per mil		30 ppt	₹Z	Ordered in increasing salinity
Example 2	Rainwater 2C	20	River, Rainwater, Snow		D & 18O of water	No No	-55 dD/-8 d180 per mil	œ	0-1 ppt	NA	
Example 3	PF Well 13	10	Tracer study	Paris, Fra	D/H of water		-25 to 200 dD per mil 6 to	œ	0-10 mS/cm	NA	Enrichment varies <
Example 4	GIC 68	- 8	lce core	Greenland	D & 180 of water	o N	-200 dD/-25 d180 per		0 ppt	NA	
Example 5	100901 a	30	Filtered groundwater Precip		13C of DOC 18O, 15N of NO3		Tat% NA	0	A 10 ppt	3-6 ppm DIC, 12-25 0.539 uM NO3	3-6 ppm DIC, 12-25 r Poisoned with 50% W 0.539 uM NO3
1	20-1700 Bulk Precip	20	Filtered Rainwater	Marco Island, FI	O and N Isotope	oN			7	82	None
2	20-1753 Bulk Precip	50	Filtered Rainwater	Island,	O and N Isotope		NA:	9	17	92	None
w Z	20-1871 Bulk Precip	200	Filtered Kainwater	Marco Island, FI	O and N Isotope	ON Z	Y S	٩٥	20	13/	None
4 r.	20-20 18 Bulk Precip	20	Filtered Rainwater	Island,	O and N Isotope	1	AN AN	, _	22	184	None
9	20-2310 Bulk Precip	20	Filtered Rainwater		O and N Isotope	L	NA		18	137	None
7	20-2340 Bulk Precip	20	Filtered Rainwater	Marco Island, FI	O and N Isotope	No	NA	9	11	1	None
8	20-2394 Bulk Precip	20	Filtered Rainwater	Island,	O and N Isotope	No	NA	9	8	80	None
0 0	20-2497 Bulk Precip	20	Filtered Rainwater	Island,	O and N Isotope	oZ z	NA	9	7	184	None
10	20-2557 Bulk Precip	20	Filtered Rainwater	Marco Island, FI	O and N Isotope	0 2	AN AN	ی م	8 5	160	None
12	20-2030 Bulk Precip	200	Filtered Rainwater		O and N sotope	2 2	2 2	ی د	31	141	None
13	20-27 09 Bulk Precip	20	Filtered Rainwater	Island,	O and N Isotope		N AN	9	31	100	None
14	20-2917 Bulk Precip	20	Filtered Rainwater	Marco Island, FI	O and N Isotope		NA	9	19	113	None
15	20-2940 Bulk Precip	50	Filtered Rainwater	Island,	O and N Isotope		NA	7	30	39	None
16	20-3451 Bulk Precip	20	Filtered Rainwater	Island,	O and N Isotope		AN:	9	18	184	None
17	20-3554 Bulk Precip	20	Filtered Rainwater	Marco Island, Fl	O and N Isotope		NA S	9 1	21	86	None
201	ZU-3/Z/ BUIK Precip	20	Filtered Kainwater	Marco Island, FI	O and N Isotope	ON N	AN	`	28	82	None
19	20-2631 MI 01	20	Filtered Stormwater	Marco Island, FI	O and N Isotope	N _o	AN	9	66	95	None
20	20-1551 MI 01	50	Filtered Stormwater	Island,	O and N Isotope	No	NA	8	41724	119	None
21	20-1638 MI 01	20	Filtered Stormwater	Island,	O and N Isotope	2	Y :	ω	51984	176	None
22	20-1696 MI 01	20	Filtered Stormwater	Marco Island, FI	O and N Isotope	2	AN AN	∞α	28930	93	None
24	20-2389 MI 01	20	Filtered Stormwater	Marco Island, FI	O and N Isotope		NA	2	35310	102	None
25	20-2492 MI 01	20	Filtered Stormwater	Marco Island, FI	O and N Isotope	oN	NA	8	23868	80	None
26	20-2554 MI 01	20	Filtered Stormwater	Marco Island, FI	O and N Isotope	Ц	NA	8	28997	435	None
27	20-2935 MI 01	20	Filtered Stormwater	Island,	O and N Isotope	\perp	NA	7	1057	55	None
28	20-3078 MI 01	20	Filtered Stormwater	Marco Island, FI	O and N Isotope	°Z:	AN :	∞ 1	43977	159	None
29	20-3169 MI 01	90	Filtered Stormwater	Island,	O and N Isotope	٥ 2	AN :	,	2/8/8	105	None
30	20-3239 MI 01	20	Filtered Stormwater	Marco Island, FI	O and N Isotope	0 2	AN AN	_ α	29256	195	None
32	20-3323 MI 01	20	Filtered Stormwater	Marco Island FI	O and N Isotope	1	Z V	0 1	45114	800	None
35	10 INI 2005-02	3	rifered Stoffliwater	101 al C	O alid in isotope		2		1	2002	
33	20-1697 MI 02	20	Filtered Stormwater	Marco Island, FI	O and N Isotope		NA	80	1676	122	None
34	20-2306 MI 02	20	Filtered Stormwater	Marco Island, FI	O and N Isotope		AN:	7	3718	133	None
35	20-2336 MI 02	20	Filtered Stormwater	Marco Island, FI	O and N Isotope	٥ 2	NA	\ (1581	23	None
30	20-2493 MI 02	റ്റ	Filtered Stormwater	Marco Island, FI	O and N Isotope	No	NA	∞	1117	n	None

Marco Island, FI O and N Isotope		Filtered Stomwater
and N Isotope an		Marco Island, Fl
and N Isotope an		Marco Island, FI
and N Isotope an		Marco Island, FI
and N Isotope an		Marco Island, FI
and N Isotope		Marco Island, FI
and N Isotopo and N Isotopo		Marco Island, FI
and N Isotope and N Isotope		Marco Island, FI
and N Isotope		Marco Island, FI
and N Isotope		Marco Island, FI
and N Isotope and N Isotope		Marco Island, FI
and N Isotope and N Isotope		Marco Island, FI
and N Isotopo and N Isotopo		Marco Island, FI
and N Isotopo and N Isotopo		Marco Island, FI
and N Isotopo and N Isotopo		Marco Island, FI
and N Isotope and N Isotope		Marco Island, FI
and N Isotopo and N Isotopo		Marco Island, FI
and N Isotope and N Isotope		Marco Island, FI
and N Isotope and N Isotope	Island, Fl	Marco Island, FI
and N Isotopo and N Isotopo and N Isotopo and N Isotopo and N Isotopo and N Isotopo and N Isotopo	Island, Fl	Marco Island, Fl Marco Island, Fl Marco Island, Fl Marco Island, Fl Marco Island, Fl Marco Island, Fl Marco Island, Fl
and N Isotopo and N Isotopo and N Isotopo and N Isotopo and N Isotopo and N Isotopo and N Isotopo	Island, Fl Island, Fl Island, Fl Island, Fl	Marco Island, Fl Marco Island, Fl Marco Island, Fl Marco Island, Fl Marco Island, Fl Marco Island, Fl
and N Isotope and N Isotope and N Isotope and N Isotope and N Isotope and N Isotope	Island, Fl Island, Fl Island, Fl	Marco Island, FI
and N Isotope and N Isotope and N Isotope and N Isotope and N Isotope	Island, FI Island, FI Island, FI	Marco Island, FI
and N Isotope and N Isotope and N Isotope and N Isotope	Island, FI	Marco Island, FI Marco Island, FI Marco Island, FI Marco Island, FI
and N Isotope and N Isotope and N Isotope	Island, FI	Marco Island, FI Marco Island, FI Marco Island, FI
and N Isotope and N Isotope	Island Fl	Marco Island, FI Marco Island, FI
O and N Isotope		Marco Island, FI
	Island, FI	
	i -	i
O and N Isotope	Marco Island, FI	Marco
	Marco Island, FI	Marco Island,
O and N Isotope		Marco Island, FI
O and N Isotope	Marco Island, FI	
O and N Isotope	F	Marco Island, FI
O and N Isotope	Ы	Marco Island, FI
O and N Isotope		Marco Island, FI
and N Isotope		Marco Island, FI
and N Isotope	H	H
and N Isotope	E	Marco Island, FI
O and N Isotope	Island, FI	Marco Island, FI
and N Isotope	Island, FI	Marco Island, FI
and N Isotope	Island FI	Marco Island FI
and N leotone	leland El	Marco Island El
alid in Isotopia	3 al la	Marco Island, T.
and N Isotope	Island, FI	Marco Island, FI
) and N Isotope	Island, FI	. Marco Island, Fl
O and N Isotope	Marco Island, FI	Marco
O and N Isotope	Marco Island, FI	Marco
O and N Isotope	Marco Island El	Marco
O and N Isotope	Marco Island Fl	+
O alid in Isotopic	Marco Island, I	+
U and IN ISOlope	Marco Island, FI	
		Marco Island, FI

O and N isotope NO NA 6 642 70 O and N isotope NO NA 8 247 70 O and N isotope NO NA 8 24704 528 O and N isotope NO NA 8 24704 528 O and N isotope NO NA 8 24904 73 O and N isotope NO NA 8 28704 73 O and N isotope NO NA 8 28704 73 O and N isotope NO NA 8 28704 73 O and N isotope NO NA 8 28704 73 O and N isotope NO NA 7 1467 374 O and N isotope NO NA 7 1475 2716 O and N isotope NO NA 7 1475 2716 O and N isotope NO NA 7 1437 4716 O and N isotope
O and N Isotope NO NA 8 263 O and N Isotope NO NA 8 24075 O and N Isotope NO NA 8 24075 O and N Isotope NO NA 8 28704 O and N Isotope NO NA 7 1422 O and N Isotope NO NA 7 1437 O and N Isotope NO NA 7 1437 O and N Isotope NO NA 7 1438 O and N Isotope NO NA 7 1436 O and N Isotope NO NA 7 1436 O and N Isotope NO NA 7 1436 O and N Isotope
O and N isotope No NA 8 24075 O and N isotope No NA 8 28704 O and N isotope No NA 8 28704 O and N isotope No NA 8 23072 O and N isotope No NA 8 23072 O and N isotope No NA 7 1422 O and N isotope No NA 7 1423 O and N isotope No NA 7 1475 O and N isotope No NA 7 1475 O and N isotope No NA 7 1436 O and N isotope
O and N isotope No NA 8 17914 O and N isotope No NA 8 4950 O and N isotope No NA 8 28704 O and N isotope No NA 8 23072 O and N isotope No NA 8 36400 O and N isotope No NA 8 1243 O and N isotope No NA 7 1472 O and N isotope No NA 7 1475 O and N isotope No NA 7 1436 O and N isotope
O and N isotope No NA 8 28704 O and N isotope No NA 8 1243 O and N isotope No NA 7 1467 O and N isotope No NA 7 1242 O and N isotope No NA 7 1475 O and N isotope No NA 7 1475 O and N isotope No NA 7 1475 O and N isotope No NA 7 1308 O and N isotope No NA 7 1436 O and N isotope No NA 7 1594 O and N isotope No NA 7 1532 O and N isotope No NA 7 1532 O and N isotope
O and N isotope No NA 8 41392 O and N isotope No NA 8 36400 O and N isotope No NA 8 36400 O and N isotope No NA 7 1422 O and N isotope No NA 7 1467 O and N isotope No NA 7 1242 O and N isotope No NA 7 1242 O and N isotope No NA 7 1475 O and N isotope No NA 7 1308 O and N isotope No NA 7 1308 O and N isotope No NA 7 1338 O and N isotope No NA 7 1436 O and N isotope No NA 7 1594 O and N isotope No NA 7 1532 O and N isotope No NA 7 1537 O and N isotope
O and N isotope No NA 8 23072 O and N isotope No NA 7 1422 O and N isotope No NA 7 1423 O and N isotope No NA 7 1475 O and N isotope No NA 7 1308 O and N isotope No NA 7 1327 O and N isotope No NA 7 1328 O and N isotope No NA 7 1326 O and N isotope No NA 7 1436 O and N isotope No NA 7 1436 O and N isotope No NA 7 1436 O and N isotope
O and N Isotope No NA 8 36400 O and N Isotope No NA 7 1422 O and N Isotope No NA 7 14243 O and N Isotope No NA 7 1427 O and N Isotope No NA 7 1475 O and N Isotope No NA 7 1436 O and N Isotope No NA 7 1337 O and N Isotope No NA 7 1338 O and N Isotope No NA 7 1336 O and N Isotope No NA 7 1338 O and N Isotope No NA 7 1436 O and N Isotope No NA 7 1537 O and N Isotope
O and N isotope No NA 7 1422 O and N isotope No NA 8 1831 O and N isotope No NA 7 1447 O and N isotope No NA 7 1422 O and N isotope No NA 7 1475 O and N isotope No NA 7 1475 O and N isotope No NA 7 1475 O and N isotope No NA 7 1308 O and N isotope No NA 7 1379 O and N isotope No NA 7 1379 O and N isotope No NA 7 1379 O and N isotope No NA 7 1376 O and N isotope No NA 7 1376 O and N isotope No NA 7 1373 O and N isotope No NA 7 1577 O and N isotope
O and N Isotope No NA 8 1831 O and N Isotope No NA 7 1447 O and N Isotope No NA 7 1243 O and N Isotope No NA 7 1242 O and N Isotope No NA 7 1475 O and N Isotope No NA 7 1436 O and N Isotope No NA 7 1437 O and N Isotope No NA 7 1436 O and N Isotope No NA 7 1536 O and N Isotope No NA 7 1537 O and N Isotope No NA 7 1537 O and N Isotope
O and N Isotope No NA 7 1243 O and N Isotope No NA 7 1467 O and N Isotope No NA 7 1475 O and N Isotope No NA 7 1327 O and N Isotope No NA 7 1327 O and N Isotope No NA 7 1338 O and N Isotope No NA 7 1336 O and N Isotope No NA 7 1596 O and N Isotope No NA 7 1596 O and N Isotope No NA 7 1596 O and N Isotope No NA 7 1557 O and N Isotope
Island, FI O and N stotope NO NA 7 1467 Island, FI O and N stotope NO NA 7 1270 Island, FI O and N stotope NO NA 7 1475 Island, FI O and N stotope NO NA 7 1475 Island, FI O and N stotope NO NA 7 1475 Island, FI O and N stotope NO NA 7 1308 Island, FI O and N stotope NO NA 7 1308 Island, FI O and N stotope NO NA 7 1327 Island, FI O and N stotope NO NA 7 1326 Island, FI O and N stotope NO NA 7 1326 Island, FI O and N stotope NO NA 7 1436 Island, FI O and N stotope NO NA 7 1436 Island, FI O and N stotope NO NA
Stand, FI O and N stotope No
O and N isotope NO NA 7 1571 O and N isotope NO NA 7 1475 O and N isotope NO NA 7 1475 O and N isotope NO NA 7 1475 O and N isotope NO NA 7 1308 O and N isotope NO NA 7 1379 O and N isotope NO NA 7 1379 O and N isotope NO NA 7 1376 O and N isotope NO NA 7 1376 O and N isotope NO NA 7 1436 O and N isotope NO NA 7 1596 O and N isotope NO NA 7 1537 O and N isotope NO NA 8 1444 O and N isotope NO NA 8 1484 O and N isotope NO NA 8 1485 O and N isotope
O and N isotope No NA 7 1475 O and N isotope No NA 7 1475 O and N isotope No NA 7 1311 O and N isotope No NA 7 1327 O and N isotope No NA 7 1328 O and N isotope No NA 7 1326 O and N isotope No NA 7 1326 O and N isotope No NA 7 1336 O and N isotope No NA 7 1436 O and N isotope No NA 7 1434 O and N isotope No NA 7 14824 O and N isotope
O and N Isotope No NA 7 1173 O and N Isotope No NA 7 1311 O and N Isotope No NA 7 1327 O and N Isotope No NA 7 1356 O and N Isotope No NA 7 1356 O and N Isotope No NA 7 1356 O and N Isotope No NA 7 1596 O and N Isotope No NA 7 1596 O and N Isotope No NA 7 1537 O and N Isotope No NA 7 16157 O and N Isotope No NA 7 16157 O and N Isotope No NA 8 1757 O and N Isotope
O and N isotope No NA 7 1311 O and N isotope No NA 7 1308 O and N isotope No NA 7 1327 O and N isotope No NA 7 1353 O and N isotope No NA 7 1356 O and N isotope No NA 7 1436 O and N isotope No NA 7 1596 O and N isotope No NA 7 1596 O and N isotope No NA 7 1537 O and N isotope No NA 7 1536 O and N isotope No NA 7 1537 O and N isotope No NA 7 16157 O and N isotope No NA 8 1773 O and N isotope No NA 8 1550 O and N isotope No NA 8 13155 O and N isotope
O and N isotope No NA 7 1308 O and N isotope No NA 7 1327 O and N isotope No NA 7 1283 O and N isotope No NA 7 1596 O and N isotope No NA 7 1191 O and N isotope No NA 7 1191 O and N isotope No NA 7 1596 O and N isotope No NA 7 1436 O and N isotope No NA 7 1596 O and N isotope No NA 7 1557 O and N isotope No NA 7 16157 O and N isotope No NA 7 16157 O and N isotope No NA 7 16157 O and N isotope No NA 8 1754 O and N isotope No NA 8 1757 O and N isotope
O and N Isotope No NA 7 1327 O and N Isotope No NA 7 1283 O and N Isotope No NA 7 1283 O and N Isotope No NA 7 1436 O and N Isotope No NA 7 1536 O and N Isotope No NA 7 16157 O and N Isotope No NA 8 1773 O and N Isotope No NA 8 1757 O and N Isotope No NA 8 15750 O and N Isotope No NA 8 15750 O and N Isotope No NA 8 15750 O and N Isotope
O and N isotope No NA 7 1379 O and N isotope No NA 7 1283 O and N isotope No NA 7 1566 O and N isotope No NA 7 1436 O and N isotope No NA 7 1436 O and N isotope No NA 7 1596 O and N isotope No NA 7 1596 O and N isotope No NA 7 1536 O and N isotope No NA 7 16157 O and N isotope No NA 7 16157 O and N isotope No NA 8 1773 O and N isotope No NA 8 15750 O and N isotope
O and N Isotope No NA 7 1283 O and N Isotope No NA 8 1556 O and N Isotope No NA 8 1436 O and N Isotope No NA 7 1191 O and N Isotope No NA 7 1596 O and N Isotope No NA 7 1596 O and N Isotope No NA 7 1533 O and N Isotope No NA 7 16157 O and N Isotope No NA 8 1773 O and N Isotope No NA 7 16157 O and N Isotope No NA 8 1757 O and N Isotope No NA 8 15750 O and N Isotope
O and N isotope No NA 8 1594 O and N isotope No NA 8 1594 O and N isotope No NA 7 1596 O and N isotope No NA 7 1596 O and N isotope No NA 7 1933 O and N isotope No NA 7 1933 O and N isotope No NA 7 1557 O and N isotope No NA 7 16157 O and N isotope No NA 7 16157 O and N isotope No NA 7 16157 O and N isotope No NA 8 1757 O and N isotope No NA 8 1750 O and N isotope No NA 8 1550 O and N isotope No NA 8 15750 O and N isotope No NA 7 13420 O and N isotope
O and N isotope No NA 8 1436 O and N isotope No NA 7 1596 O and N isotope No NA 7 1596 O and N isotope No NA 7 1557 O and N isotope No NA 7 1933 O and N isotope No NA 7 1557 O and N isotope No NA 7 16157 O and N isotope No NA 8 1757 O and N isotope No NA 8 1750 O and N isotope No NA 8 13155 O and N isotope No NA 8 13155 O and N isotope No NA 7 24128 O and N isotope
O and N Isotope No NA 7 1191 O and N Isotope No NA 7 1596 O and N Isotope No NA 7 1538 O and N Isotope No NA 7 1933 O and N Isotope No NA 7 1557 O and N Isotope No NA 7 16157 O and N Isotope No NA 7 16157 O and N Isotope No NA 7 16157 O and N Isotope No NA 8 1757 O and N Isotope No NA 8 1757 O and N Isotope No NA 8 1550 O and N Isotope No NA 8 1550 O and N Isotope No NA 8 15750 O and N Isotope No NA 7 13420 O and N Isotope No NA 7 24128 O and N Isotope
O and N Isotope No NA 7 1596 O and N Isotope No NA 7 1596 O and N Isotope No NA 7 1933 O and N Isotope No NA 7 1557 O and N Isotope No NA 7 1557 O and N Isotope No NA 7 16157 O and N Isotope No NA 7 16157 O and N Isotope No NA 7 19186 O and N Isotope No NA 8 1757 O and N Isotope No NA 8 1757 O and N Isotope No NA 8 1550 O and N Isotope No NA 8 15750 O and N Isotope No NA 8 15750 O and N Isotope No NA 7 14228 O and N Isotope No NA 7 24128 O and N Isotope
O and N Isotope No NA 8 1338 O and N Isotope No NA 7 935 O and N Isotope No NA 7 1557 O and N Isotope No NA 7 1557 O and N Isotope No NA 7 16157 O and N Isotope No NA 7 16157 O and N Isotope No NA 7 19186 O and N Isotope No NA 7 19186 O and N Isotope No NA 8 1757 O and N Isotope No NA 8 1757 O and N Isotope No NA 8 15750 O and N Isotope No NA 7 24128 O and N Isotope No NA 7 24128 O and N Isotope No NA 8 27192 O and N Isotope No NA 8 27192 O and N Isotope
O and N Isotope No NA 7 935 O and N Isotope No NA 7 1933 O and N Isotope No NA 7 1557 O and N Isotope No NA 7 1237 O and N Isotope No NA 7 16157 O and N Isotope No NA 7 16157 O and N Isotope No NA 7 16157 O and N Isotope No NA 7 19186 O and N Isotope No NA 8 1757 O and N Isotope No NA 8 1550 O and N Isotope No NA 8 15750 O and N Isotope No NA 7 24128 O and N Isotope No NA 7 24128 O and N Isotope No NA 8 27192 O and N Isotope No NA 8 27192
Island, FI O and N Isotope No NA 7 1933 Island, FI O and N Isotope No NA 7 1557 Island, FI O and N Isotope No NA 7 1237 Island, FI O and N Isotope No NA 7 16157 Island, FI O and N Isotope No NA 7 16157 Island, FI O and N Isotope No NA 7 19186 Island, FI O and N Isotope No NA 8 24824 Island, FI O and N Isotope No NA 8 1757 Island, FI O and N Isotope No NA 8 15750 Island, FI O and N Isotope No NA 8 15750 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 8 25016 Island, FI O and N Isotope No NA
Island, FI O and N Isotope No NA 7 1557 Island, FI O and N Isotope No NA 7 1237 Island, FI O and N Isotope No NA 7 16157 Island, FI O and N Isotope No NA 7 16157 Island, FI O and N Isotope No NA 7 19186 Island, FI O and N Isotope No NA 8 24824 Island, FI O and N Isotope No NA 8 1757 Island, FI O and N Isotope No NA 8 15750 Island, FI O and N Isotope No NA 8 15750 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 8 23016 Island, FI O and N Isotope No NA 8 27192
Island, FI O and N Isotope NO NA 7 1237 Island, FI O and N Isotope NO NA 7 16157 Island, FI O and N Isotope NO NA 7 16157 Island, FI O and N Isotope NO NA 7 19186 Island, FI O and N Isotope NO NA 8 24824 Island, FI O and N Isotope NO NA 8 1757 Island, FI O and N Isotope NO NA 8 15750 Island, FI O and N Isotope NO NA 8 15750 Island, FI O and N Isotope NO NA 7 13420 Island, FI O and N Isotope NO NA 7 24128 Island, FI O and N Isotope NO NA 7 24128 Island, FI O and N Isotope NO NA 8 23016 Island, FI O and N Isotope NO
Island, FI O and N Isotope No NA 7 1237 Island, FI O and N Isotope No NA 7 16157 Island, FI O and N Isotope No NA 7 19186 Island, FI O and N Isotope No NA 8 24824 Island, FI O and N Isotope No NA 8 1757 Island, FI O and N Isotope No NA 8 15750 Island, FI O and N Isotope No NA 8 13155 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 8 29016 Island, FI O and N Isotope No NA 8 27192
Island, FI O and N Isotope No NA 7 16157 Island, FI O and N Isotope No NA 7 16157 Island, FI O and N Isotope No NA 8 24824 Island, FI O and N Isotope No NA 8 1757 Island, FI O and N Isotope No NA 8 1750 Island, FI O and N Isotope No NA 8 13155 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 8 29016 Island, FI O and N Isotope No NA 8 27192
Island, FI O and N Isotope No NA 7 16157 Island, FI O and N Isotope No NA 7 19186 Island, FI O and N Isotope No NA 8 24824 Island, FI O and N Isotope No NA 8 1757 Island, FI O and N Isotope No NA 8 15750 Island, FI O and N Isotope No NA 7 13420 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 8 29016 Island, FI O and N Isotope No NA 8 27192
Island, FI O and N Isotope No NA 7 19186 Island, FI O and N Isotope No NA 8 24824 Island, FI O and N Isotope No NA 8 1757 Island, FI O and N Isotope No NA 8 15750 Island, FI O and N Isotope No NA 7 13420 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 8 29016 Island, FI O and N Isotope No NA 8 27192
Island, FI O and N Isotope No NA 8 24824 Island, FI O and N Isotope No NA 8 1757 Island, FI O and N Isotope No NA 8 15750 Island, FI O and N Isotope No NA 7 13420 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 8 29016 Island, FI O and N Isotope No NA 8 27192
Island, FI O and N Isotope No NA 8 1757 Island, FI O and N Isotope No NA 8 15750 Island, FI O and N Isotope No NA 7 13455 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 7 24128 Island, FI O and N Isotope No NA 8 29016 Island, FI O and N Isotope No NA 8 27192
O and N Isotope No NA 8 3681 O and N Isotope No NA 8 15750 O and N Isotope No NA 7 13420 O and N Isotope No NA 7 24128 O and N Isotope No NA 8 29016 O and N Isotope No NA 8 29016 O and N Isotope No NA 8 27192
O and N isotope
O and N isotope
O and N Isotope No NA 7 13420 O and N Isotope No NA 7 24128 O and N Isotope No NA 8 29016 O and N Isotope No NA 8 27192
FI O and N Isotope No NA 7 24128 FI O and N Isotope No NA 8 29016 FI O and N Isotope No NA 8 27192
O and N Isotope No NA 8 29016 O and N Isotope No NA 8 27192
Island, FI O and N Isotope No NA 8 27192
Island, FI O and N Isotope No NA 8 47190
Island, FI O and N Isotope No
7 43248

None	Cacin	None	Noile	None	Noile	NOTICE	None	None	None	None	None N	NOTICE	None	None	None	None	None		None	None	None	None		None	None	None	None		None	None	None	adoly	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
631	440	736	230	211	727	664	172	169	124	. 88	360	812	163	341	203	130	329	7.	250	88	ccl	104		110	06	0	124	0	9/	747	9	1034	1034	188	0	191	145	205	481	159	2018	009	152	415	398	180	92	179	166
47400	60440	30140	43630	97440	3/410	43400	50794	46860	46117	40068	00004	47,000	52211	43560	47401	44838	47300	0000	49922	46652	3//30	47100		40221	45540	44726	37524	07007	49813	47080	3803	50576	30370	40310	39220	42400	50794	47520	44940	43460	50685	46090	46438	45898	46200	52211	47740	47508	40068
7	o	οα	0 0	0 0	0 0	0	00	α	0 00	0 00	7	,	8	8	∞	8	8		ρ (∞ (σ,	∞		∞	∞	8	7	d	ο c	∞ α	Φ	α	0 0	οα	2		∞	8	8	8	8	∞	8	8	8	8	8	80	8
NA	VIA	Z Z		42		4	AN	NA	AN	NA		42	NA	NA	NA	NA	NA	414	NA	AN S	NA	NA		NA	NA	NA	NA	4	¥ Z	AN S	NA.	NA		AN AN	AN AN	¥N.	NA												
No	2	0 2	0 2	0 2	0 2	ON	No	S	2 Z	S Z	2 2	2	No	No	οN	No	No		0 ;	2	ON :	o N	:	o N	No	No	S N	1	02	02 2	00	Z	02 2	2 2	2 2	^o N	٥N	No	No	No	No	No	2	No	No	No	No	No	No
O and N Isotope	N pag		O and in isotope		O and in isotope	O and in isotope	O and N Isotope	O and N Isotope	O and N Isotone	O and N Isotope	O and M lootono	O arid in isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope		O and N Isotope		O and N Isotope		O and N Isotope	O and N solope	O and N Isotope																								
Marco Island, FI	Morroo lo lond	Marco Island El	פושות,	Signa,	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island FI	Marco Island Fl	Marco Island Fl	Moroo lolond	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI		Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI		Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	i i	Island, FI	Island, FI			Marco Island, FI	Marco Island FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	sland,	Marco Island, FI										
Filtered Seepage	Concept Concept	Filtered Seepage	Lillel ed Seepage	Filtered Seepage	Lillel ed Seepage	Lillered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seenade	Filtered Seepade	City of Cooperation	rillereu oeepade	Filtered Seepage		Fillered Seepage	Filtered Seepage	Fillered Seepage	Filtered Seepage		Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage		Fillered Seepage	Filtered Seepage	rillered Seepage	Filtered Seenade	Fillel ed Seepage	Filtered Seenage	Filtered Seepade	Filtered Seepage																	
50	0	30	8 2	30	8 2	OG	50	50	50	50	8	200	50	20	20	20	20	C	00	20	nc i	20		20	50	20	20	C	2 2	200	00	20	30	20 20	50	50	20	20	20	20	50	50	50	50	20	20	20	50	20 l
20-3729 SP 1	00 0060 00	20-2036 SF 2	20-2397 3F 2	20-2813 SF 2	20-3092 3F 2	20-3/30 SF 2	20-2059 SP 3	20-2398 SP 3	20-203 SI S	20-3093 SP 3	20 2222 21	20-5/31 SP 3	20-2060 SP 4	20-2400 SP 4	20-2815 SP 4	20-3094 SP 4	20-3732 SP 4	1	20-2062 SP 3	20-2817 SP 5	20-3095 SP 5	20-3733 SP 5		20-2063 SP 6	20-2401 SP 6	20-2818 SP 6	20-3096 SP 6	1000000	20-2064 SP 7	20-2402 SP /	/ 4S 0282-02	20_2065 SD 8	20-2003 SF 8	20-2404 SP 8	20-3097 SP 8	20-3734 SP 8	20-2066 SP 9	20-2405 SP 9	20-2822 SP 9	20-3099 SP 9	20-2068 SP 10	20-2406 SP 10	20-2823 SP 10	20-3100 SP 10	20-3736 SP 10	20-2069 SP 11	20-2407 SP 11	20-2824 SP 11	20-3101 SP 11
141	110	1/13	143	144	140	140	147	148	149	150	154	101	152	153	154	155	156	7.71	/61	158	AC.	160		161	162	163	164	107	100	100	/01	168	100	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185

None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
247	295	42	327	467	140	466	19	142	276	355	170	847	470	299	173	229	379	299	268	37	114	4867	1417	265	142	194
47800	47415	47080	46973	33708	46900	48614	44833	35722	46100	52647	48510	49113	44202	48300	52102	47960	46866	43990	45900	43800	908	1593	5727	17602	55	17
8	8	8	8	8	8	8	8	8	8	8	8	7	8	7	8	8	8	8	8	9	7	8	8	8	9	9
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope	O and N Isotope
Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI	Marco Island, FI
Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Seepage	Filtered Stormwater	Filtered Rainwater	Filtered Rainwater				
20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	50	20	20	20	20	20	20	20	20	20	20	50
20-3738 SP 11	20-2070 SP 12	20-2408 SP 12	20-2825 SP 12	20-3102 SP 12	20-3739 SP 12	20-2071 SP 13	20-2826 SP 13	20-3103 SP 13	20-3740 SP 13	20-2072 SP 14	20-2409 SP 14	20-2827 SP 14	20-3104 SP 14	20-3741 SP 14	20-2073 SP 15	20-2410 SP 15	20-2828 SP 15	20-3106 SP 15	20-3742 SP 15	20-3584 MI 02	20-3585 MI 03	20-1553 MI 04	20-3586 MI 04	20-3587 MI 05	20-3242 Bulk Precip	20-3588 Bulk Precip
186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	208	209	210	211	212	213	214

H-2: Sample Results	

Analysis #	Internal ID	Sample ID	δ ¹⁵ N _{Air} (‰)	δ ¹⁸ O _{VSMOW} (‰)	Comments
M-82644	Harper 12/15/20-1	20-1700 Bulk Precip	-0.57	61.58	
M-82645	Harper 12/15/20-1 rep	20-1700 Bulk Precip	-0.61	61.36	
M-82646	Harper 12/15/20-2	20-1753 Bulk Precip	-2.55	64.46	
M-82647	Harper 12/15/20-3	20-1871 Bulk Precip	-3.42	61.40	
M-82648	Harper 12/15/20-4	20-2016 Bulk Precip	-2.39	64.87	
M-82650	Harper 12/15/20-5	20-2178 Bulk Precip	-0.66	67.15	
M-82651	Harper 12/15/20-6	20-2310 Bulk Precip	-0.90	66.26	
M-82652	Harper 12/15/20-7	20-2340 Bulk Precip	0.14	62.86	
M-82653	Harper 12/15/20-8	20-2394 Bulk Precip	0.14	63.89	
M-82654	Harper 12/15/20-9	20-2497 Bulk Precip	-1.61	61.97	
M-82659	Harper 12/15/20-10	20-2557 Bulk Precip	0.98	64.55	
M-82660	Harper 12/15/20-11	20-2636 Bulk Precip	1.18	67.66	
M-82661	Harper 12/15/20-11 rep	20-2636 Bulk Precip	1.06	67.31	
M-82662	Harper 12/15/20-12	20-2709 Bulk Precip	-0.14	62.40	
M-82663	Harper 12/15/20-13	20-2808 Bulk Precip	-1.29	55.90	
M-82665	Harper 12/15/20-14	20-2917 Bulk Precip	0.27	63.52	
M-82666	Harper 12/15/20-15	20-2940 Bulk Precip	0.79	62.84	
M-83072	Harper 12/15/20-213	20-3242 Bulk Precip	-1.59	60.30	
M-83073	Harper 12/15/20-213 rep	20-3242 Bulk Precip	-1.55	61.09	
M-82667	Harper 12/15/20-16	20-3451 Bulk Precip	-1.61	60.29	
M-82668	Harper 12/15/20-17	20-3554 Bulk Precip	-0.31	59.87	
M-83074	Harper 12/15/20-214	20-3588 Bulk Precip	-4.02	60.15	
M-82669	Harper 12/15/20-18	20-3727 Bulk Precip	-1.14	63.28	
	Minimum		-4.02	55.90	
	Maximum		1.18	67.66	
	Average \	Value:	-0.86	62.82	
NA 00000	11	00.4554.841.04	0.40	40.00	
M-82682	Harper 12/15/20-20	20-1551 MI 01	0.42	12.92	
M-83708	Harper 12/15/20-21	20-1638 MI 01	2.87	6.63	
M-83710	Harper 12/15/20-21 rep	20-1638 MI 01	3.03	7.02	
M-82685	Harper 12/15/20-22	20-1696 MI 01	2.27	16.98	
M-82688	Harper 12/15/20-23	20-2335 MI 01	4.69	6.07	
M-82689	Harper 12/15/20-24	20-2389 MI 01	3.50	1.92	
M-82690	Harper 12/15/20-25	20-2492 MI 01	3.06	1.44	
M-82691	Harper 12/15/20-26	20-2554 MI 01	-1.06	1.70	
M-82681	Harper 12/15/20-19	20-2631 MI 01	3.09	37.50	
M-82692	Harper 12/15/20-27	20-2935 MI 01	13.24	10.01	
M-82693	Harper 12/15/20-28	20-3078 MI 01	2.57	1.69	
M-82698	Harper 12/15/20-29	20-3169 MI 01	4.44	2.29	
M-82699	Harper 12/15/20-30	20-3239 MI 01	-3.82	4.08	
M-83711	Harper 12/15/20-31	20-3323 MI 01	-0.05	3.94	
M-83712	Harper 12/15/20-31 rep	20-3323 MI 01	0.24	2.33	
M-84534	Harper 12/15/20-31 rep	20-3323 MI 01	0.10	2.81	
M-84535	Harper 12/15/20-31 rep	20-3323 MI 01	0.09	3.08	
M-82702	Harper 12/15/20-32	20-3552 MI 01	3.94	3.35	
	Minimum	Value:	-3.82	1.44	
			-3.82 13.24	37.50	
	Maximum Average \		2.37	6.99	

Analysis #	Internal ID	Sample ID	δ ¹⁵ N _{Air} (‰)	δ ¹⁸ O _{VSMOW} (‰)	Comments
M-82716	Harper 12/15/20-38	20-1639 MI 02	4.04	12.96	
M-82704	Harper 12/15/20-33	20-1697 MI 02	1.27	31.98	
M-82717	Harper 12/15/20-39	20-2015 MI 02	7.22	10.70	Below LOQ
M-82718	Harper 12/15/20-40	20-2054 MI 02	4.77	3.48	Below LOQ
M-82719	Harper 12/15/20-41	20-2175 MI 02	4.95	6.27	Below LOQ
M-82720	Harper 12/15/20-41 rep	20-2175 MI 02	6.17	10.84	Below LOQ
M-82705	Harper 12/15/20-34	20-2306 MI 02	-2.01	27.57	
M-82706	Harper 12/15/20-35	20-2336 MI 02	5.17	31.65	Below LOQ
M-82722	Harper 12/15/20-42	20-2390 MI 02	-6.08	-0.69	Below LOQ
M-82707	Harper 12/15/20-36	20-2493 MI 02	2.60	13.23	Below LOQ
M-82708	Harper 12/15/20-37	20-2555 MI 02	4.52	20.98	
M-82723	Harper 12/15/20-43	20-2632 MI 02	5.96	12.21	
M-82724	Harper 12/15/20-44	20-2705 MI 02	0.15	6.07	
M-82725	Harper 12/15/20-45	20-2914 MI 02	3.26	8.03	Below LOQ
M-82726	Harper 12/15/20-46	20-2936 MI 02	9.69	9.65	
M-82738	Harper 12/15/20-47	20-3079 MI 02	-1.40	2.24	
M-82739	Harper 12/15/20-48	20-3324 MI 02	4.50	5.85	
M-82740	Harper 12/15/20-49	20-3447 MI 02	6.50	8.75	Below LOQ
M-83056	Harper 12/15/20-208	20-3584 MI 02	4.03	5.48	
M-82741	Harper 12/15/20-50	20-3725 MI 02	4.98	2.59	
			•		
	Minimum	Value:	-6.08	-0.69	
	Maximum	Value:	9.69	31.98	
	Average '	Value:	3.51	11.49	
M-83713	Harper 12/15/20-51	20-1552 MI 03	6.93	-15.79	
M-83721	11 40/45/00 54	20-1552 MI 03	0.00		
IVI-001 Z I	Harper 12/15/20-51 rep	20-1552 IVII US	6.90	-16.18	
M-82756	Harper 12/15/20-51 rep Harper 12/15/20-58	20-1640 MI 03	6.90 11.19	-16.18 10.03	Below LOQ
	· · · · · · · · · · · · · · · · · · ·				Below LOQ
M-82756	Harper 12/15/20-58	20-1640 MI 03	11.19	10.03	Below LOQ
M-82756 M-82746	Harper 12/15/20-58 Harper 12/15/20-52	20-1640 MI 03 20-1698 MI 03	11.19 6.46	10.03 7.96	Below LOQ Below LOQ
M-82756 M-82746 M-82747	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03	11.19 6.46 2.77	10.03 7.96 -3.27	
M-82756 M-82746 M-82747 M-82748	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03	11.19 6.46 2.77 7.30	10.03 7.96 -3.27 19.97	Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03	11.19 6.46 2.77 7.30 11.30	10.03 7.96 -3.27 19.97 5.44	Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03	11.19 6.46 2.77 7.30 11.30 4.14	10.03 7.96 -3.27 19.97 5.44 15.34	Below LOQ Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758 M-82759	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60 Harper 12/15/20-61	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03 20-2307 MI 03	11.19 6.46 2.77 7.30 11.30 4.14 -3.76	10.03 7.96 -3.27 19.97 5.44 15.34 2.64	Below LOQ Below LOQ Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758 M-82759 M-82761	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60 Harper 12/15/20-61 Harper 12/15/20-61 rep	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03 20-2307 MI 03 20-2307 MI 03	11.19 6.46 2.77 7.30 11.30 4.14 -3.76 -3.55	10.03 7.96 -3.27 19.97 5.44 15.34 2.64 4.69	Below LOQ Below LOQ Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758 M-82759 M-82761 M-82749	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60 Harper 12/15/20-61 Harper 12/15/20-61 rep Harper 12/15/20-55	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03 20-2307 MI 03 20-2307 MI 03 20-2337 MI 03	11.19 6.46 2.77 7.30 11.30 4.14 -3.76 -3.55	10.03 7.96 -3.27 19.97 5.44 15.34 2.64 4.69 -6.25	Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758 M-82759 M-82761 M-82749 M-82762	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60 Harper 12/15/20-61 Harper 12/15/20-61 rep Harper 12/15/20-55 Harper 12/15/20-62	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03 20-2307 MI 03 20-2307 MI 03 20-2337 MI 03 20-2391 MI 03	11.19 6.46 2.77 7.30 11.30 4.14 -3.76 -3.55 0.76 -1.29	10.03 7.96 -3.27 19.97 5.44 15.34 2.64 4.69 -6.25 6.35	Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758 M-82759 M-82761 M-82749 M-82762 M-82750	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60 Harper 12/15/20-61 Harper 12/15/20-61 rep Harper 12/15/20-62 Harper 12/15/20-62 Harper 12/15/20-56	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03 20-2307 MI 03 20-2307 MI 03 20-2337 MI 03 20-2391 MI 03 20-2494 MI 03	11.19 6.46 2.77 7.30 11.30 4.14 -3.76 -3.55 0.76 -1.29 3.42	10.03 7.96 -3.27 19.97 5.44 15.34 2.64 4.69 -6.25 6.35 52.31	Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758 M-82759 M-82761 M-82749 M-82762 M-82750 M-82755	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60 Harper 12/15/20-61 Harper 12/15/20-61 rep Harper 12/15/20-62 Harper 12/15/20-56 Harper 12/15/20-56 Harper 12/15/20-57	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03 20-2307 MI 03 20-2307 MI 03 20-2337 MI 03 20-2391 MI 03 20-2494 MI 03 20-2633 MI 03	11.19 6.46 2.77 7.30 11.30 4.14 -3.76 -3.55 0.76 -1.29 3.42 1.54	10.03 7.96 -3.27 19.97 5.44 15.34 2.64 4.69 -6.25 6.35 52.31 46.86	Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758 M-82759 M-82761 M-82749 M-82762 M-82750 M-82755 M-82763	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60 Harper 12/15/20-61 Harper 12/15/20-61 rep Harper 12/15/20-62 Harper 12/15/20-56 Harper 12/15/20-57 Harper 12/15/20-63	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03 20-2307 MI 03 20-2307 MI 03 20-2337 MI 03 20-2391 MI 03 20-2494 MI 03 20-2633 MI 03 20-2706 MI 03	11.19 6.46 2.77 7.30 11.30 4.14 -3.76 -3.55 0.76 -1.29 3.42 1.54 -0.59	10.03 7.96 -3.27 19.97 5.44 15.34 2.64 4.69 -6.25 6.35 52.31 46.86 9.93	Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758 M-82759 M-82761 M-82762 M-82762 M-82750 M-82763 M-82764	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60 Harper 12/15/20-61 Harper 12/15/20-61 rep Harper 12/15/20-62 Harper 12/15/20-56 Harper 12/15/20-57 Harper 12/15/20-63 Harper 12/15/20-64	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03 20-2307 MI 03 20-2307 MI 03 20-2391 MI 03 20-2494 MI 03 20-2633 MI 03 20-2706 MI 03 20-2706 MI 03	11.19 6.46 2.77 7.30 11.30 4.14 -3.76 -3.55 0.76 -1.29 3.42 1.54 -0.59 -1.15	10.03 7.96 -3.27 19.97 5.44 15.34 2.64 4.69 -6.25 6.35 52.31 46.86 9.93 11.18	Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758 M-82759 M-82761 M-82762 M-82762 M-82763 M-82763 M-82764 M-82765	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60 Harper 12/15/20-61 Harper 12/15/20-61 rep Harper 12/15/20-62 Harper 12/15/20-56 Harper 12/15/20-57 Harper 12/15/20-63 Harper 12/15/20-64 Harper 12/15/20-65	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03 20-2307 MI 03 20-2307 MI 03 20-2337 MI 03 20-2391 MI 03 20-2494 MI 03 20-2633 MI 03 20-2706 MI 03 20-2915 MI 03 20-2937 MI 03	11.19 6.46 2.77 7.30 11.30 4.14 -3.76 -3.55 0.76 -1.29 3.42 1.54 -0.59 -1.15 -0.63	10.03 7.96 -3.27 19.97 5.44 15.34 2.64 4.69 -6.25 6.35 52.31 46.86 9.93 11.18 0.48	Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758 M-82759 M-82761 M-82749 M-82762 M-82750 M-82755 M-82755 M-82763 M-82764 M-82765 M-82770	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60 Harper 12/15/20-61 Harper 12/15/20-61 rep Harper 12/15/20-55 Harper 12/15/20-62 Harper 12/15/20-56 Harper 12/15/20-63 Harper 12/15/20-64 Harper 12/15/20-65 Harper 12/15/20-65 Harper 12/15/20-66	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03 20-2307 MI 03 20-2307 MI 03 20-2337 MI 03 20-2391 MI 03 20-2494 MI 03 20-2633 MI 03 20-2706 MI 03 20-2915 MI 03 20-2937 MI 03	11.19 6.46 2.77 7.30 11.30 4.14 -3.76 -3.55 0.76 -1.29 3.42 1.54 -0.59 -1.15 -0.63 0.24	10.03 7.96 -3.27 19.97 5.44 15.34 2.64 4.69 -6.25 6.35 52.31 46.86 9.93 11.18 0.48 2.93	Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758 M-82759 M-82761 M-82762 M-82762 M-82763 M-82763 M-82764 M-82765 M-82770 M-82771	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60 Harper 12/15/20-61 Harper 12/15/20-61 rep Harper 12/15/20-62 Harper 12/15/20-62 Harper 12/15/20-56 Harper 12/15/20-63 Harper 12/15/20-64 Harper 12/15/20-65 Harper 12/15/20-66 Harper 12/15/20-66 Harper 12/15/20-66	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03 20-2307 MI 03 20-2307 MI 03 20-2337 MI 03 20-2391 MI 03 20-2494 MI 03 20-2633 MI 03 20-2706 MI 03 20-2915 MI 03 20-2937 MI 03 20-2937 MI 03	11.19 6.46 2.77 7.30 11.30 4.14 -3.76 -3.55 0.76 -1.29 3.42 1.54 -0.59 -1.15 -0.63 0.24 -3.75	10.03 7.96 -3.27 19.97 5.44 15.34 2.64 4.69 -6.25 6.35 52.31 46.86 9.93 11.18 0.48 2.93 -1.33	Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758 M-82759 M-82761 M-82762 M-82762 M-82763 M-82763 M-82764 M-82765 M-82770 M-82771	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60 Harper 12/15/20-61 Harper 12/15/20-61 rep Harper 12/15/20-62 Harper 12/15/20-62 Harper 12/15/20-56 Harper 12/15/20-63 Harper 12/15/20-64 Harper 12/15/20-65 Harper 12/15/20-66 Harper 12/15/20-66 Harper 12/15/20-66	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03 20-2307 MI 03 20-2307 MI 03 20-2337 MI 03 20-2391 MI 03 20-2494 MI 03 20-2633 MI 03 20-2706 MI 03 20-2915 MI 03 20-2915 MI 03 20-2937 MI 03 20-3080 MI 03 20-3448 MI 03 20-3448 MI 03	11.19 6.46 2.77 7.30 11.30 4.14 -3.76 -3.55 0.76 -1.29 3.42 1.54 -0.59 -1.15 -0.63 0.24 -3.75	10.03 7.96 -3.27 19.97 5.44 15.34 2.64 4.69 -6.25 6.35 52.31 46.86 9.93 11.18 0.48 2.93 -1.33	Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ
M-82756 M-82746 M-82747 M-82748 M-82757 M-82758 M-82759 M-82761 M-82762 M-82762 M-82763 M-82763 M-82764 M-82765 M-82770 M-82771	Harper 12/15/20-58 Harper 12/15/20-52 Harper 12/15/20-53 Harper 12/15/20-54 Harper 12/15/20-59 Harper 12/15/20-60 Harper 12/15/20-61 Harper 12/15/20-61 rep Harper 12/15/20-62 Harper 12/15/20-56 Harper 12/15/20-57 Harper 12/15/20-63 Harper 12/15/20-64 Harper 12/15/20-65 Harper 12/15/20-66 Harper 12/15/20-67 Harper 12/15/20-67 Harper 12/15/20-67	20-1640 MI 03 20-1698 MI 03 20-1751 MI 03 20-1869 MI 03 20-2055 MI 03 20-2176 MI 03 20-2307 MI 03 20-2307 MI 03 20-2337 MI 03 20-2391 MI 03 20-2391 MI 03 20-2494 MI 03 20-2633 MI 03 20-2706 MI 03 20-2915 MI 03 20-2915 MI 03 20-2937 MI 03 20-3080 MI 03 20-3448 MI 03 20-3585 MI 03	11.19 6.46 2.77 7.30 11.30 4.14 -3.76 -3.55 0.76 -1.29 3.42 1.54 -0.59 -1.15 -0.63 0.24 -3.75 0.45	10.03 7.96 -3.27 19.97 5.44 15.34 2.64 4.69 -6.25 6.35 52.31 46.86 9.93 11.18 0.48 2.93 -1.33 4.89	Below LOQ Below LOQ Below LOQ Below LOQ Below LOQ

Analysis #	Internal ID	Sample ID	δ ¹⁵ N _{Air} (‰)	δ ¹⁸ Ο _{VSMOW} (‰)	Comments
M-83058	Harper 12/15/20-210	20-1553 MI 04	6.97	7.45	
M-82781	Harper 12/15/20-74	20-1641 MI 04	16.29	14.67	Below LOQ
M-82772	Harper 12/15/20-68	20-1699 MI 04	15.95	10.20	
M-82773	Harper 12/15/20-69	20-1752 MI 04	9.50	3.86	
M-82774	Harper 12/15/20-70	20-1870 MI 04	0.01	30.98	
M-82782	Harper 12/15/20-75	20-2177 MI 04	-8.58	-5.74	
M-82777	Harper 12/15/20-71	20-2308 MI 04	-1.67	8.69	
M-82778	Harper 12/15/20-71 rep	20-2308 MI 04	-1.65	9.03	
M-82779	Harper 12/15/20-72	20-2338 MI 04	0.50	25.42	
M-82489	Harper 12/15/20-76	20-2392 MI 04	-4.55	8.41	
M-82780	Harper 12/15/20-73	20-2495 MI 04	-2.58	14.93	
M-82490	Harper 12/15/20-77	20-2634 MI 04	-12.17	12.04	
M-82491	Harper 12/15/20-78	20-2707 MI 04	-9.26	2.79	
M-82492	Harper 12/15/20-79	20-2938 MI 04	8.95	9.84	
M-82493	Harper 12/15/20-80	20-3081 MI 04	0.03	-0.03	
M-82495	Harper 12/15/20-81	20-3170 MI 04	2.87	-2.10	
M-82496	Harper 12/15/20-81 rep	20-3170 MI 04	2.71	-2.08	
M-82497	Harper 12/15/20-82	20-3240 MI 04	1.03	2.08	
M-82498	Harper 12/15/20-83	20-3325 MI 04	3.27	3.59	
M-82499	Harper 12/15/20-84	20-3449 MI 04	0.39	3.79	
M-83070	Harper 12/15/20-211	20-3586 MI 04	1.55	-2.25	
	·		•		
	Minimum '	Value:	-12.17	-5.74	
	Maximum	Value:	16.29	30.98	
	Average \	√alue:	1.41	7.41	
M-82505	Harper 12/15/20-86	20-2309 MI 05	7.45	5.88	
M-82506	Harper 12/15/20-87	20-2339 MI 05	4.11	4.74	Below LOQ
M-82507	Harper 12/15/20-88	20-2393 MI 05	1.32	-7.62	
M-82508	Harper 12/15/20-89	20-2496 MI 05	2.12	43.57	
M-82510	Harper 12/15/20-90	20-2556 MI 05	5.49	15.55	
M-82504	Harper 12/15/20-85	20-2635 MI 05	2.36	39.61	
M-82511	Harper 12/15/20-91	20-2708 MI 05	-0.32	28.22	
M-82512	Harper 12/15/20-91 rep	20-2708 MI 05	-0.38	29.10	
M-82513	Harper 12/15/20-92	20-2916 MI 05	0.76	8.81	
M-82514	Harper 12/15/20-93	20-2939 MI 05	3.30	14.58	
M-82526	Harper 12/15/20-94	20-3082 MI 05	10.70	5.38	
M-82527	Harper 12/15/20-95	20-3171 MI 05	17.89	8.75	
M-82528	Harper 12/15/20-96	20-3241 MI 05	17.85	12.00	
M-82529	Harper 12/15/20-97	20-3326 MI 05	19.15	9.36	
M-82530	Harper 12/15/20-98	20-3450 MI 05	9.27	3.87	
M-82533	Harper 12/15/20-99	20-3553 MI 05	12.01	5.57	
M-83071	Harper 12/15/20-212	20-3587 MI 05	9.51	5.23	
M-82534	Harper 12/15/20-100	20-3726 MI 05	3.36	1.35	
			•		
	NA::	Value:	-0.38	-7.62	
	Minimum '	value.	-0.30	-7.02	
	Maximum Maximum		19.15	43.57	

Analysis #	Internal ID	Sample ID	δ ¹⁵ N _{Air} (‰)	δ ¹⁸ Ο _{VSMOW} (‰)	Comments
M-82535	Harper 12/15/20-101	20-1550 Reuse	25.70	13.73	
M-82536	Harper 12/15/20-101 rep	20-1550 Reuse	25.76	13.56	
M-82537	Harper 12/15/20-102	20-1637 Reuse	17.14	7.12	
M-82543	Harper 12/15/20-103	20-1695 Reuse	18.22	7.59	
M-82544	Harper 12/15/20-104	20-1750 Reuse	23.53	10.39	
M-82545	Harper 12/15/20-105	20-1868 Reuse	23.05	10.26	
M-82546	Harper 12/15/20-106	20-2014 Reuse	15.76	5.21	
M-82547	Harper 12/15/20-107	20-2053 Reuse	17.79	7.46	
M-82549	Harper 12/15/20-108	20-2174 Reuse	16.36	5.14	
M-82550	Harper 12/15/20-109	20-2305 Reuse	17.01	5.29	
M-83722	Harper 12/15/20-110	20-2334 Reuse	22.27	9.14	
M-82552	Harper 12/15/20-111	20-2388 Reuse	16.31	4.71	
M-82553	Harper 12/15/20-111 rep	20-2388 Reuse	16.14	4.62	
M-83723	Harper 12/15/20-112	20-2491 Reuse	31.41	14.79	
M-82562	Harper 12/15/20-113	20-2553 Reuse	29.83	14.18	
M-82563	Harper 12/15/20-114	20-2630 Reuse	25.73	10.44	
M-82564	Harper 12/15/20-115	20-2704 Reuse	21.85	7.70	
M-82565	Harper 12/15/20-116	20-2807 Reuse	30.51	10.95	
M-82567	Harper 12/15/20-117	20-2913 Reuse	31.02	14.30	
M-82568	Harper 12/15/20-118	20-2934 Reuse	30.42	13.32	
M-82569	Harper 12/15/20-119	20-3077 Reuse	25.40	14.08	
M-82570	Harper 12/15/20-120	20-3168 Reuse	26.73	12.52	
M-82571	Harper 12/15/20-121	20-3238 Reuse	21.34	8.97	
M-82583	Harper 12/15/20-121 rep	20-3238 Reuse	21.26	8.74	
M-82584	Harper 12/15/20-122	20-3322 Reuse	24.43	9.76	
M-82585	Harper 12/15/20-123	20-3446 Reuse	17.49	5.89	
M-83724	Harper 12/15/20-124	20-3551 Reuse	25.66	12.76	
	·				
	Minimum	Value:	15.76	4.62	
	Maximum	Value:	31.41	14.79	
	Average	Value:	22.89	9.73	
M-82587	Harper 12/15/20-125	20-2498 Reuse Pond	16.31	18.38	Below LOQ
M-82590	Harper 12/15/20-126	20-2637 Reuse Pond	7.33	12.75	
M-82591	Harper 12/15/20-127	20-2558 Reuse Pond	16.14	15.70	
M-82592	Harper 12/15/20-128	20-2710 Reuse Pond	13.82	11.63	
M-82593	Harper 12/15/20-129	20-2809 Reuse Pond	14.94	14.80	
M-82876	Harper 12/15/20-130	20-2918 Reuse Pond	16.53	13.73	
M-83726	Harper 12/15/20-131	20-2941 Reuse Pond	11.14	10.43	
M-83727	Harper 12/15/20-131 rep	20-2941 Reuse Pond	11.06	10.17	
M-82879	Harper 12/15/20-132	20-3083 Reuse Pond	13.30	11.55	
M-82880	Harper 12/15/20-133	20-3172 Reuse Pond	13.17	11.69	
M-82882	Harper 12/15/20-134	20-3243 Reuse Pond	13.60	10.35	
M-82883	Harper 12/15/20-135	20-3327 Reuse Pond	13.16	8.92	
M-82884	Harper 12/15/20-136	20-3452 Reuse Pond	7.47	7.61	
M-82885	Harper 12/15/20-137	20-3555 Reuse Pond	2.90	-0.69	
	Minimum	Value:	2.90	-0.69	
	Maximum		16.53	18.38	

Analysis #	Internal ID	Sample ID	δ ¹⁵ N _{Air} (‰)	δ ¹⁸ O _{VSMOW} (‰)	Comments
M-82886	Harper 12/15/20-138	20-2396 SP 1	1.91	-6.81	
M-82891	Harper 12/15/20-139	20-2812 SP 1	3.22	1.12	
M-82892	Harper 12/15/20-140	20-3091 SP 1	-0.50	-6.40	
M-82893	Harper 12/15/20-141	20-3729 SP 1	-0.02	1.87	
M-82894	Harper 12/15/20-141 rep	20-3729 SP 1	-0.07	1.78	
	Minimum		-0.50	-6.81	
	Maximum		3.22	1.87	
	Average \	√alue:	0.91	-1.69	
			1		
M-82895	Harper 12/15/20-142	20-2058 SP 2	4.15	0.88	
M-82897	Harper 12/15/20-143	20-2397 SP 2	3.70	3.20	
M-82898	Harper 12/15/20-144	20-2813 SP 2	4.40	5.96	
M-82899	Harper 12/15/20-145	20-3092 SP 2	-2.84	0.50	
M-82900	Harper 12/15/20-146	20-3730 SP 2	5.51	3.19	
	Minimum	Value	0.04	0.50	
			-2.84	0.50	
	Maximum		5.51	5.96	
	Average \	value:	2.98	2.75	
M-82901	Harper 12/15/20-147	20-2059 SP 3	3.62	1.04	
M-82914	Harper 12/15/20-148	20-2398 SP 3	2.40	4.30	
M-82915	Harper 12/15/20-149	20-2814 SP 3	3.46	2.39	
M-82916	Harper 12/15/20-150	20-3093 SP 3	-1.34	6.54	
M-82917	Harper 12/15/20-151	20-3731 SP 3	-0.45	5.07	
M-82918	Harper 12/15/20-151 rep	20-3731 SP 3	-0.60	4.57	
020.0		20 0.0.0.0	0.00		
	Minimum	Value:	-1.34	1.04	
	Maximum	Value:	3.62	6.54	
	Average \	√alue:	1.18	3.98	
M-82921	Harper 12/15/20-152	20-2060 SP 4	-2.79	0.59	
M-82922	Harper 12/15/20-153	20-2400 SP 4	-4.12	-2.00	
M-82923	Harper 12/15/20-154	20-2815 SP 4	-9.87	0.18	
M-82924	Harper 12/15/20-155	20-3094 SP 4	-8.81	3.17	
M-82925	Harper 12/15/20-156	20-3732 SP 4	3.92	1.53	
	F				
	Minimum		-9.87	-2.00	
	Maximum		3.92	3.17	
	Average \	√alue:	-4.34	0.70	
M 00000	11	00 0000 05 5	1 4 00	0.07	
M-82930	Harper 12/15/20-157	20-2062 SP 5	4.83	-0.37	
M-82931	Harper 12/15/20-158	20-2817 SP 5	-6.50	-2.79	
M-82932	Harper 12/15/20-159	20-3095 SP 5	-4.97	-3.90	
M-82933	Harper 12/15/20-160	20-3733 SP 5	-6.74	6.41	
	Minimum	Value [.]	-6.74	-3.90	
	Maximum		4.83	6.41	
	Average \		-3.35	-0.16	
	Avelage	· u.u.u.	-0.00	-0.10	

Analysis #	Internal ID	Sample ID	δ ¹⁵ N _{Air} (‰)	δ ¹⁸ Ο _{VSMOW} (‰)	Comments
M-83728	Harper 12/15/20-161	20-2063 SP 6	3.18	6.76	
M-83729	Harper 12/15/20-161 rep	20-2063 SP 6	3.08	6.07	
M-82937	Harper 12/15/20-162	20-2401 SP 6	-25.66	-2.46	
M-82938	Harper 12/15/20-163	20-2818 SP 6	3.25	2.75	
M-82939	Harper 12/15/20-164	20-3096 SP 6	3.38	4.57	
	Minimum	Value:	-25.66	-2.46	
	Maximum	Value:	3.38	6.76	
	Average \	√alue:	-2.55	3.54	
M-82940	Harper 12/15/20-165	20-2064 SP 7	3.95	2.27	
M-82948	Harper 12/15/20-166	20-2402 SP 7	6.09	0.98	
M-82949	Harper 12/15/20-167	20-2820 SP 7	-6.51	-1.55	
	Minimum		-6.51	-1.55	
	Maximum		6.09	2.27	
	Average \	∕alue:	1.17	0.57	
M-82951	Harper 12/15/20-169	20-2404 SP 8	5.61	2.73	
M-82952	Harper 12/15/20-170	20-2821 SP 8	1.58	5.70	
M-82954	Harper 12/15/20-171	20-3097 SP 8	-0.56	0.86	Below LOQ
M-82955	Harper 12/15/20-171 rep	20-3097 SP 8	-0.83	7.93	Below LOQ
M-82956	Harper 12/15/20-172	20-3734 SP 8	-5.97	4.91	
	Minimum		-5.97	0.86	
	Maximum		5.61	7.93	
	Average \	/alue:	-0.03	4.43	
M 00057	11 10/45/00 470	00 0000 00 0	1 01	0.05	
M-82957	Harper 12/15/20-173	20-2066 SP 9	-1.91	-8.65	
M-82958	Harper 12/15/20-174	20-2405 SP 9	1.27	-2.24	
M-82971	Harper 12/15/20-175	20-2822 SP 9	2.91	0.35	
M-82972	Harper 12/15/20-176	20-3099 SP 9	3.23	3.22	
	Minimum	Value	1 01	0.65	
	Minimum		-1.91	-8.65	
	Maximum	Value:	3.23	3.22	
		Value:			
M_82073	Maximum Average \	Value: Value:	3.23 1.38	3.22 -1.83	
M-82973 M-82974	Maximum Average \ Harper 12/15/20-177	Value: Value: 20-2068 SP 10	3.23 1.38 3.48	3.22 -1.83 -12.55	
M-82974	Maximum Average \(\) Harper 12/15/20-177 Harper 12/15/20-178	Value: Value: 20-2068 SP 10 20-2406 SP 10	3.23 1.38 3.48 -3.36	3.22 -1.83 -12.55 -7.91	
M-82974 M-82975	Maximum	Value: Value: 20-2068 SP 10 20-2406 SP 10 20-2823 SP 10	3.23 1.38 3.48 -3.36 1.10	3.22 -1.83 -12.55 -7.91 1.72	
M-82974 M-82975 M-82978	Maximum Average \(\) Harper 12/15/20-177 Harper 12/15/20-178 Harper 12/15/20-179 Harper 12/15/20-180	Value: Value: 20-2068 SP 10 20-2406 SP 10 20-2823 SP 10 20-3100 SP 10	3.23 1.38 3.48 -3.36 1.10 -19.63	3.22 -1.83 -12.55 -7.91 1.72 -3.23	
M-82974 M-82975 M-82978 M-82979	Maximum Average \(\) Harper 12/15/20-177 Harper 12/15/20-178 Harper 12/15/20-179 Harper 12/15/20-180 Harper 12/15/20-181	Value: Value: 20-2068 SP 10 20-2406 SP 10 20-2823 SP 10 20-3100 SP 10 20-3736 SP 10	3.23 1.38 3.48 -3.36 1.10 -19.63 -4.40	3.22 -1.83 -12.55 -7.91 1.72 -3.23 1.96	
M-82974 M-82975 M-82978	Maximum Average \(\) Harper 12/15/20-177 Harper 12/15/20-178 Harper 12/15/20-179 Harper 12/15/20-180	Value: Value: 20-2068 SP 10 20-2406 SP 10 20-2823 SP 10 20-3100 SP 10	3.23 1.38 3.48 -3.36 1.10 -19.63	3.22 -1.83 -12.55 -7.91 1.72 -3.23	
M-82974 M-82975 M-82978 M-82979	Maximum Average V Harper 12/15/20-177 Harper 12/15/20-178 Harper 12/15/20-180 Harper 12/15/20-181 Harper 12/15/20-181 rep	Value: Value: 20-2068 SP 10 20-2406 SP 10 20-2823 SP 10 20-3100 SP 10 20-3736 SP 10 20-3736 SP 10	3.23 1.38 3.48 -3.36 1.10 -19.63 -4.40 -4.40	3.22 -1.83 -12.55 -7.91 1.72 -3.23 1.96 1.01	
M-82974 M-82975 M-82978 M-82979	Maximum Average \(\) Harper 12/15/20-177 Harper 12/15/20-178 Harper 12/15/20-179 Harper 12/15/20-180 Harper 12/15/20-181 Harper 12/15/20-181 rep Minimum	Value: 20-2068 SP 10 20-2406 SP 10 20-2823 SP 10 20-3100 SP 10 20-3736 SP 10 20-3736 SP 10 Value:	3.23 1.38 3.48 -3.36 1.10 -19.63 -4.40 -4.40	3.22 -1.83 -12.55 -7.91 1.72 -3.23 1.96 1.01	
M-82974 M-82975 M-82978 M-82979	Maximum Average V Harper 12/15/20-177 Harper 12/15/20-178 Harper 12/15/20-180 Harper 12/15/20-181 Harper 12/15/20-181 rep	Value: 20-2068 SP 10 20-2406 SP 10 20-2823 SP 10 20-3100 SP 10 20-3736 SP 10 20-3736 SP 10 Value: Value:	3.23 1.38 3.48 -3.36 1.10 -19.63 -4.40 -4.40	3.22 -1.83 -12.55 -7.91 1.72 -3.23 1.96 1.01	

Analysis #	Internal ID	Sample ID	δ ¹⁵ N _{Air} (‰)	δ ¹⁸ O _{VSMOW} (‰)	Comments
M-82981	Harper 12/15/20-182	20-2069 SP 11	5.43	3.00	
M-82982	Harper 12/15/20-183	20-2407 SP 11	2.23	8.50	
M-82987	Harper 12/15/20-184	20-2824 SP 11	2.67	3.37	
M-82988	Harper 12/15/20-185	20-3101 SP 11	-5.34	-7.32	
M-82989	Harper 12/15/20-186	20-3738 SP 11	1.57	1.94	
	Minimum		-5.34	-7.32	
	Maximum		5.43	8.50	
	Average \	/alue:	1.31	1.90	
	10/15/00 105	00.0070.05.40	1 0 ==	1.00	
M-82990	Harper 12/15/20-187	20-2070 SP 12	9.77	1.96	
M-82991	Harper 12/15/20-188	20-2408 SP 12	5.78	2.58	
M-82993	Harper 12/15/20-189	20-2825 SP 12	3.61	0.37	
M-82994	Harper 12/15/20-190	20-3102 SP 12	-1.15	-11.84	
M-83032	Harper 12/15/20-191	20-3739 SP 12	2.76	1.41	
M-83033	Harper 12/15/20-191 rep	20-3739 SP 12	2.79	1.51	
	Minimum	Value	4.45	-11.84	
	Maximum		-1.15		
	Average \		9.77	2.58	
	Average	value.	3.93	-0.67	
M-83034	Harper 12/15/20-192	20-2071 SP 13	-4.05	-5.26	
M-83035	Harper 12/15/20-193	20-2826 SP 13	-3.81	4.74	Below LOC
M-83036	Harper 12/15/20-194	20-3103 SP 13	-10.26	-0.05	DCIOW LOC
M-83039	Harper 12/15/20-195	20-3740 SP 13	-2.13	0.47	
111 00000	110/20 100	20 07 10 01 10	2.10	0.11	
	Minimum	Value:	-10.26	-5.26	
	Maximum		-2.13	4.74	
	Average \	/alue:	-5.06	-0.03	
M-83040	Harper 12/15/20-196	20-2072 SP 14	1.35	-4.09	
M-83041	Harper 12/15/20-197	20-2409 SP 14	-7.78	-2.27	
M-83042	Harper 12/15/20-198	20-2827 SP 14	1.63	1.77	
M-83043	Harper 12/15/20-199	20-3104 SP 14	-3.07	-7.50	
M-83048	Harper 12/15/20-200	20-3741 SP 14	-6.17	-2.02	
			•		
	Minimum		-7.78	-7.50	
	Maximum	Value:	1.63	1.77	
		Value:			
M 02040	Maximum Average \	Value: /alue:	1.63 -2.81	1.77 -2.82	
M-83049	Maximum Average \ Harper 12/15/20-201	Value: /alue: 20-2073 SP 15	1.63 -2.81 -1.19	1.77 -2.82	
M-83050	Maximum	Value: /alue: 20-2073 SP 15 20-2073 SP 15	1.63 -2.81 -1.19 -1.17	1.77 -2.82 0.19 -0.34	
M-83050 M-83051	Maximum	Value: Value: 20-2073 SP 15 20-2073 SP 15 20-2410 SP 15	1.63 -2.81 -1.19 -1.17 1.46	1.77 -2.82 0.19 -0.34 -1.75	
M-83050 M-83051 M-83052	Maximum	Value: Value: 20-2073 SP 15 20-2073 SP 15 20-2410 SP 15 20-2828 SP 15	1.63 -2.81 -1.19 -1.17 1.46 1.32	1.77 -2.82 0.19 -0.34 -1.75 1.29	
M-83050 M-83051 M-83052 M-83054	Maximum Average \(\) Harper 12/15/20-201 Harper 12/15/20-201 rep Harper 12/15/20-202 Harper 12/15/20-203 Harper 12/15/20-204	Value: /alue: 20-2073 SP 15 20-2073 SP 15 20-2410 SP 15 20-2828 SP 15 20-3106 SP 15	1.63 -2.81 -1.19 -1.17 1.46 1.32 -2.38	1.77 -2.82 0.19 -0.34 -1.75 1.29 -5.47	
M-83050 M-83051 M-83052	Maximum	Value: Value: 20-2073 SP 15 20-2073 SP 15 20-2410 SP 15 20-2828 SP 15	1.63 -2.81 -1.19 -1.17 1.46 1.32	1.77 -2.82 0.19 -0.34 -1.75 1.29	
M-83050 M-83051 M-83052 M-83054	Maximum Average \(\) Harper 12/15/20-201 Harper 12/15/20-201 rep Harper 12/15/20-202 Harper 12/15/20-203 Harper 12/15/20-204 Harper 12/15/20-205	Value: 20-2073 SP 15 20-2073 SP 15 20-2073 SP 15 20-2410 SP 15 20-2828 SP 15 20-3106 SP 15 20-3742 SP 15	1.63 -2.81 -1.19 -1.17 1.46 1.32 -2.38 0.29	1.77 -2.82 0.19 -0.34 -1.75 1.29 -5.47 2.26	
M-83050 M-83051 M-83052 M-83054	Maximum Average \(\) Harper 12/15/20-201 Harper 12/15/20-201 rep Harper 12/15/20-202 Harper 12/15/20-203 Harper 12/15/20-204	Value: /alue: 20-2073 SP 15 20-2073 SP 15 20-2410 SP 15 20-2828 SP 15 20-3106 SP 15 20-3742 SP 15 Value:	1.63 -2.81 -1.19 -1.17 1.46 1.32 -2.38	1.77 -2.82 0.19 -0.34 -1.75 1.29 -5.47	

APPENDIX I

MARCO ISLAND FERTILIZER ORDINANCE

ORDINANCE 16-02

AN ORDINANCE OF THE CITY OF MARCO ISLAND, FLORIDA **AMENDING CHAPTER** 18, **ENTITLED ESTABLISHING** ARTICLE "ENVIRONMENT", III. ENTITLED "FERTILIZER REGULATIONS", SECTIONS THROUGH 18-100, INCLUSIVE; AMENDING ARTICLE IV, ENTITLED "MARCO ISLAND LAWN AND **LANDSCAPING** MAINTENANCE CERTIFICATION **REGULATIONS**" IN CHAPTER 8, **ENTITLED** "BUSINESSES", IN THE MARCO ISLAND CODE OF ORDINANCES; REVISING THE REGISTRATION AND REQUIREMENTS FOR LAWN PERMITTING AND LANDSCAPING **BUSINESSES: PROVIDING FOR PROVIDING CONFLICTS: FOR SEVERABILITY**; PROVIDING FOR INCLUSION IN THE CODE; AND PROVIDING FOR AN EFFECTIVE DATE.

WHEREAS, pursuant to Article VIII, Section 2 of the Florida Constitution, and Chapter 166, Florida Statutes, the City of Marco Island is authorized to protect the public health, safety and welfare of its residents and has the power and authority to enact regulations for valid governmental purposes that are not inconsistent with general or special law; and

WHEREAS, Section 1.01 of the Marco Island Charter empowers the City to adopt, amend, or appeal ordinances, resolutions and codes as may be required for the benefit of the City; and

WHEREAS, the Marco Island City Council desires to regulate the use of fertilizers containing nitrogen or phosphorous to minimize the negative environmental effects these fertilizers have in and on the waterbodies within and around the City of Marco Island, which degrade the quality of life, and jeopardize the health, safety, and welfare of the citizens of Marco Island; and

WHEREAS, Marco Island City Council finds it to be in the best interests of its citizens to amend the Marco Island Code of Ordinances accordingly.

Page 1

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by <u>strikethrough</u>.

NOW, THEREFORE, BE IT ORDAINED BY THE CITY COUNCIL OF THE CITY OF MARCO ISLAND, FLORIDA¹:

SECTION 1. Recitals.

The foregoing "WHEREAS" clauses are hereby ratified and confirmed as being true, correct and reflective of the legislative intent underlying this Ordinance.

SECTION 2. Amendment Adding Fertilizer Regulations.

The Code of Ordinances, Marco Island, Florida, is hereby revised by establishing Article III, entitled "Fertilizers Regulations", Sections 18-61 through 18-100, inclusive, in Chapter 18, entitled "Environment", as follows:

Chapter 18 -- ENVIRONMENT

ARTICLE III. – FERTILIZER REGULATIONS

Sec. 18-61. - Short title.

This Article shall be known and may be cited as the "City of Marco Island Fertilizer Control Ordinance".

Sec. 18-62. - Intent and Purpose.

- (1) To provide for the regulation of fertilizers containing nitrogen or phosphorous and to provide specific management guidelines for fertilizer application in order to minimize the negative environmental effects said fertilizers have in and on the waterbodies within and surrounding the City of Marco Island.
- (2) These guidelines and practices are established to help communities, developers, builders, contractors, businesses and homeowners be partners in improving and protecting Florida's environment.
- This Article III "Fertilizer Regulations" is based on the Model Ordinance for Florida-Friendly Fertilizer Use or equivalent as encouraged by Section 403.9337, Florida Statutes.

Page 2

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by <u>strikethrough</u>.

- (4) Nitrogen and phosphorous are essential ingredients for plant growth; however, overuse and improper application of these nutrients create water quality issues and pollute our treasured natural waters. They promote algae blooms and other excessive plant growth.

 Low to no phosphorus fertilizer and slow release nitrogen fertilizer, along with proper utilization, result in absorption by plants and lower levels of nitrogen and phosphorus reaching the water bodies within and surrounding the City of Marco Island and their associated watersheds.
- (5) Certification and training, as required by Article IV (Marco Island Lawn and Landscape Maintenance Registration Regulations), will result in increasing the knowledge of lawn and landscape maintenance professionals, and their customers, of:
 - (a). The effects of pesticides, fertilizers and overwatering on the environment;
 - (b). Ways to reduce the amount of fertilizers and pesticides utilized; and
 - (c). Methods to limit water use on lawns and landscapes thus potentially lowering the impacts of nonpoint source pollution on local water bodies.

Sec. 18-63. - Definitions.

Application means the physical deposition of fertilizer to turf or landscape plants.

Applicator means any person who applies, in any manner, fertilizer to turf or landscape plants within the city as defined in this ordinance.

Approved Best Management Practices Training Program means a training program approved per Section 403.9338, Florida Statutes, or any more stringent requirements set forth in this Article that includes the most current version of the Florida Department of Environmental Protection's "Florida-friendly Best Management Practices for Protection of Water Resources by the Green Industries, 2008," as revised, and approved by the City Manager or designee.

Best Management Practices means turf and landscape practices or combination of practices based on research, field-testing, and expert review, determined to be the most effective and practicable means, including economic and technological considerations, for improving water quality, conserving water supplies and protecting natural resources.

<u>City Manager</u> means the City Manager or his designee, who will administer and enforce the provisions of this Article.

Code Compliance Officer or Inspector means any designated employee or agent of the City of Marco Island whose duty it is to enforce codes and ordinances enacted by the City.

<u>Commercial Fertilizer Applicator</u>, except as provided in Section 482.1562(9), Florida Statutes, means any person who applies fertilizer for payment or other consideration to property not owned by the person or firm applying the fertilizer and includes the employer of the applicator.

Page 3

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by <u>strikethrough</u>.

Fertilize, fertilizing, or fertilization means the act of applying fertilizer to a lawn (turf), specialized turf, or landscape plant.

Fertilizer means any substance that contains nitrogen, phosphorus, or any combination of these plant nutrients and promotes plant growth, or controls soil acidity or alkalinity, or provides other soil enrichment, or provides other corrective measures to the soil.

Guaranteed Analysis means the percentage of plant nutrients or measures of neutralizing capability claimed to be present in a fertilizer.

Impervious surface means a constructed surface, such as a sidewalk, road, parking lot, or driveway, covered by impenetrable materials such as asphalt, concrete, brick, pavers, stone, or highly compacted soils.

Institutional Applicator means any person, other than a private, non-commercial or commercial applicator who applies fertilizer for the purpose of maintaining turf or landscape plants. Institutional applicators shall include, but shall not be limited to, owners and managers or employees of public lands, schools, parks, religious institutions, utilities, industrial or business sites, and any residential properties maintained in condominium or common ownership.

Landscape Plant means any native or exotic tree, shrub, or groundcover (excluding turf).

<u>Lawn and Landscape Professional means any person who engages in solicitation for the delivery of lawn or landscaping maintenance and services.</u>

Low Maintenance Zone means an area a minimum of ten (10) feet wide adjacent to watercourses which is planted and managed in order to minimize the need for fertilization, watering, mowing, etc.

Leaching means the process by which soluble constituents are dissolved and filtered through the soil by a percolating fluid.

Non-Commercial Applicator means any person other than a commercial fertilizer applicator or institutional applicator who applies fertilizer on turf or landscape plants in the city, such as an individual owner of a single-family residential unit.

Person means any natural person and shall also mean any business, corporation, association, club, organization, and/or any group of people acting as an organized entity.

<u>Prohibited Application Period</u> means the time period during which any of the following are likely: Flood Watch or Warning, or a Tropical Storm Watch or Warning, or a Hurricane Watch or Warning is in effect for any portion of Collier County, issued by the National Weather

Page 4

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by <u>strikethrough</u>.

Service, or if heavy rain (World Meteorological Organization definition of heavy rain is rainfall greater than or equal to 50 mm (2 inches) in a 24 hour period).

Rainy season means June 1 through September 30 of each calendar year.

Rapid Release or Water Soluble Nitrogen means any product containing:

- (1) Ammonium Nitrate.
- (2) Ammonium Sulfate.
- (3) Calcium Nitrate.
- (4) Diammonium Phosphate.
- (5) Monoammonium Phosphate.
- (6) Potassium Nitrate.
- (7) Sodium Nitrate.
- (8) Urea (not in the form of slow release nitrogen).
- (9) Others as may be designated in writing by the Administrator.

Runoff means the water that results from and occurs following a rain event, or following an irrigation event, because the water is not absorbed by the soil or landscape and flows from the area.

<u>Saturated Soil</u> means a soil in which the voids are filled with water. Saturation does not require flow. For the purposes of this ordinance, soils shall be considered saturated if standing water is present or the pressure of a person standing on the soil causes the release of free water.

Slow Release, Controlled Release, Timed Release, Slowly Available, or Water Insoluble Nitrogen means nitrogen in a form which delays its availability for plant uptake and use after application, or which extends its availability to the plant longer than a "rapid release nitrogen" product. Forms of slow release, controlled release, slowly available, or water insoluble nitrogen include:

- (1) Isobutylidene diurea (IBUD).
- (2) Resin, Polymer, or Sulphur coated urea.
- (3) Biosolids or residuals from domestic wastewater treatment.
- (4) Ureaformaldehyde.
- (5) Composted animal manure.
- (6) Others as may be designated in writing by the City Manager or designee.

Turf, Sod, or Lawn means a piece of grass-covered soil held together by the roots of the grass.

Wetlands means those areas that are inundated or saturated by surface water or ground water at a frequency and a duration sufficient to support, and under normal conditions do support, a prevalence of vegetation typically adapted for life in saturated soils [See 62-340 F.A.C.].

<u>Yard Waste</u> means shredded yard clippings, leaves, grass clippings, coconuts, limbs and any plant debris created in the act of mowing, trimming and removal of vegetation.

Page 5

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by strikethrough.

Sec. 18-64. - Fertilizer Regulations.

(1) Applicability. This Section shall be applicable to and shall regulate any and all applicators of fertilizer and areas of application of fertilizer within the City of Marco Island unless such applicator is specifically exempted by the terms of this Section from the regulatory provisions of this Section. This Section shall be prospective only, and shall not impair any existing contracts.

(2) Exemptions. This Section shall not apply to:

- (a) Bona fide farm operations as defined in the Florida Right to Farm Act, Section 823.14, Florida Statutes.
- (b) Other properties not subject to or covered under the Florida Right to Farm Act that have pastures used for grazing livestock.
- (c) Yard waste compost, mulches, or other similar materials that are primarily organic in nature and are applied to improve the physical condition of the soil. Yard wastes shall not be disposed of or stored by shorelines, seawalls, swales or near storm drains.
- (d) Athletic Fields that are maintained by a public entity and used by the public are exempt from fertilizer application regulations under Section 18-64 (6)a of this Article.
- (e) Newly planted turf and/or landscape plants may be fertilized only for a sixty (60) day period beginning 30 days after planting, if needed to allow the plants to become well established. Caution should be used to prevent direct deposition of nitrogen and phosphorus into the water.
- (3) Impervious surfaces. Fertilizer shall not be applied, spilled, or otherwise deposited on any impervious surfaces. Any fertilizer applied, spilled, or deposited, either intentionally or accidentally, on any impervious surface shall be immediately and completely removed. Fertilizer released on an impervious surface must be immediately contained and either legally applied to turf or any other legal site, or returned to the original or other appropriate container. In no case shall grass clippings, vegetative material, and/or vegetative debris, including coconuts either intentionally or accidentally, be washed, swept, thrown, or blown off into stormwater drains, ditches, conveyances, water bodies, wetlands, sidewalks or roadways.

(4) Fertilizer Free Zones.

(a) Fertilizer shall not be applied within ten (10) feet of any pond, stream, storm drain, watercourse, lake, canal or wetland as defined by the Florida Department of Environmental Protection, or from the top of a seawall.

(b) Spreader deflector shields are required when fertilizing adjacent to Fertilizer Free Zones or impervious surfaces.

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by <u>strikethrough</u>.

(5) Timing of Fertilizer Application.

(a) No applicator shall apply fertilizers containing nitrogen or phosphorous to turf and/or landscape plants during the rainy season (June 1 - September 30) and the Prohibited Application Period and to saturated soils.

(6) Fertilizer Content and Application Rate.

- (a) Phosphorus fertilizer shall not be applied to turf or landscape plants unless a soil or tissue deficiency has been verified by an approved test. Where a deficiency has been verified, phosphorous fertilizer shall not be applied at application rates that exceed 0.25 lbs. P₂O₅/1000 ft² per application and not to exceed 0.50 lbs. P₂O₅/1000 ft² per year.
- (b) Fertilizer applied to turf or landscape plants within the city must contain no less than 50% slow release nitrogen per guaranteed analysis label as guaranteed analysis and label are defined in chapter 576, Florida Statutes.
- (c) Total Yearly Applications. Fertilizers shall not be applied more than four (4) times during any one calendar year to a single area. No more than four (4) pounds of nitrogen per 1000 square feet shall be applied to any turf or landscape area in any calendar year.
- (d) Where fertilizer application is not described in this article, fertilizer shall be applied in accordance with requirements and directions provided by Rule 5E-1.003, Florida Administrative Code for turf and as found in UF/IFAS recommendations for landscape plants, vegetable gardens, and fruit trees and shrubs.

7) Education and Outreach.

- (a) The City of Marco Island will provide educational materials, notices and/or presentations notifying residents that fertilizers applied within the City shall be formulated and applied in compliance with this Section.
 - i) The Beautification Committee, in conjunction with City staff, shall incorporate into their community outreach programs no less than two educational sessions on the requirements of the fertilizer ordinance per year.
- (b) Retail businesses within the City selling fertilizer are requested to post a notice in a conspicuous location near the fertilizer notifying customers of this ordinance.

Sec. 18-65 - Permitting, Penalties and Enforcement.

1) <u>Permitting</u>. All persons intending to apply fertilizer are required to obtain appropriate permits from the City.

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by <u>strikethrough</u>.

- (a) A minimum of one business day prior to fertilizer application within the City, the person must apply for an e-mail permit, free of charge, indicating the location, type of fertilizer and acknowledgement that a spreader deflector will be utilized.
- (b) <u>Codes Enforcement may visit any site where fertilization is occurring and stop work if a permit was not received or if improper products or methods are being employed.</u>
- 2) Upon the request of Code Enforcement, applicators shall be required to provide the label for fertilizer being applied to verify compliance with this ordinance.
- 3) Any person who violates any provision of this ordinance shall be guilty of a noncriminal infraction. Violators will be subject to the issuance of a citation imposing the following penalties: (i) First Violation a fine up to \$150; and (ii) Each Subsequent Violation a fine not to exceed \$300.
- 4) Any person or persons, firm or corporation, or any agent thereof, who violates any of the provisions of any Section of this Article shall be punished by revocation of any certification issued under this Article, and other penalties as may be imposed by the Code Enforcement Magistrate pursuant to this Code, Chapter 14 of City Code of Ordinances, and Florida law.

Secs. 18-66 --- 18-100. - Reserved

SECTION 3. Amendments to Marco Island Lawn and Landscaping Maintenance Certification Regulations.

The Code of Ordinances, Marco Island, Florida, is hereby revised by amending Article IV, entitled "Marco Island Lawn and Landscaping Maintenance Certification Regulations", Sections 8-71 through 8-81, inclusive, in Chapter 8, entitled "Businesses", as follows:

Chapter 8. - BUSINESSES

ARTICLE IV. – MARCO ISLAND LAWN AND LANDSCAPE MAINTENANCE CERTIFICATION REGISTRATION REGULATIONS

Sec. 8-70. - Intent and purpose.

The intent and purpose of this article is to require any person or business entity performing lawn or landscaping maintenance work in the City of Marco Island to possess minimum

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by <u>strikethrough</u>.

qualifications and competency that will assist in strengthening and promoting public awareness of the need to engage in certain lawn and landscape maintenance activities and therefore mitigate long-term and immediate adverse impacts from stormwater run-off into natural water bodies located in and adjacent to the City of Marco Island.

Sec. 8-71. - Definitions.

The following words, terms and phrases, when used in this article, shall have the meanings ascribed to them in this section, except where the context clearly indicates a different meaning:

<u>Applicator</u> means any person who applies, in any manner, fertilizer to turf or landscape plants within the City as defined in this ordinance.

<u>Certification</u> means the process of completing the State approved course and test as required in Florida Statute 482.1562

Commercial Fertilizer Applicator, except as provided in Section 482.1562(9), Florida Statutes, means any person who applies fertilizer for payment or other consideration to property not owned by the person or firm applying the fertilizer and includes the employer of the applicator.

Landscape architect means an individual licensed by the State of Florida responsible for the preparation of landscaping plans and design.

Lawn and landscape professional means any person who engages in solicitation for the delivery of lawn, landscaping or lawn or landscaping maintenance services.

Non-Commercial Applicator means any person other than a commercial fertilizer applicator or institutional applicator who applies fertilizer on turf or landscape plants in the City, such as an individual owner of a single-family residential unit.

<u>Registration</u> is the process of applying to the City for recognition of appropriate certification to apply fertilizer within the City and receipt of a decal identifying the vehicles of the approved applicators.

Sec. 8-72. - Exemptions Exception.

The eertification registration requirement of this article shall not apply to the following:

- (1) Any individual <u>non-commercial</u> property owner engaging in lawn, landscaping or lawn or landscaping maintenance <u>on one's own property</u>;
- (2) Any landscape architects licensed by the State of Florida engaging in lawn or landscaping maintenance services;

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by <u>strikethrough</u>.

- (3) Any individual or business entity, which possesses a license from the State of Florida to apply herbicides, pesticides, chemicals; or
- (4) Any individual or business entity possessing a valid specialty contractor's license from Collier County, Florida for the delivery of services such as landscaping, tree removal and trimming, and irrigation.

Sec. 8-73. - Regulated activities.

- (a) It shall be a violation of this Code to provide any lawn and landscaping, or lawn or landscaping maintenance and services in the city without first being certified and registered with the city as a lawn and landscape professional as provided herein.
- (b) Any lawn and landscapinge or lawn or landscape maintenance and services, including fertilizer application, provided to the city by a lawn and landscape professional shall have at least one supervisor at each work site registered with certified by the city as a lawn and landscape professional. In addition, all business entities under contract with the city shall have ten percent of their staff certified and registered with by the city as a lawn and landscape professional within six months of entering into a contract with the city; and 50 percent of their staff certified by the city as a lawn and landscape professional within one year of entering into a contract with the city.
- (d) (c) Any lawn and landscaping and landscape maintenance or services, including fertilizer application, provided by lawn and landscape professionals within the city shall have at least one supervisor certified by and registered with the city as a lawn and landscape professional. These businesses shall provide at least one supervisor and/or crew leader per vehicle certified registered by the city as a lawn and landscape professional within one year of adoption. Any landscaping professional applying fertilizer is required to be state certified and city registered.

Sec. 8-74. - Certification application; contents.

1) Training and Licensing.

- a) Section 482.1562, Florida Statutes, contains language regarding the limited certification of urban landscape commercial fertilizer application. Fertilizer applicators, as certified under that section of state statute, shall have and carry in their possession at all times when applying fertilizer, evidence of that certification.
- b) The City also hereby requires lawn and landscape professionals, except as exempted above, to abide by and successfully complete the six-hour training program in the Florida-Friendly Best Management Practices for Protection of Water Resources by the Green Industries offered by the Florida Department of Environmental Protection through

Page 10

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by <u>strikethrough</u>.

- the University of Florida Extension program (or approved equivalent), as well as local ordinance requirements, as amended.
- 2) Lawn and Landscape Professional Registration. It shall be a violation of this Article for lawn and landscape professionals, except as exempted above, to fertilize lawns or landscape plants without first being certified with the state of Florida and business registered with the City as provided herein.
 - a) Any lawn, landscaping and landscape maintenance business that applies fertilizer shall register supervisors/crew leaders with the City.
 - b) Lawn and Landscape Professionals registering with the City as such shall:
 - i) Attend and successfully complete the six-hour training program as described above.
 - ii) Attend and successfully complete the three-hour annual refresher course (or approved equivalent) for renewal of registration.
 - (1) Except as otherwise provided in section 8-72, all persons before entering into or upon property within the city to perform lawn, landscaping or lawn or landscaping maintenance shall demonstrate knowledge of the relationship between their profession and the environment through both experience and education.
 - <u>iii)</u> Certification <u>and registration</u> shall be based on demonstrated ability, experience, and education in the following areas of competency:
 - (a) Effects of the environment from sediment, nutrients, and pesticides moving off-site through surface or ground water.
 - (b) Site design and plant selection to enhance the natural environment.
 - (c) Rates and methods of applying fertilizer and irrigation that minimize negative environmental consequences.
 - (d) Utilization of integrated pest management to both minimize pests and decrease chemical applications.
 - iv) Illustrate an ability to apply his or her knowledge of the concepts identified herein by providing a written, detailed management plan that outlines maintenance activities to be carried out for specific locations.
 - v) Provide an initial application fee of \$50.00, which shall be used to defray the costs of the program. A fee of \$15.00 shall be charged to renew certification. The application fee may be amended by resolution of the City Council as may be necessary.
 - (1) A person applying for certification by the city as a lawn and landscape maintenance professional shall provide evidence of completing a course of study from the Rookery

Page 11

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by <u>strikethrough</u>.

Bay National Estuarine Research Reserve, Naples, Florida, or other approved provider, with at least six hours of instruction in the areas identified under section 2. Confirmation of attendance in a three hour annual refresher course from Rookery Bay National Estuarine Research Reserve, or other approved provider must be provided to the city prior to issuance of a renewal certification.

- (2) A person applying for certification by the city as a lawn and landscape maintenance professional shall illustrate an ability to apply his or her knowledge of the concepts identified herein by providing a written, detailed management plan that outlines maintenance activities to be carried out for a specific location.
- c) (4) The city shall provide any person who has satisfied the requirement set forth herein and paid the application fee, a certificate registration and a decal indicating the city considers that person to be a certified lawn and landscape maintenance professional.
- <u>d)</u> (5) The <u>certification registration</u> program shall be managed and administered by the growth management department. However, the <u>city council City Manager or designee</u> shall retain the authority to approve <u>certification registration</u> of any applicant for lawn and landscape <u>registration maintenance certification</u>.
- e) It shall be the responsibility of the landscape professional to complete required training and to register with the City.

Sec. 8-75. - Duration, renewal.

A <u>certification</u> issued under this article shall be valid for one year. Renewals for an additional one-year period may be granted, unless previously issued <u>registrations</u> <u>certificates</u> are revoked as provided in this article. A maximum of two one-year renewals will be granted without submission of a new <u>registration</u> <u>certification</u> application and without payment of the applicable <u>registration</u> <u>certification</u> fee. However, prior to receiving a renewed <u>registration</u> <u>certification</u>, the applicant must update and make any necessary changes needed to the previously submitted <u>certification</u> application. <u>Certification</u> with the state must occur in <u>compliance</u> with state <u>regulations</u>.

Sec. 8-76. - Duty to carry, exhibit certification and receive appropriate permit.

(1) <u>Identification</u>. Every <u>certified registered</u> lawn and landscaping professional shall carry his or her registration <u>certification</u> and photo identification at all times while engaged in lawn or landscaping maintenance work in the city.

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by <u>strikethrough</u>.

- a) The City-issued Lawn and Landscape Professionals decal shall be displayed on every state-licensed motor vehicle used by a commercial fertilizer applicator or institutional applicator, and by lawn and landscape maintenance professionals when performing services within the City limits. One decal will be issued with each registration; each additional decal will cost \$5. The decal shall be displayed prominently and in such a manner as not to be obstructed.
- (2) <u>Permitting.</u> All registered landscape professionals are required to obtain appropriate permits from the City.
 - a) A minimum of one business day prior to fertilizer application within the City, the registered professional must apply for an e-mail permit, free of charge, indicating the location, type of fertilizer and acknowledgement that a spreader deflector will be utilized.
 - b) Codes Enforcement may visit any site where fertilization is occurring and stop work if a permit was not received or if improper products or methods are being employed.

Sec. 8-77. - Reserved. Fees.

An initial application fee shall be \$25.00, which shall be used to defray the costs of certificates and other expenses of the program. A fee of \$25.00 shall be charged to renew certification. The application fee may be amended by resolution of the city council as may be necessary.

Sec. 8-78. - Revocation authorized; grounds.

Certifications Registration issued under this article may be revoked by the city manager or the city manager's designee after notice and hearing for any of the following offenses:

- (1) Fraud, misrepresentation or a false statement in the application.
- (2) Fraud, misrepresentation or a false statement in the performance of lawn or landscaping maintenance services.
- (3) Violation of any condition, provision or qualification provided in the application.
- (4) Conviction, nolo contendere plea or forfeiture resulting from violation of any city, state or federal law involving theft, fraud, violence or moral turpitude.
- (5) Conducting business in an unlawful manner or in such manner as to threaten breach of the peace or menace to public health, safety or welfare.
- (6) Failure to comply with any provision of this article <u>and applicable sections of Chapter</u> 18-Environment, of the Marco Island Code of Ordinances.

Sec. 8-79. - Notice of revocation.

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by <u>strikethrough</u>.

- (1) Written notice of revocation of a certification registration issued under this article and the grounds therefor shall be mailed or delivered to a certified lawn and landscaping professional at the address specified in its application.
- (2) The public will be notified of revocation of any landscaping professional's registration through the monthly report to City Council, on the City's website and a notification will be posted at City Hall.

Sec. 8-80. - Appeal.

Any person aggrieved by the denial of a certification registration or revocation of a certification registration shall have the right of appeal to the city council. Such appeal shall be taken by filing with the city manager or designee, within 14 days after notice of the action complained of has been mailed or delivered to such person's last known address, a written statement setting forth fully the grounds for the appeal. The city manager or designee shall set a time and place for a hearing on such appeal and notice of such hearing shall be given to the appellant at least five days before the date of said hearing. The decision and order of the city council on such appeal shall be final.

Sec. 8-81. - Penalties.

Any person or persons, firm or corporation, or any agent thereof, who violates any of the provisions of any section of this article shall be punished by revocation of any eertification registration issued under this article, and other penalties as may be imposed by the Code Enforcement Magistrate board pursuant to Florida Law or this Code.

SECTION 4. Codification.

It is the intention of the City Council, and it is hereby ordained that the amendments to the City of Marco Island Code of Ordinances made by this Ordinance shall constitute a new Article V to Chapter 8 of the City of Marco Island Code of Ordinances, and that the sections of this Ordinance may be renumbered and re-lettered as necessary, and that the word "Ordinance" may be changed to "Section, "Article" or other appropriate word.

Page 14

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by strikethrough.

SECTION 5. Conflicts.

All ordinances or parts of ordinances and all resolutions or parts of resolutions in conflict with the provisions of this Ordinance are hereby superseded and resolved to the extent of any conflict in favor of the provisions of this Ordinance.

SECTION 6. Severability.

If any term, section, clause, sentence or phrase of this Ordinance is for any reason held to be invalid, illegal, or unconstitutional by a court of competent jurisdiction, the holding shall not affect the validity of the other or remaining terms, sections, clauses, sentences, or phrases portions of this Ordinance, and this Ordinance shall be read and/or applied as if the invalid, illegal, or unenforceable term, provision, clause, sentence, or section did not exist.

SECTION 7. Effective Date.

This Ordinance shall become effective immediately following its adoption by the City Council.

ADOPTED BY THE CITY COUNCIL OF THE CITY OF MARCO ISLAND this 7th day of March 2016.

ATTEST:

CITY OF MARCO ISLAND, FLORIDA

Laura M. Litzan, City Clerk

Robert C. Brown, Chairman

Approved as to form and legal sufficiency:

Alan L. Gabriel, City Attorney

Page 15

¹ Proposed additions to existing City Code text are shown by <u>underlining</u>; proposed deletions from existing City Code text are shown by <u>strikethrough</u>.